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The thermal effective Lagrangian of a static background of gravitational fields is derived in the
high temperature limit. In the one-loop approximation we obtain a closed form result as a simple
functional of the static metric tensor. At the two-loop order, we are able to compute the effective
Lagrangian up to the contribution of the graviton self-energy. This encodes all the effects of self-
interactions of the thermal fields and may be employed in order to obtain the thermodynamical
properties in a gravitational background.
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1. One-loop Static Thermal Effective Action

When the temperature T is non-zero, the one-loop effective Lagrangian for a gravitational
background field can be formulated in terms of the following trace of the Laplace-Beltrami oper-
ator (here the relation logDetA = TrlogA is being employed in the context of the imaginary time
formalism [1, 2])

L =−T
2 ∑

n

∫ dd−1 p
(2π)d−1 log

(
−β

2 pµ g̃µν pν

)
; g̃µν ≡√−ggµν , (1.1)

where the Matsubara frequencies are such that p0 = i2πnT (for simplicity, we are considering the
example of thermal scalar fields; this can be generalized for spinor or vector fields in a straight-
forward manner). For static gravitational fields, in the high-temperature limit, when T >>~∂g, the
space dependence of the metric can be neglected, so that (see [3] and [4] for details)

L stat. =−T
2 ∑

n

∫ dd−1 p
(2π)d−1 log

[
−β

2 (g00 p2
0 +2g0i p0 pi +gi j pi p j

)]
+ . . . , (1.2)

where . . . represents terms which are independent of T .
Let us now perform the change of variables

pi→ p′i = M j
i p j + fi p0, (1.3)

where M is symmetric. Upon imposing the condition

p′i p
′
i = gi j pi p j +2g0i p0 pi + fi fi p2

0, (1.4)

we obtain {
M j

i Mk
i = g jk

f iMi j = g0 j . (1.5)

Therefore, the effective Lagrangian can be written as

L stat. =−T
2

1√−detg ∑
n

∫ dd−1 p′

(2π)d−1 log
[
−β

2 ((g00− f i f i)p2
0− p′i p

′
j
)]
, (1.6)

where the entries of the matrix g are gi j. Performing the transformation

pi→
√

g00− f j f j pi (1.7)

we readily obtain

L stat. = L (0)

(
g00− (g−1)i jg0ig0 j

) d−1
2

√−detg
, (1.8)

where

L (0) =
Γ[d]ζ (d)

2d−2π(d−1)/2Γ
(d−1

2

)
(d−1)

T d (1.9)

is the pressure of a free Boson gas in d space-time dimensions. We can also express this result in
terms of the co-variant metric components. Using the identity (this follows from gµαgαν = δ

µ

ν )

g00− (g−1)i jg0ig0 j = (g00)
−1, (1.10)
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Eq. (1.8) can be written as

L stat. = L (0)

√
−g00 detg−1

(g00)d/2 , (1.11)

Expanding the determinant of gµν in terms of co-factors and using the identity gi0 = −g−1
i j g j0g00

as well as (1.10) we can show that

g00 detg−1 =
1

detgµν
= g. (1.12)

Therefore, Eq. (1.11) yields

L stat. = L (0)
√−g

(g00)d/2 , (1.13)

which is in agreement with the known result when d = 4 [5]. This static effective Lagrangian
has been obtained previously using a much more involved approach in terms of the heat-kernel
technique restricted to a static space-time, in a reference frame such that g0i = 0 [6]. Since the
heat bath breaks the invariance under general coordinate transformations, as it is evident due to the
presence of the Matsubara sum in Eq. (1.1), it is essential to perform the calculation for general
values of g0i. Physically one must impose that the heat bath is freely moving in a time-like geodesic,
so that in the heat bath frame g0i vanishes only in very special cases, even for static space-times.

2. Higher loop orders

For the special case of a static metric, the one-loop result shows that it is possible to sum all
the 1PI one-loop n-graviton functions in terms of the closed form expression in Eq. (1.13). A key
ingredient in order to obtain this result was the use the identity between the high temperature static
and the zero momentum limit of all the one-loop thermal Green’s functions (SZM for short). This
property has been show to be true for other background fields, by explicitly computing the two- and
three-point functions at one-loop order [7] (more recently we have employed an iterative procedure
in order to prove the SZM identity for all one-loop 1PI amplitudes [4] ).

From the one-loop result one can obtain the thermodynamical properties, such as the pressure
of non-interacting thermal particles subjected to an external gravitational field. However, in a
more realistic physical scenario one would have to take into account the self-interactions of the
thermal particles. In principle this can be investigated computing the higher loop contributions;
these necessarily involves thermal field interactions. In order to tackle this issue in a systematic
fashion, we first consider the possibility that the SZM identity holds also at the two-loop order for
all the 1PI diagrams. This issue is also of interest from a broader point of view, since there are few
higher loop results at finite temperature and our analysis is completely general to the extent that it
includes theories with cubic and quartic vertices as well as more general cases, like gravity.

Here we present preliminary results which shows that the two-loop contributions to the self-
energy satisfy the SZM identity. We have considered all the non-trivial diagrammatic topologies
which, unlike the ones shown in figures 1 and 2 are dependent on the external momentum and
cannot be reduced to the one-loop case.

These are given by the five topologies shown in figure 3 (notice that we are taking into account
the possibility of having vertices with any number of lines, as it would be in gravity).
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Figure 1: Momentum independent contribution to the two-point function at the two-loop order.

Figure 2: Diagrammatic topologies which can be reduced to the one-loop case.
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Figure 3: Non-trivial diagramatic topologies topologies.

When the external fields are Bosonic, we can consider the static limit before making the an-
alytic continuation of the external energies. Using this, we have performed the Matsubara sum
of these diagrammatic topologies for general interaction vertices, in d space-time dimensions in
both static and zero momenta limit. Our explicit results show that the SZM identity, as previously
defined in the one-loop analysis, is also valid for the self-energy at the two-loop order [4].

3. Discussion

The results announced herein may be useful in physical scenarios where the external fields are
static and the temperature is high. In this case, a considerable simplification should occur, since,
in the configuration space, the SZM identity implies that one may compute the static effective
action using a much simpler space-time independent background field configuration as in the one-
loop case [3]. The two-loop result indicates that the effective action of static gravitational fields
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may also be obtained in a closed form, from the condition that the external field is space-time
independent, in the configuration space.

We also remark that the Feynman graph topologies which we have considered is sufficiently
general to encompass a class of field theories with a finite or infinite number of vertices (like gravity
in the weak field approximation). We are now investigating the SZM identity for all two-loop 1PI
Green’s functions.
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