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1. Introduction

The sucessful operation of the LHC at both 7 and 8 TeV cms &®lgs opened the era of
Brecmlon QCD, which features predictions for QCD processehe total precision tag of 1% or
etter. The need for exact, amplitude-based resummatitang# higher order effects is becoming
more and more acute. Here, we revisit the pioneering use HoWiperator product expansion
(OPE) methods, as presented and applied by the authorssi;n?ei] or short-distance limits of
physical processes especially as it is realized in the DGC&AH3, 4] theory. We do this from the
standpoint of resummation of the attendant large infraffstts insofar as they afford application
of the corresponding parton model representation to LHCigien physics. We thus make contact
with the IR-improved DGLAP-CS theory in Refs. [5-7].

The infrared divergent nature of the usual formulation ofedfi’'s expansion in massless gauge
theory is well-known [ —10]f to some; for, already at onegptine respective leading twist operator
matrix elements between fundamental particle states agerneral infrared divergent and must
be evaluated at off-shell (Euclidean) points in masslesggaheory as shown in Refs. [8-10].

The attendant coefficient functions in the OPE which encbeeléadingQ? dependence of the

expansion are in general infrared divergent order-bytomdeenormalized perturbation theory.
All such infrared divergences cancel in physically obskleghadronic) matrix elements of the
expansion so that, from the standpoint of such observatblesssue is one of optimizing, from the
standpoint of precision, the rearrangement of the largarefl effects that remain after all infrared
divergences have canceled. We choose to resum these lfayedneffects so that we reformulate
the OPE in such away that the respective expansion compoamninfrared finite. In addition, we

show how the new IR-improved DGLAP-CS theory in Ref. [5—4$@s naturally in this context.

For a givenexactorder in the loop expansion for the coefficient functions eegpective operator

matrix elements the IR-improved expansion should be climsexperiment.

The discussion proceeds as follows. In the next section,reéybreview the formulation of
the OPE following the arguments used in Refs. [8-10] for tidyssis of the proto-typical physical
application of the method, deep-inelastic lepton-nuclecattering [11]. In Section 3, we improve
it so that its hard coefficient functions are IR finiteand wekenaontact with the IR-improved
DGLAP-CS theory [5-7]. In Section 3, we also give our phenoabegical summary remarks.

2. Recapitulation of the OPE

We use the deep inelastic electron-proton scattering noliteated by Bjorken [12] as our
starting point:e™ (¢) + p(pp) — € (¢') + X(px) in an obvious notation as illustrated in Fig. 1. We
USEeX = Xgj = Qz/(Zmpv) for Bjorken’s scaling variable which has the parton modtdiipretation
as the struck parton’s momentum fraction whee= qpp/mp with q = ¢— ¢, Q> = —¢?. In the
Fig. 1, the parton momenta apg(p{) before(after) the hard interaction process. Our integetite

e ()
X(px)
P(pp)
Figure 1: Deep inelastic electron-proton scatterig: ¢ — ¢/, v = qpp/Mp, X=Xgj = —¢?/(2mpv), £(¢)

is the four-momentum of the initial(fina§~, pa is the four-momentum oA, A= a, p, wherea s a parton.

limit of Bjorken, limgj, in which we takeQ? — oo with x fixed. In this limit, where for reasons
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of pedago%y we focus on the Photon exchange in FiYj. the standard methods can be used to
represent the imaginary part of the respective currenbpriorward scattering amplitude as

51 (pp.0) = - [ d'ye® < Pl Y(y), S50} p >
= (gaﬁ-i'Qan/Q) L (v, ) (2.1)

+ W(pp — AAR/AP)a (Pp — 4aPy/c) pVE(V, &)
p

Here, JEM(y) is the hadronic electromagnetic current ahg, are the usual deep inelastic the
structure functions, which exhibit [11] Bjorken scalingesldy aQ? 2~ 1, Ge\?, precocious scaling
— we return to this point below. Henceforward we drop the ssg®t onJEM and we always
understand the average over the spin of the proton. In Biskienit, we have ling; mpWi (v, ) =
F1(x), limgj Wk (v, g?) = F»(x) for the scaling limits=; ». The QCD theory of Gross, Wilczek and
Politzer [2] provides an explanation of the observed Bjarkealing behavior via Wilson’s OPE.
In Bjorken’s limit, the value of the integral in (2.1) is domaited the regions which are well-
known to correspond to the tip of the light-cone [13]. In tldgime, we get the Wilson OPE [8-10]

= i (n H1 Hn
o W%a(0) = S0 (W) y2 igyo Z)ZC —igy0)Oly.n (Q)yH -y o
P Hy . \Hn
y2 €Yo Z)ZC |$yo Baulmun(o)y Loy 4

where we have neglected gradient terms without loss of abfde our purposes here and as usual
€ | 0. We also note tha{tO}ll...“n (y)} are traceless, symmetric of twist = dimension -spin = 2 [13].
The--- represent operators that are suppressed by powerstofany finite order in perturbation
theory. The dimensionless coefficient c-number functi{.(h‘gz} can be computed in renormalized

perturbation theory.
If we define

-
< PO (0)[P > |spin averaged= 'an Pop P, M+ (2.3)

where the second - denotes trace-terms, we get [8-10, 14]

Lol (x,?) = 5 CY (@M
[ wotRux ) = 3 L (@M,
J

1 (2.4)
2 c N2
| dotrax ) = 5 CY M
]
where [8]
()
~() (42 _1-- 2\n+1 _i n/ 4 'qycj,k(yz)
Cix (@) = 5i(a) < aq2> d’yé 7 ieve (2.5)
TheC™ satisfy the Callan-Symanzik equation [4]:
9 4 M ] ) _
K“W +B(g)d—g> 3j — ¥ (g)] Cjy=0 (2.6)

1As itis well-known, adding in the effects of the Z exchangstigightforward and does not require any essentially
new methods that are not already exhibited by what we do #opHoton exchange case.
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whereu denotes the renormalization scgg) = ug—ﬂ for the renormalized coupling, and the
anomalous dimension matriq%”)(g) is given by

0
Vi<jn)(g) = Zo'5-20) lgoreguiarization fixed (2.7)
ou i

where the operator@%”) = OIJ:11"'I1n are renormalized via [8, 9]

O =0fp =Y 0hue(Z6Y); (2.8)
J

i , Jbare

in a standard notation. The implied behavior from the sofutf (2.6) for the RHS of (2.4) in
Bjorken’s limit in the asymptotically free theory QCD in Rg2] agrees with experiment [11].

Here, we discuss the IR-improvement of thjj@z, Mj”.

3. IR-Improved OPE

To facilitate isolation of the infrared aspects of tﬁgk) we focus on the parton level ver-
sion [15-20] of hadronic tensé,g which for definiteness we associate with a fermfom the
underlying asymptotically free theory(QCD):

1 .
WE5(Pr.6) = - [ d'ye® < pel[3p(y). a (O)] pr >

. (3.1)
= (2m) ;5(% Pr — Px) < Pr|Jp(0)[px >< px|Ja (0)| pPF >,

where we use the fact th(ﬁ > 0 to drop the remaining term in the commutator and we always
average over the spin of the fermién as we do for the protgm The RHS of (3.1) and that of
(2.1) involve the same OPE. _ _ S _ _

We first isolate [5, 6] the dominant incoming line virtual IRergences in the matrix element

My o =< Px|Jda(0)|pe > via the formula
My o = €78 < py |34 (0)|PE >1RI-virt, (3.2)

whereBqcp is given in Refs. [5,6]. One computespx |Jq (0)|pr >iri—virt from < px|Jq (0)|pr >
by comparing the coefficients of the powersoaf= g?/(41m) on both sides of (3.2) iteratively.
Introducing (3.2) into (3.1), we get

Wi (pF, Q) = (2ﬂ)3;5(q+ PE — px) €780 1oy _yin < pe|3p(0)|px > 03

< Px[Ja (0)|PF >IRI-virt -

To isolate the leading soft, spin independent incoming fee emission infrared function we
separatg X } into its multiple gluon subspaces via

X} ={X:X=X"®{G1®...®G},for somen > 0,X"is non-gluonig-. (3.4)
This allows us to write
%780 5y yin < Pe[JI(0)Px > < Px[Ja (0)|PF >IRi-vin
= g?%sHBoco [§QCD(|<1) - Soco(kn) Ri—vit < PE[J5(0)| pxr > (3.5)
< px'Na (0)|PE >1RI—vit + -+ IRI-vitareal < Pr[Ig(0)[Pxr; Ka, -+ Kn >

< pxrs K1, -+, kn|da (0)| PE >RI-virt&real },

4
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where the real infrared functioéQCD(k) is given in Refs. [5, 6]. The IR-improved quantities
IRI-virt&real < PF[Jg(0)|Px > < Px[Ja(0)|PF >iRi-vitarea are defined iteratively from (3.2),(3.5)
to all orders inas and they no longer contain the infrared singularities asset toBocp and to

§QCD, although, because of the non-Abelian infrared algebra®theory, they do contain other

IR singularities which cancel in the structure functionstbhg KNL theorem for massless and
massive [21] fundamental fermions.
Using (3.5) in (3.1) we get

Wi (Pr.) = (21 3 8(a+ pr — )&% [ Saco(ki) -+ Socnlle)
IRI—vit < Pr|Jp(0)|px: > < Px/|[da (0)|PE >IR1—virt +---
+1RI-virt&real < Pr[Jg(0)|px/, K, - Kn >
< pX’7k17"' kn‘Ja(O)‘pF >IRvairt&reaI]

/ D3 / n d? kJ SUMR(QCD) (At pr - 5iK)Doco (3.6)
T om ;

IRI-virt&real < p|:|JB( 0)|px/, K1, - ,kn >
< PxrsKey oo kn|~]a(0)|p|: >|RI-virt&real

IRI-virt&real < pF|[‘]B(y)7‘]Cf (O)”pF >IRI-virt&real

where .
SuU M|R(QCD) = ZCXSD BQCD+ zaSBQCD(Kmax),

~ d3k ~
20sBocp(Kmax) = O Socp(K) B(Kmax—K),
d*k —iy-k
Daco = [ Saeolk) [~ B(Kmax—K)| @7
and we note that (3.6) does not dependgny. Using the standard partonic view, where

1dx
Wsq = ; e PO, (3.8)

for appropriately defined parton distribution function&,}, we introduce (2.2) into (3.6) and use
(2.1) to get the IR-improved results

1 o~
2\ 1/~2\p7Nn+1
/0 dxfFy(x, %) = ZCTJI (@M},

1 P
dxX'Fy (X, 0
|| dotRaed?) = 3 C,

(3.9)

where [8]

EN o2

SIS 2yt 0 /4 Ay SUMR(QCD)+Dgco 1k Y /.
S = i@ () [ e A

(3.10)
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and now
< p|OIJJl"'IJn (0)|p > |spin averaged=
_ 1 N
IRI—virt&real < p|OL1...un(0)\ P >|RI-virt&real |spin averaged= InH Ppy, ppunMJ” (3.11)
P

_i_...’

where the second- again denotes trace-terms and{ﬁiﬂ) } are the respective (new) IR-improved
OPE coefficient functions. These latter functions satisky analogous Callan-Symanzik equa-

tion [4] to (2.6) with a new anomalous dimension maﬁﬁg'?(g) determined by the renormalization

properties of the IR-improved matrix elements in (3.11).whiting (3.10) we work to one-loop
order in the various coefficients in this paper.

The new matri>g7i(j”) (g) can be obtained from the pioneering analysis of the authdref. [19,
20]. Working from (3.8, the authors in Ref. [19] make contaith the unimproved matrix/i(j”)(g)
as follows. For the non-singlet operator {7 (x) = $iN-1S@(y) vy, Oy, - - O AP (y) —trace terms,

whereld; = 9, + igraAﬁ is the covariant derivative)” is a flavor group generator ardenotes

symmetrization with respect to the indiges - - U, the authors in Ref. [19] show that the following
relation holds:

(a9 =2 [ ol Rx 0500 — Reg( . @50
= Z[PCIQ(Nv aS) + (_l)NPqCT(N> as)]

(3.12)

where

F(N) = /Oldx%\'lF(x)

and thePsa are the usual DGLAP-CS [3, 4] splitting kernels defined indbevention of Ref. [19]

andyN)(as) is the respective anomalous dimension of the opefi@b5r°.
In Ref. [22], we show that one can apply our IR-improvementidas as illustrated above to
the arguments in Refs. [19] to get the respective IR-impiam@omalous dimension as

P (as) = 252 (PSRN, as) + (~1)MPZAN. as) (3.13)

where thePjq", Pig" are the respective IR-improved kernels as introduced is.R&f6], where we
advise that the notation of Ref. [19] differs from that in Rgb, 6] by whether or not one includes
the factoras/(2m) on the RHS of (3.12) in the definition of the kernels. This ggeht IR-improved
one-loop level the identifications

s

—N(as)ij = 25

where the label$, j span the usual values for the one-loop anomalous dimensatrixnfior the
evolution of the parton distributions as given in Refs. [3-410] for example. This establishes
in a rlgorous way the connection between the IR-improved BRICS theory in Ref. [5, 6] and
the OPE methods of Wilson as used by Refs. [8-10] in the stidgep inelastic lepton-nucleon
scattering.

EvidentI%/, this connection may be manifested in the anslg$iother physical processes as
well. We refer the reader to Refs. [6, 7] wherein the new gienibaseline MC Herwiri1.031
which realizes the IR-improved DGLAP-CS kernels has be#émduced and compared to the
Tevatron data [23, 24] on single Z production. Its applmatio the various ph?_/smal processes at
LHC is in progress [25], where we need to stress that Henfi8il can be applied tany process
to which Herwig6.5 [26] can be applied and that it interfat@MC@NLO [27] thesame way

PTRN) (3.14)
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that does Herwig6.5. As we have shown in Refs. [6, 7], we havenproved agreement between
the IR-improved MC'’s shower and the Tevatron data with nalrefean abnormally large intrinsic
transverse momentum parameter, PTRMESeV in the notation of Herwig [26], as it is required
for similar agreement with Herwig6.5 [28]. We point-out theonsistent with the precociousness
of Bg)orken scaling, the IR-improved MC Herwiri.031 givesaiparadigm for reaching a precision
QCD MC description of the LHC data, on an event-by-eventdash realistic hadronization from
the Herwig6.5 environment, that does not involve an ad hod beale parameter, where we define
“hard” relative to the observed precociousness of Bjorkeadiisg. The discussion above shows
that this _aradlg?]m has a rigorous basis in quantum flelollzyhdamlclqsmg_, we thank Prof. Ignatios
Antonlla |3 for the support and kind hospitality of the CERN Dnit while part of this work was
completed.

References

[1] K. Wilson, Phys. Revl79 (1969) 1499; W. Zimmermann, ioectures on Elementary Particles and
Quantum Field Theory — 1970 Brandeis Summer Institute irofiehieal Physics, vol. leds. S. Deser,
H. Pendleton and M. Grisaru, (MIT Press, Cambridge, 19789p; R.A. Brandt and G. Preparata,
Nucl. Phys27 (1971) 541.

[2] D.J. Gross and F. Wilczek, Phys. Rev. L&0.(1973) 1343; H. David Politzeibid.30 (1973) 1346;
see also , for example, F. Wilczek,froc. 16th International Symposium on Lepton and Photon
Interactions, Ithaca, 1993ds. P. Drell and D.L. Rubin (AIP, NY, 1994) p. 593.

[3] G. Altarelliand G. ParisiNucl. PhysB126 (1977) 298; Yu. L. DokshitzeGov. Phys. JETR6 (1977)
641; L. N. Lipatov,Yad. Fiz.20 (1974) 181; V. Gribov and L. Lipatoov. J. Nucl. Phy45 (1972)
675, 938; see also J.C. Collins and J. Glys. Rev. B9 (1989) 1398.

[4] C.G. Callan, Jr.Phys. Rev. R2(1970) 1541; K. Symanzikzommun. Math. Phy48 (1970) 227, and
in Springer Tracts in Modern Physics7, ed. G. Hoehler (Springer, Berlin, 1971) p. 222; see also S.
WeinbergPhys. Rev. B (1973) 3497.

[5] B.F.L. Ward,Adv. High Energy Phy£008 (2008) 682312.

[6] B.F.L. Ward,Ann. Phys323 (2008) 2147; B.F.L. Ward, S.K. Majhi and S.A. Yost, arXivlll20515,
in POSRADCOR2011), in press.

[7] S.Joseph, S. Majhi, B.F.L. Ward and S.A. Yost, Phys. LB$85 (2010) 283; Phys. Rev.&1 (2010)
076008.

[8] D.J. Gross and F. Wilczek, Phys. Re®[1973) 3633; ibid8 (1974) 980.
[9] H. Georgi and H.D. Politzer, Phys. Revop1974) 416, and references therein.
[10] H.D. Politzer, Phys. Repl4 (1974) 129.
[11] See for example R.E. Taylor, Phil. Trans. Roc. Soc. L&®69 (2001) 225, and references therein.

[12] J. Bjorken, inProc. 3rd International Symposium on the History of PagiBlhysics: The Rise of the
Standard Model, Stanford, CA, 199tis. L. Hoddesoat al. (Cambridge Univ. Press, Cambridge,
1997) p. 589, and references therein.

[13] D.J. Gross and S.B. Treiman, Phys. Rex.(D971) 2105jbid. 4 (1971) 1059, and references therein.
[14] N. Christ, B. Hasslacher and A.H. Mueller, Phys. Re6.(D972) 3543.

[15] R.P. Feynman, Phys. Rev. Lett. 23 (1969) 14RbBoton-Hadron InteractiongBenjamin, New York,
1972).

[16] J.D. Bjorken and E.A. Paschos, Phys. REb (1969) 1975; Phys.Rev.1(1970) 3151.



IR-Improved Operator Product Expansions in non-Abeliau@aTheory B.F.L. Ward

[17] S.D. Drell and T.-M. Yan, Phys. Rev. Left5 (1970) 316jbid.25 (1970) 902; S.D. Drell, D.J. Levy
and T.-M. Tan, Phys. Rev.I(1970) 1617jbid.1 (1970) 1035; Phys.Re#87 (1969) 2159.

[18] R.K. Ellisetal, Phys. Lett. B7/8 (1978) 281.
[19] C. Curci, W. Furmanski and R. Petronzio, Nucl.Phy$78(1980) 27.
[20] W. Furmanski and R. Petronzio, Phys.Lett9B(1980) 437.

[21] B.F.L. Ward, Phys.Rev. 8 (2008) 056001; C. DidZLieto, S. Gendron, I.G. Halliday, and C.T.
Sachradja, Nucl. Phys1B3(1981) 223; R. Doria, J. Frenkel and J.C. Taylbitl. 168 (1980) 93; S.
Catani, M. Ciafaloni and G. Marchesiiidid.264 (1986) 588; S. Catani, Z. Phy837 (1988) 357.

[22] B.F.L. Ward, arXiv.org:1205.0154.

[23] V.M. Abasov et al., Phys. Rev. Let00 (2008) 102002.

[24] C. Galea, irfProc. DIS 2008London, 2008, http://dx.doi.org/10.3360/dis.2008.55.
[25] S. K. Majhiet al, in these Proceedings; arXiv:1208.4750.

[26] G. Corcellaet al, hep-ph/0210213; J. High Energy Ph@%01 (2001) 010; G. Marchesirat al.,
Comput. Phys. Commugiz (1992) 465.

[27] S. Frixione and B.Webber, J. High Energy PH§206 (2002) 029; S. Frixionet al,, arXiv:1010.0568.

[28] M. Seymour, private communication.



