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1. Introduction

The ATLAS experiment [1] records data from collisions produced by theLarge Hadron Col-
lider (LHC) [2] at CERN. In proton-proton collisions hundreds of primary and secondary stable1

charged particles are produced and accurate measurement of their kinematics through track recon-
struction is essential in all physics analyses. Vertex identification using reconstructed tracks is
important for determining the position of primary interactions as well as those ofdisplaced particle
decays and material interactions. Multivariate b-tagging algorithms combine information based on
the properties of reconstructed tracks and displaced vertices originatingfrom the decays of heavy
flavour hadrons to identify jets originating from heavy flavour partons in the hard scatter and result-
ing parton shower. Tracking, vertexting and b-tagging performance are determined by comparing
the response of algorithms in data to the response of the same algorithms in detailed Monte Carlo
(MC) simulations of the ATLAS detector.

2. Track and Vertex Reconstruction

The ATLAS Inner Detector (ID) tracking system surrounds the interaction point and con-
sists of three sub-detectors: innermost is a silicon Pixel detector, this is surrounded by a silicon
microstrip detector (SCT) and the combined silicon system is surrounded by atransition radia-
tion tracker (TRT). The ID is immersed in a 2 T axial solenoid field and provides coverage to
|η | < 2.52. Track reconstruction uses combinatorial Kalman fitter pattern recognition algorithms.
Most primary tracks are reconstructed with an inside out algorithm extending seeds from the silicon
detectors out to the TRT [3]. Recovery of secondary tracks from conversions, material interactions
and long-lived particle decays is achieved through a back-tracking algorithm taking TRT based
seeds and extending inwards.
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Figure 1: Vertex position resolution in data (black) and MC (red) [5].The resolution is shown for the
transverse coordinate as function of the number of tracks inthe vertex fit.

Primary interaction vertices are reconstructed by iteratively fitting tracks consistent with the
interaction region using aχ2 based algorithm with a beam spot constraint [4]. Due to multiple

1Stable refers to charged particles withτ > 3×10−11s, i.e., pions, kaons, protons, electrons and muons.
2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of

the detector and thez-axis along the beam pipe. Thex-axis points from the IP to the centre of the LHC ring, and the
y-axis points upward. Cylindrical coordinates(r,φ) are used in the transverse plane,φ being the azimuthal angle around
the beam pipe. The pseudorapidity is defined in terms of the polar angleθ asη = − ln tan(θ/2).

2



P
o
S
(
I
C
H
E
P
2
0
1
2
)
4
9
9

Tracking, Vertexing and b-tagging Performance in ATLAS Mark J. Tibbetts

proton-proton interactions in a single bunch crossing (pileup) events canhave more than one re-
constructed primary vertex. The primary vertex identified as the hard scatter in physics analyses is
by default the vertex with the highest∑ p2

T of tracks associated to that vertex; however, analysers
have the option to redefine that choice of vertex through physics object association. The recon-
structed hard scatter vertex becomes the reference point for impact parameter and flight length
measurement b-tagging algorithms. Primary vertex resolution in data is measured with a split ver-
tex technique [4]. Figure 1 shows the primary vertex resolution in transverse coordinatex as a
function of the number of tracks associated to that vertex in 8 TeV collision data collected during
2012. It can be seen that the MC simulation reproduces the resolution measured in data for all track
multiplicities.

3. Impact of Pileup
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0 5 10 15 20 25 30 35 40

/0
.1

]
-1

R
ec

or
de

d 
Lu

m
in

os
ity

 [p
b

0

10

20

30

40

50

60

70

80 Online LuminosityATLAS

> = 19.5µ, <-1Ldt = 6.3 fb∫ = 8 TeV, s

> =  9.1µ, <-1Ldt = 5.2 fb∫ = 7 TeV, s

Figure 2: Luminosity-weighted distribution of
the mean number of interactions per crossing for
the 2011 and 2012 data [6]. This shows the full
2011 run and 2012 data taken between April 4th
and June 18th.
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Figure 3: Average number of reconstructed pri-
mary vertices as a function of average number of
pp interactions per bunch crossing measured for
2011 data [5].

Pileup presents a significant challenge for tracking and vertexing algorithms at ATLAS. Figure
2 compares the average number of interactions per bunch crossing,µ, in 5.2 fb−1 of 7 TeV data
collected in 2011 to 6.3 fb−1 of 8 TeV data collected in 2012. The mean of this distribution is seen
to more than double from 9.1 in 2011 to 19.5 in 2012. Figure 3 shows the numberof primary
vertices as a function ofµ comparing 2011 data to simulation which is seen to reproduce the
observed data distribution.

Pileup causes high occupancy in the ID which increases the rate of fake track reconstruction
due to random combinations of tracking detector hits passing the reconstruction algorithms. This
in turn leads to fake tracks contributing to primary vertex reconstruction and, at higher pileup, a
non-negligible presence of fake primary vertices whose associated tracks are dominated by fakes.
In 2012 data reconstruction, to mitigate these effects, a more robust track selection for primary
vertex reconstruction has been developed. In simulation this is shown to leadto a moderate drop in
primary vertex reconstruction efficiency of no more than 5% while significantly reducing the fake
track fraction in primary vertices from around 30% to less than 10% and giving a negliglible rate
fake vertex reconstruction up toµ=40 [7].

3



P
o
S
(
I
C
H
E
P
2
0
1
2
)
4
9
9

Tracking, Vertexing and b-tagging Performance in ATLAS Mark J. Tibbetts

 ]-1)) [GeVθ(3sin21/sqrt(p
0 0.5 1 1.5 2 2.5

 c
or

e 
w

id
th

 [m
m

]
0d

0

0.05

0.1

0.15

0.2

0.25

Data 2011

Simulation

ATLAS Preliminary

<0.25η0<

Figure 4: Transverse impact parameter,d0, core width for data (black) and simulation (red) as a function of
1/pT

√
sinθ for tracks with 0< η <0.25. The core width is computed from a Gaussian fit to centralregion

of thed0 distribution [8].

For increased pileup a high density of charged particles in the Pixel detector can result in a
single reconstructed cluster of hits originating from more than one chargedparticle interaction. At
ATLAS pattern recognition from an artificial neural network (ANN) based clustering algorithm is
used to identify and separate such merged clusters into distinct sub-clusters. This has the advan-
tage of improving the pixel hit resolution resulting in an excellent impact parameter measurement.
Figure 4 shows the transverse impact parameter resolution as a function oftrack kinematics in the
central tracking region for 2011 data and simulation [8]. The high precision of the resolution in
data is well modelled by the simulation.

4. Detector Alignment
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(a) Before alignment update.
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(b) After alignment update.

Figure 5: Invariant mass distribution of Z→ µµ decays, where the mass is reconstructed using ID parameters
of muon candidates only. Ideal alignment performance in MC is compared to observed performance of data
before and after application of updated alignment calibration [9].

Critical to the performance in measuring track parameters is accurate knowledge of the ID
alignment in the reconstruction algorithm. The alignment must be understood atdifferent lev-
els: the global alignment of the ID detectors, the alignment of barrel and endcaps, the alignment
layer by layer and the alignment of individual modules. This is achieved at ATLAS throughχ2

minimisation of track-hit residuals; however, misalignment weak modes [9] exist which cannot be
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constrained by the track residual method. Instead constraints are derived from analysing system-
atic bias in the invariant masses of well known particles reconstructed frompairs of opposite sign
tracks (K0

S, J/ψ , Z) as well as from the ratio of reconstructed electron energy measuredin the AT-
LAS calorimeters to the corresponding momentum measured in the ID [9]. Measurements of ID
misalignment are propagated to the reconstruction geometry; Figure 5 showsthe impact of updated
alignment description on the Z mass resolution in 1.2 fb−1 of 2011 data, a significant improvement
is observed.

5. b-tagging Algorithms
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Figure 6: Light-jet rejection as a function of the b-tagging efficiency in top pair MC simulation for all
algorithms calibrated in 2011 data [11].

Many algorithms have been developed at ATLAS to identify jets originating from heavy
flavour partons. These take advantage of the properties of reconstructed tracks from heavy flavour
hadron decays by either directly reconstructing displaced secondary vertices or by exploiting the
larger average impact parameter typical of such tracks with respect to theprimary vertex. Figure 6
shows the performance of various ATLAS b-tagging algorithms in top MC simulation. The most
commonly used algorithm in physics analyses is MV1, an ANN whose response is trained using
both secondary vertex and track impact parameter properties as input. MV1 has the largest light jet
rejection3 for a given b-jet efficiency [10, 11].

6. b-tagging Performance

The performance of b-tagging algorithms is evaluated by measuring the efficiency to correctly
identify jets originating from b partons in data as a function of jetpT . Physics analyses then are re-
quired to correct the equivalent MC efficiency to match this measurement withan appropriate scale
factor (SF). Efficiency measurements are performed primarily with two complementary methods

3Light jet rejection is the reciprocal of the fraction of jets labelled as light which pass the b-tagging algorithm [10].
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Figure 7: Comparison of b-jet efficiency SFs measured in 2011 data for the MV1 70% b-tagging operating
point

using tagged jets containing muons [11] and then cross-checked with methodsusing reconstructed
top pair candidate events in the lepton plus jets channel [12]. Both the muon-jetand top samples
have enhanced b-jet purity allowing efficiency measurements with an accuracy of 5 to 20% de-
pending on b-tagging algorithm and jetpT . Figure 7 compares the measured SFs from all b-jet
efficiency methods in 2011 data for tagged jets identified using a MV1 operating point correspond-
ing to 70% average b-jet efficiency in top MC events. It can be seen that within uncertainty the
measured SFs are consistent with unity and that all methods are consistent with each other. The
muon measurements are combined, accounting for correlations between the analyses, to provide a
more accurate efficiency measurement.
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Figure 8: c-jet efficiency SFs measured with the D∗ method for the MV1 70% b-tagging working point [13].

In addition to b-jet efficiency, the algorithm efficiencies for jets originating from c quarks and
the mistag rate for light jets are also measured in data. For the former a sample ofjets containing
exclusively reconstructed D∗ candidates provides efficiency measurements with accuracy of<25%
[13]; for the latter two methods using inclusive jet samples are employed whichshow reasonable
agreement and have uncertainties up to 100% depending on jet kinematics and b-tagging algorithm
operating point [14]; such uncertainties are managable due to the high lightjet rejection of b-
tagging algorithms. Figure 8 shows the measured SFs forc-jets and Figure 9 the SFs for light jets
when calibrating the same MV1 70% operating point; again consistentcy of the SFs with unity is
observed within the uncertainties.
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Figure 9: Mistag rate SFs measured in 2011 data for the MV1 70% b-tagging operating point for negative
tag method which reverses tagger requirements to enrich thelight jet sample and for a template fit method
used as a cross-check [14].

7. Conclusions

ATLAS is maintaining excellent understanding of tracking, vertexing and b-tagging perfor-
mance in the large integrated luminosities of proton-proton collisions recordedin 2011 and 2012.
The impact of high pileup on tracking and primary vertex reconstruction hasbeen studied and tech-
niques implemented to maintain manageable fake rates are well described by simulation. Measure-
ments of misalignment in the tracking detectors have been used to significantly improve physics
performance. Multivariate b-tagging algorithms with excellent light jet rejection have been cal-
ibrated with the full 2011 data set and the first efficiency measurements from top events in 2011
data have been presented at this conference. Good consistency is observed between complementary
methods for measuring the efficiencies and mistag rates of such algorithms in data.
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