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Introduction

Applications of gravity outside the strict realm of Einstein gravity itself is a growing field of

research, especially after the discovery of the Anti de Sitter/ Conformal Field Theory (AdS/CFT)

relation [1, 2] and its implications for condensed matter systems [3]. In particular, methods initially

used to treat question which concern mainly Einstein gravity, such as quasi-normal perturbations

for the problem of stability of black holes, or the behaviour of electromagnetic fields in their vicin-

ity, found applications in the AdS/CFT context to find, respectively, phase transitions [4, 5] or

superconductivity [3, 6]. With the growing of the complexity of the problems, it became natural to

consider the same methods for any gravitational model in asymptotically AdS space and the per-

turbations thereof, as a means to check further properties of further conformally invariant theories

at the border of the AdS space.

Indeed, after the holographic principle was suggested by ’t Hooft [7] and Susskind [8], a large

amount of literature emerged, culminating with a more precise though still conjectured formulation,

where a theory of gravity in d dimensions is equivalent to a conformally invariant theory in a d−1

dimensional space-time defined at the AdS infinity.

Later, the fact that a conformally invariant field theory is a natural set up for describing crit-

ical phenomena was used to define new models of the latter by means of the higher dimensional

gravity counterpart. Thus, it has been proved, using the AdS/CFT conjecture and the so called dic-

tionary relating fields defined at the infinity AdS border to the fields in the CFT counterpart, that a

Reissner-Nordström black hole surrounded by electromagnetic fields and a scalar leads to a model

of superconductivity at the border, where the scalar plays the role of an order parameter and one

can compute the current and electromagnetic field at the CFT theory by means of the dictionary

thus computing the conductivity. The amazing part of such a story is the fact that one need to know

just classical gravity in the so called bulk to arrive at such conclusions about an eminently quantum

theory at the border.

1. AdS Setting

A fundamental problem in General Relativity is to find a metric gµν that is a solution to the

Einstein’s equations for a given energy-momentum tensor Tµν . The Minkowsky metric gµν =

ηµν = diag(−1,1,1,1) is a trivial solution for Tµν = 0. The line element ds2 = ηµνdxµdxν is

invariant under transformations from the group SO(1,3), or SO(1,d −1) in d dimensions.

Taking the Einstein’s equations in the vacuum and adding a cosmological term 8πTµν =

−Λgµν , where Λ is the cosmological constant, and contracting, we see that the metric gµν describes

a d-dimensional space-time with constant curvature
(

1− d
2

)

R =−dΛ. If R > 0, the space-time is

called de Sitter space (dS), and if R < 0, Anti de Sitter space (AdS).

The solution for the Einstein’s equations is

ds2 =−
(

1+
r2

L2

)

dt2 +
1

(

1+ r2

L2

) +
r2

L2
dΩ2 , (1.1)

with L2 =−(d −1)(d −2)/(2Λ) and dΩ2 is a unitary 2-sphere metric.
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This d-dimensional space can be defined as a embedding in a d + 1-dimensional space with

line element

ds2 =−dt2 +
d−1

∑
i=1

dx2
i −dx2

d (1.2)

constrained by

−t2 +
d−1

∑
i=1

x2
i − x2

d =−L2 . (1.3)

This constraint is invariant by transformation from the conformal groups SO(2,d − 1), so this is

the symmetry group of the AdS space. For further information, see [9].

The metric of the AdS space can be expressed in Poincaré coordinates,

ds2 =
L2

z2

(

dz2 +ηµνdxµdxν
)

, (1.4)

where z ∈ (0,∞) is an inverse radial coordinate. A free scalar field ψ(z,xµ) is a solution to the

Klein-Gordon equation

�ψ −m2ψ = 0 . (1.5)

Since the metric (1.4) does not depend on the coordinates xµ , we can decompose the scalar field as

ψ(z,xµ) = eikµ xµ
ψk(z) and write the Klein-Gordon equation as

1

L2

[

z2k2 − zd+1∂z

(

z−d+1∂z

)

+m2L2
]

ψk(z) = 0 , (1.6)

as seen on [10].

As z → 0, we can neglet the term z2k2 in eq. (1.6) and ψk has power law solutions ψk = z∆

with ∆(∆−d) = m2L2. So the asymptotic solution of ψ(z,xµ) can be written as

ψ(z,xµ)≃ α(xµ)z∆− +β (xµ)z∆+ (1.7)

with

∆± =
d

2
±

√

(

d

2

)2

+m2L2 . (1.8)

2. Perturbations around black hole solutions

Let g
(0)
µν be a known black hole solution. To this metric we add a small perturbation hµν , whose

components must be small compared to g
(0)
µν , so the metric is now

gµν = g
(0)
µν +hµν . (2.1)

To calculate hµν , we write the Einstein’s equations for gµν in terms of g
(0)
µν and hµν , isolate the terms

depending only on g
(0)
µν , which must cancel since g

(0)
µν is already a solution to Einstein’s equations,

and neglet the terms proportional to h2 and higher orders to derive linear differential equations for

hµν . For good reviews, see [11, 12].
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In a spherically symmetric space-time, it is possible to decouple the angular variables and

define a scalar function ψ(r, t) as a function of some component of hµν , so we can solve the differ-

ential equations for each component of hµν solving a partial differential equation for a scalar field

ψ(r, t). In a convenient coordinate choice r⋆(r), this equation is

−∂ 2ψ

∂ t2
+

∂ 2ψ

∂ r2
⋆

−Veff(r)ψ = 0 , (2.2)

where Veff(r) is the effective potential depending only on the background metric g
(0)
µν .

The behaviour of ψ can be expressed as ψ(r, t) = e−iωtψ(r). These functions are called quasi-

normal modes because they may lack properties of normal modes, such as completeness. The

quasi-normal frequency ω is complex, and the quasi-normal mode is stable if ℑ(ω) < 0 and un-

stable if ℑ(ω) > 0. It is possible to prove that is the effective potencial Veff(r) is positive for all

r, the quasi-normal modes are stable[13, 14]. For unstable mode to appear, it is necessary that the

potential has pits with bound states of negative energy [15].

3. Black p-brane solutions

The black p-branes are a class of extended solutions of the bosonic sector of IIB/IIA Su-

pegravity [16]. The near horizon limit of such geometries is given by the product between the

(p+2)-dimensional AdS space-time and an (d − p−2)-dimensional sphere S: AdSp+2 ×Sd−p−2,

where d is the number of space-like dimensions in the bulk and p is the number of p-brane extended

dimensions. Also, the spacelike infinity is the d-dimensional Minkowski space-time, showing that

the black p-branes solutions interpolate the AdS spacetime and the flat geometry. This connec-

tion, at least in ten dimensions, was very important for the first version of AdS/CFT conjecture as

presented by Maldacena [1].

As shown in detail in our previous work [17], the black p-branes solution can be regarded as

black holes with extended event horizons. So, we can apply the well-known perturbations methods

of black holes in general relativity to the present case, in order to obtain some information about

its structure and stability.

The ten dimensional Supergravity solution describing the so-called black p-branes is given by

metric

ds2 =−A(x)dt2 +B(x)
[

dr2 + r2dΩ2
p−1

]

+C(x)dx2 + x2D(x)dΩ2
8−p, (3.1)

where A(x) = (1−(a/x)7−p)(1−(b/x)7−p)−1/2, C(x) = (1−(b/x)7−p)α1(1−(a/x)7−p)−1, B(x) =
√

1− (b/x)7−p, D(x) = (1−(b/x)7−p)α2 , with α1 =− 1
2
− (5−p)

(7−p) and α2 =
1
2
− (5−p)

(7−p) . The maximal

extension of above metric describes a black hole geometry, with an event horizon located at x = a.

In the case, p 6= 3, a physical singularity in the curvature is present at x = b. Otherwise, we have in

addition to the event horizon at x = a, and inner horizon at x = b and the singularity at x = 0.

We consider as linear perturbation the massless scalar field Ψ(xA) evolving in the geometry

(3.1). In order to study the stability of black p-branes we obtain the scalar quasi-normal spectrum.

In the work [17] we have applied two different numerical approaches, the WKB technique and

the time-domain approach. Here we will discuss only the time-domain numerical results, since we

have a good agreement between the methods.
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The Klein-Gordon equation for Ψ(xA) in the metric (3.1) reduces to

d2

dr2∗
ΨL(x)+

[

k2 −V (x)
]

ΨL(x) = 0, (3.2)

where k2 = ω2 −β 2, and V (x) is the effective potential, which is a well-behaved function which

goes to zero at spatial infinity and has a peak near the event horizon.

Following the gauge invariant formalism [18], we can make an important observation: the

equation governing the evolution of tensorial perturbations in such formalism is the Klein-Gordon

equation. So, the quasi-normal spectrum are the same and the tensorial stability/instability can be

achieved through the ordinary scalar perturbation.

In figure 1 we observed the usual picture in perturbative dynamics. After the initial transient

regime, the quasi-normal mode phase follows as a late-time tail. Such an ending phase is strongly

dependent on the value of the geometric mass β .

Figure 1: Log-log graph of the absolute value of ZL(t,x f ixed). The quasi-normal and tail phases are

indicated. The p-brane parameters are p = 0, a = 2, b = 0.5, L = 1 and β = 1

As a conclusion, we can say that the black p-branes are stable against scalar and tensorial

perturbations. Also, the quasi-normal spectrum in such a complex geometry is amazingly simple.

Considering β 6= 0, later related to glueball mass in the AdS/CFT framework, the frequencies

display an almost scaling behaviour.

4. The AdS/CFT Correspondence

The D3-brane metric is

ds2 =

(

1+
L4

r4

)− 1
2

(

−dt2 +
3

∑
i=1

dx2
i

)

+

(

1+
L4

r4

)

1
2
(

dr2 + r2dΩ2
5

)

, (4.1)

where dΩ2
5 is the 5-sphere metric and L4 = 4πgsN

2. In an appropriate limit, this metric can be

written as

ds2 =
r2

L2

(

−dt2 +
3

∑
i=1

dx2
i

)

+
L2

r2
dr2 +dΩ2

5 . (4.2)
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With the coordinate change r = L2/u, the metric takes the form

ds2 =
L2

u2

(

−dt2 +
3

∑
i=1

dx2
i +du2

)

+L2dΩ2
5 , (4.3)

which is the product of a 5-dimensional AdS space with a 5-sphere.

The conjecture stated by Maldacena says that a type IIB superstring theory on AdS5×S5 with

string coupling gs and a 4-dimensional N = 4 Super-Yang-Mills (SYM) theory with gauge group

SU(N) and SYM coupling gY M are equivalent, with gs = g2
Y M and L4 = 4πgsN

2. Consider an

operator O in N = 4 SYM, as seen in [10]. A generating funcional Z[J] can be obtained perturbing

the lagrangian L (x)→ L (x)+ J(x)O(x) so

Z[J] =
〈

e−
∫

d4xJ(x)O(x)
〉

CFT
. (4.4)

A deformation in the operator O changes the value of gY M . Since they are related, gs must also

change, which is equivalent to change the boundary value of the dilaton.

Let ψ(z,xµ) be the dilaton, defined on the metric (1.4). The boundary value is written as

ψ(z = 0,xµ) = ψ0(x
µ) = J(x). According to the AdS/CFT correspondence [19],

〈

e−
∫

d4xJ(x)O(x)
〉

= Zstring [ψ(z,xµ) = ψ0(x
µ)] . (4.5)

Zstring is the partition function on the AdS space where the field ψ has the value ψ0 as boundary

condition.

Returning to the free scalar fields on AdS, whose asymptotic solution if given by eq. (1.7),

with ∆± given by eq. (1.8), we choose one of the independent solution, that it, ψ(z,xµ) = α(xµ)z∆−

and β (xµ) = 0 or ψ(z,xµ) = β (xµ)z∆+ and α(xµ) = 0. Let ε be a coordinate value close to the

boundary z = 0. Then, ψ(ε ,xµ) = α(x)ε∆− ( or ψ(ε ,xµ) = β (x)ε∆+). ε has dimension [length]−1

and ψ is dimensionless. Therefore, α(xµ) has mass dimension ∆− (or β (xµ) has mass dimension

∆+). Since J(x) = α(xµ) (or J(x) = β (xµ)), eq. (4.5) implies that the operator O has dimension ∆−
(or ∆+).

5. Holographic Superconductors

According to the AdS/CFT correspondence, a gravitational theory in the bulk is related to a

field theory on the boundary. A space-time with a black hole is related to a thermal field theory,

whose temperature is equal to the Hawking temperature of the black hole. Charged scalar fields in

the bulk are related to condensates in the thermal field theory, so these scalar fields must behave

like a order parameter if the thermal field theory describes a superconductivity.

Consider the lagrangian from [6]

L = R+
6

L2
− 1

4
F2

µν −|∇µψ − iqAµψ |2 −m2|ψ |2 . (5.1)

If we rescale ψ → ψ/q and Aµ → Aµ/q, then the matter action has a 1/q2 factor, so a large q

supresses the backreaction in the metric.

6
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Considering the planar neutral black hole

ds2 =− f (r)dt2 + f−1(r)dr2 + r2(dx2 +dy2) , (5.2)

where

f (r) =
r2

L2
− M

r
and T =

3rh

4πL2
=

3

4π

M
1
3

L
4
3

, (5.3)

we assume that the fields depend only on the radial coordinate Aµdxµ = Φ(r)dt, ψ = ψ(r). Then

the field equations for m2L2 =−2 become

ψ ′′+
(

f ′

f
+ 2

r

)

ψ ′+ Φ2

f 2 ψ + 2
L2 f

ψ = 0 , (5.4)

Φ′′+ 2
r
Φ′− 2ψ2

f
Φ = 0 . (5.5)

At the event horizon r = rh, the equations of motion are regular if φ(rh) = 0 and f ′(rh)ψ
′(rh)+

2
L2 ψ(rh) = 0. So, there is a two parameter family of solutions with regular horizons. Asymptoti-

cally,

ψ =
ψ(1)

r
+

ψ(2)

r2
+ · · · , (5.6)

Φ = −µ − ρ

r
+ · · · . (5.7)

To understand the asymptotic behaviour of Φ(r), consider a charged black hole perturbation.

The time component of the electromagnetic potential behaves as a power law decay next to the

AdS boundary and does not correspond to a field in the dual theory, but fixes the charge density ρ

of a state. This component must be zero at the event horizon, so a constant must be added, which

can be understood in the dual field theory as a sum of a chemical potential µ .

For ψ , either falloff if normalizable. We need to impose the condition that either ψ(1) or ψ(2)

vanishes. To do so, for each pair of boundary conditions (ψ(rh),Φ(rh)) we numerically solve

eqs. (5.4) and (5.5) using fourth order Runge-Kutta method and for large r, fit the behaviour os

ψ(r) and Φ(r) as eqs. (5.6) and (5.7), which are linear on the parameters. This procedure gives us

a map (ψ(rh),Φ(rh))→ (ψ(1),ψ(2),µ ,ρ). Using the shooting method, we find the pair of boundary

conditions for which ψ(1) or ψ(2) vanishes. When ψ(2) = 0, we plot < O1 >=
√

2ψ(1) against T

and when ψ(1) = 0, < O2 >=
√

2ψ(2) against T .

At this point, is important to mention that equations of motion for the charged scalar field

ψ and electric potential Φ are invariant under two groups of scaling symmetries. The first one

(r → λ r, t → λ t, L → λL, q → λ−1q, m → λ−1m), allow us to set the value of AdS radius L = 1.

The second one (r → λ r, t → λ−1t, Φ → λ−1Φ), we can take rh = 1, which implies that the

Hawking temperature is T = 3/4π . Furthermore, the two groups of symmetry imply T → λ 2T ,

and ρ → λ 2ρ . From this, we see that T ∝ ρ1/2. Therefore, we can do calculations with rh = 1 and

evaluate T/ρ1/2 to eliminate the scaling symmetries that we used to set rh = 1.

Several curves appear, and they can be labelled by the number of times that ψ(r) changes

signal. Taking only cases in which ψ(r) does not change signal, the figures in [6] are obtained.

ψ(r) behaves like a order parameter, but this behaviour alone is not enough to see if the phase

transition is that of a superconductor or a superfluid. We need then to obtain the conductivity σ(ω),

7



P
o
S
(
R
i
o
 
d
e
 
J
a
n
e
i
r
o
 
2
0
1
2
)
0
0
1

AdS/CFT applications E. Abdalla,a

where ω is the frequency. Perturbing the spatial component of the electromagnetic potential Ax and

assuming Ax(r, t) = e−iωtAx(r), we get

A′′
x +

f ′

f
A′

x +

(

ω2

f 2
− 2ψ2

f

)

Ax = 0 . (5.8)

As r → rh, Ax → f
− iω

3rh . As r → ∞,

Ax ≃ A
(0)
x +

A
(1)
x

r
+ · · · . (5.9)

According to [3], the AdS/CFT dictionary says that the electric field in the CFT is equal to the

electric field in the bulk as r tends to infinity (Ex =−Ȧ
(0)
x ), and the first subleading term is dual to

the induced current (< Jx >= A
(1)
x ). Applying Ohm’s law,

σ(ω) =
< Jx >

Ex

=− i

ω

A
(1)
x

A
(0)
x

, (5.10)

whose behaviour is presented in [6]. For temperatures higher than the critical temperature, the real

part of the conductivity is constant. For lower temperatures, there is a energy gap, as expected by

BCS theory.

6. Phase transitions in Reissner-Nordström holographic superconductors

We consider the bulk action of a massive charged scalar field ψ interacting with an abelian

field Aµ generated by a charged AdS black hole, as in [4]. We keep the lagrangian (5.1) and now

the background space-time is a spherically symmetric Reissner-Nordström AdS black hole

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2dΩ2 (6.1)

with

f (r) = 1− 2M

r
+

Q2

4r2
+

r2

L2
. (6.2)

The abelian field is now fixed, Aµdxµ = Φ(r)dt with

Φ(r) =
Q

r
− Q

r+
. (6.3)

Assuming that ψ depends only on r, the equation of motion is

1√−g
∂r

(√−ggrr∂rψ
)

−
(

m2 − q2Φ2(r)

f (r)

)

ψ = 0 . (6.4)

Choosing coordinates in which r+ = Q = 1, the Hawking temperature is given by

T =
3

4π

(

1

4
+

1

L2

)

(6.5)

and eq. (6.4) depends only on the parameters m, q and L.

8
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We can set the boundary condition ψ(r = 1) = 1, since the equation of motion is linear. De-

veloping a series solution around the horizon, we find ψ ′(r = 1) = 4m2L2

3L2+12
. With these conditions,

we can numerically solve eq. (6.4) using fourth order Runge-Kutta method and search parameters

for which ψ → 0 as r → ∞. Fixing m2L2 = 4 and qL = 10, we need to vary only the parameter

L, making the search straightforward. There are only three values of L for which ψ tends to zero,

shown in figure 2. These modes can be labelled by the number of times ψ changes signal and are

called marginally stable modes.

Keeping the same fixed abelian field, but letting now ψ depend on time as well as the radial

coordinate, we have the following equation of motion,

�ψ −2iqAµgµν∂νψ −q2AµAµψ −m2ψ . (6.6)

With the Ansatz Aµdxµ = Φ(r)dt and the tortoise coordinate r⋆(r) =
∫

dr
f (r) , we write the equation

por ψ(r, t) as

−∂ 2ψ

∂ t2
+

∂ 2ψ

∂ r2
⋆

+2iqΦ(r)
∂ψ

∂ t
−Veff(r)ψ = 0 (6.7)

with

Veff(r) = f (r)

(

f ′(r)
r

+m2

)

−q2Φ2(r) , (6.8)

which is the equation for a charged scalar perturbation of the Reissner-Nordström-AdS black hole

with an aditional imaginary term.

According to the AdS/CFT correspondence, a black hole is related to a thermal field theory,

perturbations of the black hole are perturbations of the thermal theory and the imaginary part of the

quasi-normal frequencies is related to the timescale of the return to thermal equilibrium [14]. For

a condensate not to decay in the dual field theory, there must be an unstable quasi-normal mode in

the bulk and the phase transition must happen at the same temperature that the quasi-normal modes

change stability.

Fitting the behaviour of the quasi-normal modes as ψ(r, t) = e−iωtψ(r) and, if the frequency

is zero, as the imaginary part must be when the mode changes stability, it is easy to see that the

transition must happen at a marginally stable mode. At this point the meaning of more than one

marginally stable mode is not clear.

We must now solve eq. (6.7) numerically. With a gaussian distribution as initial condition and

Dirichlet condition at r⋆ = 0, we derive the evolution of ψ(r, t) using the finite difference method.

As in the case of marginally stable modes, we choose coordinates in which r+ = Q = 1 and fix

m2L2 = 4 and qL = 10 so the system depends only on one parameter L, which has a biunivocal

relation with the Hawking temperature given by eq. (6.5).

As can be seen in figure 2, there is indeed a stability change, and the transition occurs at

L ∼ 1.28, which is the first marginally stable mode. In figure 4, we show the real and imaginary

parts of the quasi-normal frequency. Both parts change signal at the same value of L.

For values of L close to the second marginally stable mode, ψ(r, t) behaves as a superposition

of two oscilations with distinct frequencies. Figure 3 shows ψ(r, t) and the extracted second mode.

The second mode exhibits a transition at L ∼ 2.15, which is the second marginally stable mode.

The frequencies are shown in figure 4. Since there is a third marginally stable mode, we assume

9
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Figure 2: Marginally stable modes (left) and quasi-normal modes near the transition (right)

that there is a third quasi-normal mode, but our analysis could not see it, as it is small compared to

the other quasi-normal modes.
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Figure 3: Extracted secondary quasi-normal mode (left) and secondary quasi-normal modes for values

of L near the second marginally stable mode (right).
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Figure 4: Quasi-normal frequencies of fundamental mode (left) and of the extracted secondary mode

(right).

We can conclude now that the existence of more than one marginally stable mode means that

there are more than one quasi-normal mode that changes stability at a particular marginally stable

mode. For the system to be stable, all quasi-normal modes must be stable, and when one single

quasi-normal mode changes stability, the whole system is unstable. So there is only one phase

transition, which happens at the marginally stable mode labelled as fundamental. This work has

been published in [5].
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