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1. Introduction

The Karasev-Weinstein-Zakrzewski program for quantization of Poisson manifolds through
the symplectic groupoid was, for long, slowered by the difficult problem of integrating Poisson
manifolds. Since this problem was solved both in general (see [4, 5]) and in many specific cases
(see [1] for the case of Poisson homogeneous spaces), interest in this quantization program was
revived.

In [7] Hawkins proposed a framework in order to discuss geometric quantization of the sym-
plectic groupoid G ; in particular he defined a notion of multiplicative polarization F ⊂ TG by
imposing a compatibility with the groupoid structure. As usual in geometric quantization, the ex-
istence of polarizations is difficult to assess and in general requiring a smooth space of leaves puts
severe constraints.

We propose here to modify the approach of [7] by allowing the real polarization F ⊂ TG to
be singular. Indeed the multiplicativity condition on F endows the space of lagrangian leaves GF

with a groupoid structure. It is enough to have a topological (rather than smooth) subgroupoid
G bs

F of Bohr-Sommerfeld leaves admitting a Haar system to apply Renault’s theory of groupoid
C∗-algebras (see [8]). Such requirement is strictly weaker than Hawkins’one and still produces a
quantization C∗–algebra.

In this approach two basic invariants of the Poisson structure play a very natural role: the mod-
ular vector is quantized to a groupoid 1-cocycle c (the modular cocycle) and the Poisson tensor to
a S1 valued groupoid 2-cocycle ζ (the prequantization cocycle) of G bs

F . From the triple (G bs
F ,c,ζ )

it is possible to build up a twisted convolution C∗–algebra with a quasi invariant measure µc sup-
ported on the space of units of G bs

F . Together with a (left) Haar system this defines a measure νµc

on the whole G bs
F (which turns (G bs

F ,νµc) into a measured groupoid), a KMS state φµc and a left
Hilbert algebra structure on L2(G bs

F ,ν−1
µc

) with a modular operator.

In [2] we started the program of understanding this quantization procedure for Poisson Lie
groups and their homogeneous spaces, in particular we want to recover the results of A.J.L. Sheu
characterizing the C∗-algebras of the quantum spaces as groupoid C∗-algebras [10]. In this note
we will discuss in detail the case of a specific Poisson structure on the 2–sphere (to be called a θ–
sphere) determined by an R2–action. Our aim is not to produce yet another example of the general
program, but, rather, to compare the outcome with the analogous quantization of the Podleś sphere
carried through in [2]. These two Poisson structures on S2 share the same symplectic foliation
(one zero point and symplectic complement) and differ by the degree of zero of the bivector at the
singular point. They have quite different behaviours from a geometrical point of view: they are not
even Poisson Morita equivalent.

If quantization is carried just with an eye on the final C∗–algebra this difference is not visible.
Indeed both Poisson manifolds are “quantized" by the same groupoid G bs

F of Bohr-Sommerfeld
leaves so that they share the same groupoid C∗–algebra. However, since the modular 1–cocycles
are not equivalent, in the two cases we get different measured groupoids, KMS states and modular
operators.

One may say that the non commutative C∗–algebra can be considered as a very rough invariant
and this example points at modular properties as a possible finer quantization invariant.
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2. The Poisson sphere S2
θ

Let us consider the action of R2 on S2 defined as translation in stereographic complex coordi-
nate z and leaving the point at infinity fixed. We denote the North Pole z = ∞ with N and the South
Pole z = 0 with S. Any θ ∈R induces a Poisson bivector πθ on S2. In the two complex charts with
coordinates z and w = 1/z the Poisson bivector is easily computed to be:

πθ
∣∣
S2\N =−2ıθ∂z ∧∂z̄ , πθ

∣∣
S2\S =−2ıθ |w|4∂w ∧∂w̄ . (2.1)

We call this Poisson manifold the θ Poisson sphere and denote it with S2
θ .

It has two distinct leaves: a singular 0–dimensional leaf corresponding to the North Pole and
an open symplectic leaf S2\N. As mentioned in the introduction the θ Poisson sphere is quite
similar to the standard Podleś sphere (e.g. [2] and references therein), having the same symplectic
foliation (the same topological space of leaves and symplectomorphic leaves) but a different sin-
gularity degree at the North Pole. To investigate further in its properties we will skecth Poisson
cohomology computations, following the same approach as in [9]. This means that we will first
compute Poisson cohomology on the space of multivectors with polynomial coefficients in the sin-
gular chart and then use a smoothing argument plus Mayer-Vietoris to end up our calculations. The
use of multivectors with polynomial coefficients is justified by the fact that if we denote with Vi the
space of polynomials of homogeneous degree i in z, then the Poisson cohomology complex splits
as a direct sum of complexes

0 →Vi →Vi+3 〈∂w〉⊕Vi+3 〈∂w̄〉 →Vi+6 〈∂w ∧∂w̄〉 → 0 .

This is evident from explicit formulas for the coboundary operator:

d0
π(w

rw̄s) = −2ıθwr+1w̄s+1 (rw̄∂w̄ − sw∂w)

d1
π(w

rw̄s∂w +wpw̄q∂w̄) = −2ıθ
[
(r−2)wr+1w̄s+2+

(q−2)wp+2w̄q+1]∂w ∧∂w̄

Since d0
π is injective for i ≥ 1 we have dimimd0

π = i+1. On the other hand d1
π is not surjective;

for i≥ 6, its image has codimension 4. This implies immediately that H2
π(S2\S) gets a contribution

from homogeneous polynomial in every degree and thus it is infinite dimensional. Since, from a
dimension calculus

dim(Kerd1
π/ imd0

π) = (2i+8− (i+3)− (i+1)) = 4 ,

also the first Poisson cohomology group gets a 4–dimensional contribution from each homogeneous
subcomplex, it is infinite dimensional as well. Of course additional generators appear in between
generators of degree less than 3 for vector fields and less than 6 for bivector fields, due to some
degeneracy of the coboundary maps. It is an easy computation and we will leave further details
to the reader. Just as in [9] a general argument immediately extends this result to smooth Poisson
cohomology.

Now we are in position to apply the Poisson Mayer-Vietoris sequence to the pair (S2 \N,S2 \
S). Since both S2 \N and the intersection (S2 \N)∩ (S2 \S) are symplectic their Poisson cohomol-
ogy coincide with de Rham cohomology. A rather standard application of the exact sequence allows

3
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us to conclude that dimH1
π(S2

θ ) = dimH2
π(S2

θ ) = ∞. As for H0
π(S2) it is one-dimensional since the

presence of a dense symplectic leaf forbids the existence of non constant Casimir functions.
Let us consider the Poisson bivector itself. Since in the singular chart

d1
π(w∂w + w̄∂w̄) =−2πθ

and since the vector field w∂w + w̄∂w̄ extends to a global vector field on S2, its 2-cohomology class
is trivial. Let us fix the usual round volume form

V =
dz∧dz̄

ı(1+ |z|2)2 ∈ Ω2S2 .

The corresponding modular vector field is:

χV =
4θ

ı(1+ |z|2)
(z∂z − z̄∂z̄) . (2.2)

This vector field is a Poisson cocycle for general reason and cannot be a Poisson coboundary by
an easy computation (based on degree arguments); thus defines a non trivial class in Poisson coho-
mology and the Poisson θ -sphere is not unimodular. The previous discussion can be summarized
as follows.

Proposition 2.1. The Poisson manifold S2
θ is exact and non unimodular. Its Poisson cohomology

is infinite dimensional in degrees one and two. The Poisson θ–sphere is not Poisson–Morita equiv-
alent to the Podleś sphere.

Proof. Since the Podleś sphere has finite dimensional Poisson cohomology ([9]) and since 1–
Poisson cohomology is invariant under Poisson Morita equivalence ([6]) we have proven that these
two Poisson structures on S2 are not Poisson Morita equivalent (let aside Poisson gauge equivalent
or, even, Poisson diffeomorphic).

3. Symplectic integration and prequantization

By applying the general result of [11] we know that the (source simply connected) groupoid
G (S2

θ ) integrating S2
θ is T ∗S2 with the canonical symplectic structure. In the symplectic chart, with

complex coordinates z on the base S2 \N and p on the fiber, the source and target maps of the
groupoid are

l(z, p) = z− ı
θ
2

p̄ ; r(z, p) = z+ ı
θ
2

p̄ . (3.1)

The product of compatible pairs, i.e. pairs such that z+ ı θ
2 p̄ = z′− ı θ

2 p̄ ′ is given by:

(z, p) · (z′, p′) = (z+ ı
θ
2

p̄ ′, p+ p′) . (3.2)

The inverse mapping is (z, p)−1 = (z,−p), and finally the inclusion map is z ↪→ (z,0). On the fiber
over the North Pole, the groupoid structure is just addition on the fibre, i.e.

l(N, p) = r(N, p) = N , (N, p) · (N, p′) = (N, p+ p′) . (3.3)

4
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Since S2\N is an open symplectic leaf, then there exists a symplectic groupoid morphism
between G (S2

θ )|S2\N and the pair groupoid C×C given by (z, p)→ (x,y) = (l(z, p),r(z, p)). The
canonical symplectic structure on T ∗S2 can be rewritten either in Darboux coordinates (z, p) or in
pair groupoid coordinates (x,y) as:

Ω = dqi ∧d pi =
1
2
(dz∧d p+dz̄∧d p̄) =−ı

1
2θ

(dx∧dx̄−dy∧dȳ) . (3.4)

The modular vector field (2.2) is integrated to the non trivial groupoid 1-cocycle cV ∈C∞(T ∗S2),
the modular cocycle; in the pair groupoid coordinates it reads

cV (x,y) = 2log
(

1+ |y|2

1+ |x|2

)
. (3.5)

Following [7], the groupoid structure endows the usual prequantization of T ∗S2 as a symplectic
manifold with a S1-valued groupoid 2-cocycle ζ , the prequantization cocycle. Since the symplectic
form is exact, the prequantization line bundle is the trivial one and ζ ∈C∞(G2(S2

θ ),S1) (we denote
with Gk the set of k composable elements of G ). Let us choose a primitive Θ of Ω, then ζ satisfies
the following two conditions

i) ζ is multiplicative, i.e. for any triple of composable points (γ1,γ2,γ3) ∈ G3(S2
θ ) it satisfies:

ζ (γ1,γ2γ3)ζ (γ2,γ3) = ζ (γ1,γ2)ζ (γ1γ2,γ3) . (3.6)

ii) ζ is covariantly constant, i.e.
dζ − ı/h̄(∂ ∗Θ)ζ = 0 , (3.7)

where ∂ ∗ denotes the simplicial coboundary operator. By direct computation one shows that Θ
defined as

Θ = ı/4θ (x̄dx− ȳdy− xdx̄+ ydȳ) (3.8)

is a multiplicative primitive of Ω, i.e. dΘ = Ω and ∂ ∗Θ = 0. As a consequence, the solution to
(3.7) is ζ = 1. The fact that this 2–cocycle is trivial is a reflection of πθ being exact in Poisson
cohomology.

4. The Bohr-Sommerfeld groupoid

We discuss in this section the polarization of G (S2
θ ). As mentioned in the introduction we

will look for a possibly singular multiplicative lagrangian distribution such that the modular 1–
cocycle descends to the leaf groupoid. It is natural to seek for a modular multiplicative integrable
system, as we considered in [3], i.e. a maximal set F of functions in involution, almost everywhere
independent, generating the modular cocycle cV (3.5) and such that the space of level sets GF(S2

θ )

inherits the groupoid structure.
Let us consider the height function τ = 1

1+|z|2 ∈ C∞(S2) and let ( f1, f2) = (l∗τ,r∗τ); then

{ f1, f2} = 0 and d f1 ∧ d f2 6= 0 on a dense open subset of T ∗S2. Therefore, the non empty level
sets are, when 2–dimensional, lagrangian. It is easy to check that GF(S2

θ ) inherits the groupoid
structure; moreover the modular cocycle (3.5) is cV = 2log(l∗τ/r∗τ).

5
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Let us describe the topology of the quotient groupoid GF(S2
θ ). The level sets over S2 \N are

described by the pair groupoid coordinates R1 = |x|2, R2 = |y|2, for R1,R2 ∈ R+; there is one leaf
∞ over the North Pole that corresponds to f1 = f2 = 0, i.e. R1 = R2 = ∞. In the coordinates (w, p)
centered at the North Pole we have

(x,y) =
(

1
w
+ ı

θ
2

w̄2 p̄,
1
w
− ı

θ
2

w̄2 p̄
)

(4.1)

from which it is easily seen that when w → 0 the difference x− y tends to zero as well. A funda-
mental system of neighbourhoods for ∞ is given by

BN,M,ε = {(R1,R2)
∣∣R1 > N ,R2 > M , |R1 −R2|< ε} . (4.2)

Let us compute the subgroupoid G bs
F ⊂ GF of Bohr-Sommerfeld (BS) leaves. We have that

(R1,R2) is a BS leaf if and only if |z|2 = Ri, i = 1,2, are BS leaves on S2 \N with respect to
ωS =

ı
2θ dz∧dz̄, i.e. ∫

|z|2≤R
ω =

πR
θ

= 2π h̄n .

If we fix h̄θ > 0, BS leaves are selected by the condition: Ri = 2θ h̄ni, i = 1,2 and are numbered by
a pair of natural numbers n1,n2; to these leaves we have to add the leaf ∞ at infinity. By looking at
(4.2) for ε small enough, we see that around ∞ there is an open neighborhood BN = {(R,R)

∣∣ R>N}
so that source and target maps are homemorphisms with their image. By applying Proposition 2.8
in [8], we conclude that G bs

F is ètale and admits as unique Haar system the counting measure on the
fibres.

By construction the modular cocycle (3.5) descends to the following family of 1–cocycles of
G bs

F parametrized by h̄θ

ch̄θ
V (m,n) = 2log

(
1+2h̄θn
1+2h̄θm

)
. (4.3)

By a straightforward computation, we can check that ch̄θ
V is the modular cocycle of the following

quasi invariant measure on (G bs
F )0 = N̄

µh̄θ (m) =
1

( 1
2h̄θ +m)2

. (4.4)

We are now ready to compare in the following Proposition this quantization output (G bs
F ,ζ =

1,ch̄θ
V ) with the same data (GS,ζ = 1,ch̄

pod) produced by the quantization of Podles̀ sphere in [2].

Proposition 4.1. The groupoid of Bohr-Sommerfeld leaves G bs
F and Sheu’s groupoid GS are equiv-

alent as topological groupoids but inequivalent as measured groupoids.

Proof. Let us describe first GS. Let Z×Z be the action groupoid where Z act on Z = Z∪{∞}
by translation leaving ∞ fixed. This is a locally compact Hausdorff topological groupoid, when Z
is endowed with the discrete topology and Z is its compactification at +∞. Its restriction O1 =

(Z×Z)|N is called the (n = 1) Cuntz groupoid (see [8]). Inside this groupoid Sheu considered the
subgroupoid

GS = {(p,q) ∈ O1 | q = ∞ =⇒ p = 0} ⊂ O1. (4.5)

6
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The map (m,n) 7→ (m−n,n) gives a topological groupoid isomorphism between G bs
F and GS. We

have to show that the modular cocycles ch̄θ
V and ch̄

pod are not cohomologous. The modular cocycle
computed in [2] is ch̄

pod(p,q) = −h̄p that under the above isomorphism becomes ch̄
pod(m,n) =

h̄(n−m). Now ch̄θ
V − ch̄

pod = ∂ ∗ϕ where ϕ(m) = −2log(1+ 2h̄θm)+ h̄m . But such ϕ does not
extend continously at ∞.

5. Kähler polarization

In this section we will show how results of the previous section may be recovered by the choice
of a complex Kähler polarization in the complexified tangent bundle. Since the restriction of the
symplectic groupoid to the symplectic leaf is a Kähler manifold we can take its natural Kähler
polarization and extend it to the vertical polarization on T ∗

NS2. We will therefore define Pθ to be
〈 ∂

∂x ,
∂
∂ ȳ〉 for finite (x,y) and (T ∗

NS2)C over (w = 0, pS). This is a smooth lagrangian multiplicative
positive (if θ > 0) distribution. Its associated real distributions are singular: D = Pθ ∩P̄θ is 0 on
finite (x,y) and (T ∗

NS2)C in (w = 0, pS). A basis of hamiltonian vector fields is given by {χx̄,χy}.
By identifying Pθ with P⊥

θ = Ω(Pθ ) a basis of covariantly constant sections under the Bott
connection ∇χξ = iχdξ is b = {dx̄,dy}.

By using the multiplicative primitive Θ of the symplectic form Ω given in (3.8) we can easily
compute the space of polarized sections to be:

SP =
{

σ ⊗
√

b ∈C∞(T ∗S2)⊗C∞(
√

detPθ )
∣∣σ = e−

1
4θ h̄ (|x|

2+|y|2)ψ(x̄,y)
}

.

In such setting the local observables |x|2 and |y|2 are quantizable, since their hamiltonian fluxes
preserve the polarization. From the general geometric quantization rules we get:

|̂x|2 ψ = 2h̄θ(x̄∂x̄ +
1
2
)ψ , |̂y|2 ψ = 2h̄θ(y∂y +

1
2
)ψ . (5.1)

On states ψm,n = x̄myn the modular function DV = exp(cV ) with cV as in (3.5) is then quantized as:

D̂V ψm,n =

(
1+2h̄θ(n+1/2)
1+2h̄θ(m+1/2)

)2

ψm,n . (5.2)

In order to define the convolution algebra on polarized section we need to introduce a left Haar
system on G (S2

θ ). Any smooth Haar system on it (up to a scalar factor) is written as dλ x(x,y) =
Λ(y)(1+ |y|2)2d2y for |x|< ∞ with limy→∞ Λ(y) = 1 and dλ ∞ = θ 2 d2 pS.

Thus, for any choice of the volume form Vρ = ρ(x)V on S2, where V is the round volume form
and ρ ∈C∞(S2) is strictly positive, there is defined the following volume form on G (S2

θ ):

ν =
(1+ |y|2)2

(1+ |x|2)2 ρ(x)Λ(y)d2xd2y , (5.3)

We obtain that ν =−θ 2ρ(x)Λ(y)DV Ω2 so that:

ν = ν−1D2
V e∂ ∗ log(ρ/Λ) . (5.4)

Remark that from this expression you get that the (groupoid) modular cocycle is 2cV +∂ ∗(ρ/Λ) .

7



P
o
S
(
R
i
o
 
d
e
 
J
a
n
e
i
r
o
 
2
0
1
2
)
0
0
3

The modular class as a quantization invariant F.Bonechi

We are going to define on the space of polarized sections the structure of left Hilbert algebra,
i.e. compatible convolution and scalar product. We consider, on the space of polarized sections,
the scalar product corresponding to the trivialization of detT ∗S2 determined by ν−1, hence:

〈σ1,σ2〉ν =
∫
C2

d2xd2y
√

ρ(y)Λ(x)D−1
V e−

1
2θ h̄ (|x|

2+|y|2) ψ1(x̄,y)ψ2(x̄,y) , (5.5)

Let ρ(x) = ρ(|x|2) and Λ(y) = Λ(|y|2). On the polynomial basis of polarized sections

ψmn(x̄,y) = x̄myn , (5.6)

we have that ||σmn||ν = `(m)r(n), where:

`(m) = 2π
∫ ∞

0
dt
√

Λ(t)(1+ t) tme−
1

2h̄θ t , (5.7)

r(n) = 2π
∫ ∞

0
dt
√

ρ(t)
tn

(1+ t)
e−

1
2h̄θ t . (5.8)

Moreover:
〈σm,n,σm′,n′〉ν = δm,m′δn,n′ `(m)r(n) . (5.9)

By using the left Haar system on G (S2
θ ) we can define the following convolution product

between polarized sections (and trivial 2–cocycle)

σ1 ∗Λ σ2(x,y) =
∫
C

d2zσ1(x,z)σ2(z,y)
√

Λ(|z|2)(1+ |z|2) , (5.10)

and involution σ∗(x,y) = σ(y,x); we obtain, for sections σmn, the formula:

σm,n ∗Λ σm′n′ = δnm′`(n)σmn′ , σ∗
mn = σnm . (5.11)

Denoting S(σ) = σ∗ we get for the modular operator

DρΛσmn = S†Sσmn =
`(n)r(m)

`(m)r(n)
σmn. (5.12)

If we choose ρ = Λ = 1 the integrals in `(m) and r(n), with a = (2h̄θ)−1, give the following
results:

`(m) = 2π m! a−2−m(1+a+m) , r(n) = 2π ean! Γ(−n,a) , (5.13)

where Γ(α,z) =
∫ ∞

z tα−1e−t . The following, then, holds true:

Proposition 5.1. i) The space SP of polarized sections with convolution and involution (5.11),
scalar product (5.9) defines a left Hilbert algebra A P

θ .

ii) A P
θ is isomorphic to the left Hilbert algebra L2(G bs

F ,ν−1
µρΛ

) defined by the quasi invariant
measure

µρΛ(m) =
r(m)

`(m)
.

iii) The measures µρΛ and µh̄θ defined in (4.4) are equivalent.

8
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Proof. By direct computation one shows on basis elements σmn of SP that the left regular repre-
sentation is involutive and bounded so that its completion with respect to the scalar product is a left
Hilbert algebra.

Moreover, the map e : A P
θ → L2(G bs

F ,ν−1
µρΛ

) defined by

e(σm,n) = em,n
√

`(m)`(n) , (5.14)

where em,n is a basis for Cc(G bs
F ), is an algebra isomorphism of the convolution algebras SP and

Cc(G bs
F ); moreover it is an isometry if Cc(G bs

F ) is equipped with the scalar product corresponding
to the GNS state φµρΛ defined by

φµρΛ( f ) =
∫

µρΛ f .

In fact, we have that

φµρΛ(e(σm,n)
∗ ∗ e(σm,n)) = φµρΛ(en,0)`(m)`(n) = µρΛ(n)`(m)`(n) = ||σm,n||2ν .

In order to prove (iii) let us define

ϕ(m) = log
µh̄θ (m)

µρΛ(m)
= log

(
`(m)

r(m)

)
−2log

(
m+

1
2h̄θ

)
.

Let us show the result in the case ρ = Λ = 1 so that one can make use of (5.13); by using the
asymptotic limit Γ(−m,a)≈ e−aa−m/m we get that limm→∞ ϕ(m) = 2log2h̄θ .
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