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Lumps in SFT Loriano Bonora

1. Introduction

Recently, following an earlier suggestion of [15], a general method has been proposed, [1],
to obtain new exact analytic solutions in Witten’s cubic open string field theory (OSFT) [5], and
in particular solutions that describe inhomogeneous tachyon condensation.On general grounds
it is expected that an OSFT defined on a particular boundary conformal field theory (BCFT) has
classical solutions describing other boundary conformal field theories [6, 7]. Analytic solutions
have actually been constructed describing the tachyon vacuum [8, 16, 9] see also the reviews [11,
12]. In this panorama solutions describing inhomogeneous and relevant boundary deformations of
the initial BCFT were not known until recently, though their existence was predicted [6, 7]. This
absence was filled up in [15, 1], and in [2, 3] the energy of a D24-brane solution was calculated
for the first time. In [4] these results were extended to analytic SFT solutionscorresponding to
D(25-p)-branes, for anyp, and their energy was calculated.

Notwithstanding these successes, some formal problems have remained behind. Here we
would like to discuss these problems. The first issue concerns the interpretation of theε parameter
used in [2, 3, 4]. The latter was first introduced in the analysis as a regulator and subsequently
(erroneously) interpreted as a gauge parameter, in the sense that physical quantities were supposed
to be independent of it. Below we show that, both from a theoretical and a numerical point of view,
ε is a mere regulator (not a gauge parameter) and the only meaningful resultsare obtained in the
ε → 0 limit. This conclusion does not affect the results in [2, 4], because they were obtained pre-
cisely in that limit, but it clarifies a theoretical issue which is important in itself and also in relation
to the subsequent point.

The next problem was raised in [3] and a solution to it was proposed in [2]in appendix D. In
this note we would like to return to this issue and discuss it in full detail. It concerns a would-be
violation of the SFT equation of motion for the string field candidates considered in [1, 2, 4, 3],
which originates from the use of a Schwinger parametrization of inverse elements. Our discussion
of the problem starts with pointing out that similar problems arise in the search for solutions in
classical field theory. We show, for instance, that were we to take into account terms like the vio-
lating term of [3] (which we call spurious terms) in solving Einstein gravity in vacuum, we would
come to the paradoxical conclusion that the Schwarzschild black hole is nota solution of Einstein
gravity. We argue that, when the issue is considered in the proper setting, noviolations to the
equation of motion occur for the solutions considered in [2, 4]. The spurious terms when inserted
in convergent integrals give vanishing contributions and, on the other hand, can give nonvanishing
(but ambiguous) contributions only if inserted in discontinuous integrals (see below for the precise
meaning). This suggests that the appropriate mathematical setting to interpret them is the theory of
distributions. We suggest that the lump solutions must be considered as distributions. Once this is
done, any ambiguity linked to spurious terms in the equation of motion, disappears.

The paper is organized as follows. After a review of [1] and [2], section 2 is devoted to the
clarification of the nature of theε parameter and relevant numerical calculations. In section 3 we
outline the problem that arises when we represent1

K+φu
by means of a Schwinger parametrization.

In section 4 we discuss in detail the example of the Schwarzschild solution in Einstein gravity
and show what would happen if we took into account spurious terms. In section 5 we argue on
a general ground that the offending term of [3] does not have right of citizenship among well
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behaved mathematical objects. In section 6 we compute the offending (or spurious) term in the SFT
equation of motion and show that it is in fact related to an ambiguity in the formalism, and should
not be considered as a matter of principle, but, anyhow, even if taken into account, when inserted
in a convergent expression for the energy, this term gives a vanishingcontribution. In section
7 we introduces a numerous set of states that can play the role of test statesin the distribution
theory interpretation of the lump solution. Section 8 is devoted to a summary of the discussion and
results. We also suggest that an appropriate mathematical framework for the problem discussed in
this paper and for similar problems may be based on a re-elaboration of vector distribution theory.

1.1 Review of the previous results

In [1], to start with, the well-knownK,B,c algebra defined by

K =
π
2

KL
1 |I〉, B =

π
2

BL
1|I〉, c = c

(

1
2

)

|I〉, (1.1)

was enlarged as follows. In the sliver frame (obtained by mapping the UHP toan infinite cylinder
C2 of circumference 2, by the sliver map ˜z= 2

π arctanz), by adding a (relevant) matter operator

φ = φ
(

1
2

)

|I〉 (1.2)

with the properties

[c,φ ] = 0, [B,φ ] = 0, [K,φ ] = ∂φ , (1.3)

In this new algebraQ has the following action:

Qφ = c∂φ +∂cδφ . (1.4)

It can be easily proven that

ψφ = cφ − 1
K +φ

(φ −δφ)Bc∂c (1.5)

does indeed satisfy the OSFT equation of motion

Qψφ +ψφ ψφ = 0. (1.6)

It is clear that (1.5) is a deformation of the Erler–Schnabl solution, see [10], which can be recovered
for φ = 1.

In order to prove that (1.5) is a solution, one demands that(cφ)2 = 0, which requires the OPE
of φ at nearby points to be not too singular.

Using theK,B,c,φ algebra one can show that

Qψφ

B
K +φ

= Q
B

K +φ
+

{

ψφ ,
B

K +φ

}

= 1.

So, unless the homotopy–fieldB
K+φ is singular, the solution has trivial cohomology, which is the

defining property of the tachyon vacuum [15, 16]. On the other hand, inorder for the solution to
be well defined, the quantity1

K+φ (φ −δφ) should be well defined too. Finally, in order to be able
to show that (1.5) satisfies the equation of motion, one needsK +φ to be invertible.

In full generality we thus have a new nontrivial solution if

3
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1. 1
K+φ is singular, but

2. 1
K+φ (φ −δφ) is regular and

3. 1
K+φ (K +φ) = 1.

In [1] sufficient conditions forφ to comply with the first two requirements were determined.
Let us parametrize the worldsheet RG flow, referred to above, by a parameteru, whereu = 0
represents the UV andu = ∞ the IR, and rewriteφ asφu, with φu=0 = 0. Then we require forφu

the following properties under the coordinate rescalingft(z) = z
t

ft ◦φu(z) =
1
t

φtu

(z
t

)

(1.7)

and, most important, that the partition function

g(u) ≡ Tr[e−(K+φu)] =
〈

e−
∫ 1

0 dsφu(s)
〉

C1

, (1.8)

satisfies the asymptotic finiteness condition

lim
u→∞

〈

e−
∫ 1

0 dsφu(s)
〉

C1

= finite. (1.9)

It was pointed out in [1] that this satisfies the first two conditions above i.e. guarantees not only the
regularity of the solution but also its ’non-triviality’, in the sense that if this condition is satisfied,
it cannot fall in the same class as the ES tachyon vacuum solution. It would seem that the last
condition above cannot be satisfied in view of the first. But this is not the case. This is the main
issue discussed in sec.3,5-8.

We will consider in the sequel a specific relevant operatorφu and the corresponding SFT
solution. This operator generates an exact RG flow studied by Witten in [13], see also [14], and is
based on the operator (defined in the cylinderCT of width T in the arctan frame)

φu(s) = u(X2(s)+2lnu+2A), (1.10)

whereA is a constant first introduced in [15]. InC1 we have

φu(s) = u(X2(s)+2lnTu+2A) (1.11)

and on the unit diskD,

φu(θ) = u(X2(θ)+2ln
Tu
2π

+2A). (1.12)

If we set

gA(u) = 〈e−
∫ 1

0 dsφu(s)〉C1 (1.13)

we have

gA(u) = 〈e
− 1

2π
∫ 2π

0 dθ u

(

X2(θ)+2ln u
2π +2A

)

〉D.
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According to [13],

gA(u) = Z(2u)e−2u(ln u
2π +A)

, (1.14)

where

Z(u) =
1√
2π

√
uΓ(u)eγu (1.15)

Requiring finiteness foru→ ∞ we getA = γ −1+ ln4π, which implies

gA(u) ≡ g(u) =
1√
2π

√
2uΓ(2u)e2u(1−ln(2u)) (1.16)

and

lim
u→∞

g(u) = 1. (1.17)

Moreover, as it turns out,δφu = −2u, and so:

φu−δφu = u∂uφu(s). (1.18)

Therefore theφu just introduced satisfies all the required properties and consequentlyψu ≡ ψφu

must represent a D24 brane solution.
In I the expression for the energy of the lump solution was determined by evaluating a three–

point function on the cylinderCT of circumferenceT in the arctan frame. It is given by

E[ψu] = −1
6
〈ψuψuψu〉

=
1
6

∫ ∞

0
d(2uT) (2uT)2

∫ 1

0
dy
∫ y

0
dx

4
π

sinπxsinπysinπ(x−y) (1.19)

·g(uT)

{

−
(∂2uTg(uT)

g(uT)

)3
+G2uT(2πx)G2uT(2π(x−y))G2uT(2πy)

−1
2

(∂2uTg(uT)

g(uT)

)(

G2
2uT(2πx)+G2

2uT(2π(x−y))+G2
2uT(2πy)

)

}

.

whereGu(θ) represents the correlator on the boundary, first determined by Witten, [13]:

Gu(θ) =
1
u

+2
∞

∑
k=1

cos(kθ)

k+u
(1.20)

MoreoverE0(t1, t2, t3) represents the ghost three–point function inCT .

E0(t1, t2, t3) = 〈Bc∂c(t1 + t2)∂c(t1)∂c(0)〉CT
= − 4

π
sin

πt1
T

sin
π(t1 + t2)

T
sin

πt2
T

. (1.21)

Finally, to get (1.19) a change of variables(t1, t2, t3) → (T,x,y), where

x =
t2
T

, y = 1− t1
T

.
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is needed.

The expression (1.19) has been evaluated in [2]. As it turns out, this expression has a UV
(s≈ 0, settings = 2uT) singularity, which must be subtracted away. Therefore the result one
obtains in general will depend on this subtraction∗. In [2] it has been pointed out thata physical
significance can be assigned only to a subtraction-independent quantity, and it has been shown how
to define and evaluate such a quantity. First a new solution to the EOM, depending on a regulator
ε, has been introduced†

ψε
u = c(φu + ε)− 1

K +φu + ε
(φu + ε −δφu)Bc∂c. (1.22)

its energy being 0 (after the same UV subtraction as in the previous case) in the ε → 0 limit.
Then, using it, a solution to the EOM at the tachyon condensation vacuum hasbeen obtained. The
equation of motion at the tachyon vacuum is

QΦ+ΦΦ = 0, where QΦ = QΦ+ψε
uΦ+Φψε

u . (1.23)

One can easily show that

Φε
0 = ψu−ψε

u (1.24)

is a solution to (1.23). The action at the tachyon vacuum is−1
2〈QΦ,Φ〉− 1

3〈Φ,ΦΦ〉. Thus the
energy of of the lump,E[Φ0], is

E[Φ0] = − lim
ε→0

1
6
〈Φε

0,Φ
ε
0Φε

0〉

= −1
6

lim
ε→0

[

〈ψu,ψuψu〉−〈ψε
u ,ψε

uψε
u〉−3〈ψε

u ,ψuψu〉+3〈ψu,ψε
uψε

u〉
]

. (1.25)

The integrals in the four correlators at the RHS, are IR (s→ ∞) convergent. The UV subtractions
necessary for each correlator are always the same, therefore they cancel out. In [2], after UV
subtraction, we obtained

−1
6
〈ψu,ψuψu〉 = α +β , lim

ε→0
〈ψε

u ,ψε
uψε

u〉 = 0

1
6

lim
ε→0

〈ψε
u ,ψuψu〉 = α − 2

3
β ,

1
6

lim
ε→0

〈ψu,ψε
uψε

u〉 = α − 1
3

β (1.26)

whereα +β ≈ 0.068925‡ was evaluated numerically andα = 1
2π2 was calculated analytically. So

E[Φ0] = α turns out to be precisely the D24-brane energy. In [4] the same result was extended to
any Dp-brane lump.

∗The subtraction does not fix by itself the zero-point energy. For instance, in the examples of [4], the expression
corresponding to (1.19) is explicitly gauge dependent.

†In [2] ψε
u was calledψε .

‡This number represents the result of an improved numerical evaluationand differs from the value given in [2] by 6
per mil.
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2. Nature of theε parameter

Eq.(1.25) and (1.26) is really what we proved in [2, 4]. That is, the result we obtained is only
valid in the limit ε → 0, and this was the correct thing to do. However we were mislead by a
wrong theoretical prejudice and by a too rough numerical result into believing that the expression
in square brackets in the RHS of (1.25) is independent ofε, and thereforeε can be interpreted as a
gauge parameter. This is not the case, as we will show in this section:ε is a simple regulatorand
physical quantities can be recovered only in theε → 0 limit.

In [2] we computed numerically〈ψε
u ,ψε

uψε
u〉, after making the necessary UV subtraction. The

result was reported in Table 3 there, and led us to the idea that that is evidence of the analytic result
being 0 for anyε. This convinced us thatε is a gauge parameter and, as a consequence, also the
full expression in square brackets in the RHS of (1.25) should not depend onε. Although it did not
have any practical consequence on the final result, it must be said that this is not true. The present
section is devoted to clarifying this issue.

Let us deal first with〈ψu,ψuψu〉−〈ψε
u ,ψε

uψε
u〉. One of the limits of the numerical evaluation

of 〈ψε
u ,ψε

uψε
u〉 in [2] was that the numerics can start only after the UV subtraction is carriedout.

This limits considerably the accuracy of the numerical approximation. The expression

∆(1)
ε = 〈ψu,ψuψu〉−〈ψε

u ,ψε
uψε

u〉,

instead, is UV finite and its numerical evaluation can be more accurate. Here we report the numer-
ical results for a sample of values of the parameterη = ε

2u.

η : 2 1 0.7 0.5 0.1 0.08

∆(1)
ε : −0.41968 −0.41958 −0.42028 −0.41860 −0.41868 −0.41853

η : 0.05 0.01 0.005 0.003 0.001 0.0005

∆(1)
ε : −0.41831 −0.41660 −0.41625 −0.41587 −0.41483 −0.414009

Table 1: Samples of∆(1)
ε

The limit limε→0 ∆(1)
ε was calculated in [2] and is given by: 6(α + β ) ≈ −0.41355. Since

the numbers in Table 1 are accurate up to the third digit (being very conservative the error can be
estimated to be±0.0005) the dependence onε is evident. It is also clearly visible that the sequence
of numbers tends to the expected value (aroundη = 0.00001 reliable numerical results becomes
hard to retrieve). The smallness of theε dependence (a few percent only) was at the origin of the
misunderstanding about the nature ofε.

The dependence onε of

∆(2)
ε = 〈ψε

u ,ψuψu〉−〈ψu,ψε
uψε

u〉

is not much easier to detect. In Table 2 we report the numerical results for asample of the parameter
η .

In [2] the numerical value of∆(2)
ε was determined in theε → 0 limit to be: limε→0 ∆(2)

ε =

−2β ≈ −0.03652. The results in Table 1 are to be taken with a possible uncertainty of±0.0005.
We see that they clearly depend onε and that the limitε → 0 tends to the expected value.

7
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η : 10 2 1 0.7 0.5

∆(2)
ε : −0.01431 −0.02704 −0.0308524 −0.0323693 −0.03332

η : 0.4 0.2 0.1 0.08 0.05

∆(2)
ε : −0.03398 −0.03525 −0.03567 −0.03550 −0.03613

Table 2: Samples of∆(2)
ε

After these results the dependence onε of (1.25) needs not be stressed.ε is no gauge parame-
ter, it is a simple regulator, as it was originally conceived. This conclusion could have been reached
from a theoretical point of view. We see in fact that, while ourφu(s) satisfies condition (1.7), the
combinationφu(s)+ ε, which appears inψε

u , does not since:

ft ◦ ε = ε 6= ε
t

Forcingε to satisfy (1.7) would requireε = κu for some positive constantκ; but then, inφu+ε, see
(1.10),ε could be absorbed into a redefinition ofA and would disappear fromφ ε

u . As a consequence
the latter would actually coincide withψu and∆(1)

ε would vanish, which is evidently not the case.
The role ofε is precisely to break the covariance under the semigroup of rescalings, eq.(1.7),
in order to generate a different kind of solution with respect toψu. The conclusion is that the
parameterε does not run (in the RG parlance), therefore it is not a gauge parameter(in the SFT
terminology). We remark that the valueε = 0 is (together withε = ∞) the only scale invariant one.

One may be surprised at first thatψε
u is a solution to the EOM of SFT, while the term

〈ψε
u ,ψε

uψε
u〉 is ε-dependent . The point is thatψε

u formally solves the equation of motion but is
not an extreme of the action forε 6= 0. The puzzle is explained of course by the fact that the param-
eterε is not present in the original action. Therefore one has to provea posteriorithat the ‘solution’
actually corresponds to an extreme of the action§. The variation of the action withε is given by
(after replacing the eom)δεS∼ 〈 ∂ψε

u
∂ε ,Qψε

u〉−〈Q∂ψε
u

∂ε ,ψε
u〉. For this to vanish one should be able to

‘integrate by parts’, which is not possible due to the UV subtractions implicit in the calculation of
the correlators, see [2] (and also [18] where similar arguments are developed although not in the
same context)¶. Now δεSdoes not vanish and in order to find an extreme of the action we have to
extremize it. This is in keeping with the monotonic dependence on (small)η one can see in Table
1, which tells us that the extreme is met in the limitε → 0.

We have verified that also other quantities considered in section 6 of this paper, which contain
ε, are effectivelyε-dependent. In the light of the above theoretical argument, this and the previous
numerical proof that∆(1)

ε and∆(2)
ε areε-dependent would be pointless, if a misunderstanding about

the role ofε had not arisen. In any case, having at hand Table 1 and 2, we have theopportunity to

§The same consideration applies also to the parameteru, but it was shown in [1] thatu actually disappears from the
action when we replaceψu in it: u is a true gauge parameter.

¶Since the UV singularity is linked to theX zero mode, one might expect that with a compactifiedX this problem
should disappear and the integration by parts become possible. However, as long as we consider solution of the type
ψu,ψε

u with a linearly scalingu parameter, this seems to be impossible: the singularity removed from the UVwill pop
up in the IR, creating analogous problems. The nontrivial boundary contribution in the SFT action, see also section 2, is
a new interesting feature which deserves a closer investigation.
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make the following observation: the limitε → 0 is smooth and it tends to the expected theoretical
value (just replace the numerical values of∆(1)

ε and∆(2)
ε inside (1.25)). Nothing anomalous happens

in the limit. We have proven the existence of the limit also analytically (we will spare the reader the
lengthy details), but the numerical results are more pictorial. Eq.(1.25) was obtained by plugging
in QΦ0 = −Φ0Φ0 into the SFT action. Should the EOM be violated, the worst that can happen
is that the violating term, if any, contributes 0 to the energy. This is exactly whatwe will show in
section 6.

3. The problem with the Schwinger representation

We now come to the criticism raised by [3] about our solution. In order to obtain (1.19) one
has to use the following Schwinger representation

1
K +φu

=
∫ ∞

0
dt e−t(K+φu) (3.1)

of the inverse ofK +φu. When using such a Schwinger representation, however, the identity

1
K +φu

(K +φu) = I , (3.2)

would seem not to be satisfied. To illustrate the problem, let us calculate the overlap of both the
left and the right hand sides of (3.2) withY = 1

2∂ 2c∂cc. The right hand side is trivial and, in our
normalization, it is

Tr(Y · I) = lim
t→0

〈Y(t)〉Ct 〈1〉Ct =
V
2π

. (3.3)

To calculate the left hand side we need the Schwinger representation

Tr
[

Y · 1
K +φu

(K +φu)
]

=
∫ ∞

0
dtTr

[

Y ·e−t(K+φu)(K +φu)
]

(3.4)

Making the replacement

e−t(K+φu)(K +φu) →− d
dt

e−t(K+φu) (3.5)

one obtains

Tr
[

Y · 1
K +φu

(K +φu)
]

= g(0)−g(∞) =
V
2π

−g(∞), (3.6)

which is different form (3.3) becauseg(∞) is nonvanishing. The latter relation is often written in a
stronger form

∫ ∞

0
dt e−t(K+φu)(K +φu) = 1−Ω∞

u , Ω∞
u = lim

Λ→∞
e−Λ(K+φu) (3.7)

This (strong) equality, however, has to be handled with great care. If the latter is taken literally, we
could also write

1
K +φu

=
∫ ∞

0
dt e−t(K+φu) +

1
K +φu

Ω∞
u (3.8)

instead of (3.1). This would imply that eq.(3.2) is not satisfied, and, consequently, the equation of
motion is not satisfied byψu.

9
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4. An example from classical field theory

The problem raised in the previous section is actually commonplace in the search of solutions
in ordinary classical field theory and was solved long ago resorting to the theory of distributions,
and tacitly incorporated in our common lore. Let us present one of many possible examples. We
ask our patient reader to follow us through some elementary mathematics. We hope the example
will help clarifying our line of thought in solving the puzzle raised in the previous section.

4.1 Preliminaries

In preparation for our 3d example let us introduce some notation:

x = rsinθcosϕ, y = rsinθsinϕ, z= rcosθ
r =

√

x2 +y2 +z2, θ = arccos
z
r
, ϕ = arctan

y
x

and

∆ f =
1
r2 ∂r

(

r2∂r f
)

+
1

r2sinθ
∂θ (sinθ ∂θ f )+

1

r2sin2θ
∂ 2

ϕ f (4.1)

Distribution theory tells us that

∆
1
r

= −4πδ (r) (4.2)

Now, let us consider the productr 1
r . According to distribution theory (and to continuity) we should

have

r
1
r

= 1 (4.3)

In fact, using a test functionf (x,y,z), we have

< r
1
r
, f >= lim

ε→0

∫ ∫ ∫

r≥ε
dxdydzr

1
r

f (x,y,z)

= lim
ε→0

∫ ∫ ∫

r≥ε
dxdydz f(x,y,z) =

∫ ∫ ∫

dxdydz f(x,y,z) =< 1, f >

Thereforer 1
r , as a distribution, is 1. In view of the previous section one might decide to usea

Schwinger representation

r
1
r
−→

∫ ∞

0
dt re−tr = −

∫ ∞

0
dt

∂
∂ t

e−tr = 1− lim
t→∞

e−tr ≡ 1−Ω(r) (4.4)

Consequently1r is represented by

1
r
−→

∫ ∞

0
dt e−tr +Π(r), Π(r) =

Ω(r)
r

(4.5)

Let us elaborate a bit on this in order to prepare the ground for our example. From (4.4) it is
clear thatΩ(r) has support atr = 0, therefore it must be a delta-function-like object. Using the
definition of delta function as a limit

lim
t→∞

√

t
π

e−tx2
= δ (x),

10
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we can set

Ω(r) = 2 lim
t→∞

√

πr
t

δ (r) (4.6)

This is the only way to bringΩ(r) in the world of well-defined objects. (4.6) is obviously an
identically vanishing distribution. But, of course, if we integrate it over something which is not a
test function, we may get a nonvanishing result. For later use let us definealso

Π(r) = 2 lim
t→∞

√

π
rt

δ (r), Ξ(r) = 2 lim
t→∞

√
πrtδ (r) (4.7)

Let us make a comparison between (4.3) and (4.4). An explicit calculation yields

∆
(

r
1
r

)

= −4πrδ (r)+
2
r2 −

2
r2 = 0 (4.8)

as a distribution. This is a result of (4.2), of∆r = 2
r and of

3

∑
i=1

∂xi

1
r

∂xi r = − 1
r2 (4.9)

This last calculation is straightforward forr 6= 0, but at the origin one must be careful and use
distribution theory: for a test functionf (x,y,z) we can write, for example,

∫ ∫ ∫

dxdydz∂x

(

1
r

)

f (x,y,z) = − lim
ε→0

∫ ∫ ∫

r≥ε
dxdydzsinθ cosϕ

1
r2 f (x,y,z)

− lim
ε→0

∫ ∫ ∫

r≥ε
drdθdϕ sin2θ cosϕ f (r,θ ,ϕ) = −

∫ ∫ ∫

drdθdϕ sin2θ cosϕ f (r,θ ,ϕ)

which means that the distributional derivative∂x
1
r coincides with the ordinary derivative (there is

no extra contribution fromr = 0).
On the other hand, using the representation (4.4), we have

∆
(

r
1
r

)

= −∆Ω(r) (4.10)

The RHS is formally nonvanishing since∆(
√

rδ (r)) = 3
4r−

3
2 δ (r)+3r−

1
2 δ ′(r)+r

1
2 δ ′′(r). However,

remembering that the volume element contains a factor ofr2, ∆Ω(r) is in fact the 0 distribution.
This is consistent with (4.8). But if we do not correctly apply the rules of distribution theory
the RHS of (4.10) may seem to be nonvanishing (although ambiguous). This may happen, for
instance, if we integrate such term multiplied by a function that is more singular than 1√

r for r ≈ 0.
The trouble is that such a function is not a test function.

4.2 The Schwarzschild black hole ‘non-solution’

Let us check on an example that the (wrong) use of (4.10) leads to wrongresults. To this end
we consider the Schwarzschild solution in gravity. The Schwarzschild geometry is a solution to the
Einstein equation in vacuum:Rµν = 0.

11
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Let us consider the ordinary approach. The Schwarzschild metric has the form

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2(dθ 2 +sin2θdϕ2) (4.11)

so that we have

g00 = − f (r), grr =
1

f (r)
, gθθ = r2

, gϕϕ = r2sin2θ

where, for simplicity, we takef (r) = 1− 2M
r . The Christoffel symbols are

Γ0
0r =

f ′

2 f
= −Γr

rr , Γr
00 =

f f ′

2
, Γr

θθ = −r f , Γr
ϕϕ = −r f sin2θ , (4.12)

where f ′(r) = d f(r)
dr . There are other (completely angular) nonvanishing symbols but we will not

need them. As a consequence in particular we have

R0r0r =
f ′′

2
, R0θ0θ =

1
2

r f f ′, R0ϕ0ϕ =
1
2

r f f ′sin2θ (4.13)

At this point it is easy to prove, for instance, that

R00 = grr R0r0r +gθθ R0θ0θ +gϕϕR0ϕ0ϕ = 0 (4.14)

so that the eom is satisfied (for the00 case).
In all the above,1f is singular at the horizonr = 2M, so that one component of the metric is

singular. However the Riemann tensor is not singular (and the energy is finite). In the intermediate
passages we have to manipulate1

f or derivative thereof. This is singular, but interpreting it and
carrying out all the operations in the framework of distribution theory all thesingularities can be
treated correctly and the final result is regular.

Now let us see what happens instead when we use improperly the Schwinger representation
for 1

f . To this end let us call

S(
1
f
) =

∫ ∞

0
dt e−t f (4.15)

the Schwinger representation of1
f . We have

f S(
1
f
) = 1−Ω( f ),

1
f

= S(
1
f
)+Π( f )

f Π( f ) = Ω( f ), f ∂rS(
1
f
) = f ′Ξ( f )− f ′S(

1
f
) (4.16)

The last one follows from

f ∂rS(
1
f
) = −

∫ ∞

0
dt t f ′ f e−t f = f ′

∫ ∞

0
dt t

d
dt

e−t f (4.17)

= f ′
∫ ∞

0
dt

d
dt

(

t e−t f )− f ′
∫ ∞

0
dt e−t f = 2 f ′ lim

t→∞

√

πt f δ ( f )− f ′S(
1
f
)

12
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Of the relevant Christoffel symbolsΓ0
0r ,Γ

r
rr are singular, while the others are regular. More pre-

cisely we have

Γ0
0r =

f ′

2

(

S(
1
f
)+Π( f )

)

, Γr
rr =

f ′

2

(

Ξ( f )−S(
1
f
)

)

(4.18)

Repeating the calculation with these inputs we get

R0r0r =
f ′′

2
+

f f ′

2
Π′( f )+

f ′ f ′

4

(

Ξ( f )+Ω( f )S(
1
f
)+Ω( f )Π( f )

)

(4.19)

R0θ0θ =
1
2

r f f ′, R0ϕ0ϕ =
1
2

r f f ′sin2θ

Therefore

R00 =
f f ′′

2
+

f f ′

r
(4.20)

+
f f ′ f ′

4
Ξ( f )+

f ′ f ′

4
Ω( f )+

f 2 f ′

2
Π′( f )

The first line is the usual (vanishing) result, the second line represents the violation to the eom.
Notice thatin the framework of distribution theorythe second line vanishes, but if one takes the
previous algebraic manipulations literally one might conclude that Schwarzschild’s is not a solution
of Einstein gravity. In particular if we integrate the second line over a non-test function we may
get something different from 0. This is no accident: these terms are intrinsically ambiguous, as is
evident if one tries to define them carefully. Terms such as those in the second line of (4.20) are
inevitably ambiguous when considered outside the framework of distribution theory. We will refer
to them asspurious terms.

This is an example of what we run into when we abandon the principle of continuity (or analyt-
icity) according to which the statement:r 1

r = 1 everywhere, is the correct thing. This principle has
been incorporated into the theory of distributions, which, in this way, has eliminated all the above
ambiguities (a distribution is defined via Riemann integrals, which in turn are defined by means of
continuous limiting processes, so they automatically incorporate the principle ofcontinuity). But
if we abandon this principle we end up in a jungle of contradictions.

5. Continuity and the Schwinger representation

The previous example may sound somewhat exotic, but in every respect itis a paradigm of the
problem introduced in section 3. Let us now return to it.

In our approach in [2, 4] we have always been guided by what we have called above the
principle of continuity. On the basis of this principle (3.1), as opposed to (3.8), is the correct
relation. Let us summarize how we discussed this issue in Appendix D of [2].We start from the
observation thatK + φu is a vector in an infinite dimensional space:K + φu = (KL

1 + φu(
1
2))|I〉,

where|I〉 is the identity string field (and we remark that in our applicationsφu(z̃) is always inserted
in the left part of the string). Therefore the inverse ofK + φu can also be obtained via the inverse
of the operatorKu ≡ KL

1 +φu(
1
2).

The operatorKu is self-adjoint. Therefore its spectrum lies on the real axis. To know more
about it we would need a spectral analysis ofKu, similar to what has been done for the operator

13
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KL
1 in [17, 19, 20, 21]. The spectrum of the latter is the entire real axis. The spectrum ofKu is of

course expected to be different, but we know on a general ground that it lies on the real axis. We
can therefore define the resolvent ofKu, R(κ,Ku), which is by definition the inverse ofκ −Ku

(κ being a complex parameter). The resolvent is well defined (at least) for any non-realκ. We
do not know what type of eigenvalue theκ = 0 one is: discrete, continuous or residual. However,
sinceR(κ,Ku)(κ −Ku) = 1 is true for anyκ outside the real axis, we can hold it valid also in the
limit κ → 0 by continuity. Therefore we conclude that, on the basis of the (healthy) principle of
continuity, (3.1) is the correct relation, much asr 1

r = 1 was held true everywhere in the previous
section.

The obvious difference between the two cases is that in the previous section’s case we were
talking about the inverse of a positionr, while in this section we are talking about the inverse of
a string fieldK + φu. We remark however that this is the natural correspondence when we pass
from classical gravity (classical field theory) to SFT: the role of positionsin the former is played
by string configurations in the latter.

One may object at this point that, true, since (3.1) is correct, the SFT equation of motion is
satisfied by our solution, but in order to compute its energy we need the Schwinger representation
of the inverse ofK +φu. Given the ambiguity of the latter (see (3.7) and (3.8)) brought about by the
termΩ∞

u , one may wonder whether the computation of the energy may be altered by the presence
of such terms.

On the basis of the analogy with the previous section we are led to conclude that such am-
biguous terms have to be identified as spurious ones. We have argued above that a good hygienic
rule is to drop them. Keeping them may be useless in the best case and misleadingin the worst. In
any case we would like to modestly remark that, should we find that the Schwinger representation
is defective in calculating the energy, the most logical course would be to correct it, not to blame
the solution for not satisfying the equation of motion. Fortunately, anyhow, this will not be neces-
sary. The Schwinger representation perfectly does its job, provided it ishandled with care. In fact
we will show that spurious terms yield vanishing contributions if inserted in converging integrals,
while they may give nonvanishing (but ambiguous) contributions only if they appear in divergent
integrands.

6. Concerning the identity 1
K+φu

(K +φu) = I

Let us return to section 2 and eqs.(3.2), (3.1) and (3.8). Applying our new representation we
get

1
K +φu

(K +φu) =
∞

∑
n=0

(−ε)n

n!
∂ n

ε
1

K +φu + ε
(K +φu)

= e−ε∂ε

(

1− ε
K +φu + ε

)

= 1−e−ε∂ε
ε

K +φu + ε
(6.1)

The expressione−ε∂ε ε
K+φu+ε = limε→0

ε
K+φu+ε is a more appropriate way to writeΩ∞

u (it is ex-
tremely helpful to keep in mind the analogy withΩ(r) in sec. 3). It is of course formally vanishing,

14
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but to make any sense of such an expression one has to evaluate it in correlators. For instance,
taking the trace, as in section 2, we are led to evaluate

Tr

[

ε
K +φu + ε

]

= ε
∫ ∞

0
dt e−εt g(ut) (6.2)

Since, once again,g(∞) = 1, the limit ε → 0 is not continuous, and this depends on the fact that,
as we have seen many times, the integral in the RHS of (6.2) is (linearly) divergent when the factor
e−εt is replaced by 1. As a consequence the shift operatore−ε∂ε cannot be applied in a consistent
way in (6.2). In fact it is not clear what value one should assign to the expression

e−ε∂ε

(

ε
∫ ∞

0
dt e−εt g(ut)

)

(6.3)

depending on whether we integrate first or apply first the operatione−ε∂ε ε to the integrand.
On the other hand, if (6.1) is inserted in a correlator (like the energy one) where the integrand

without the exponential factor decreases fast enough, then the resultof the application ofe−ε∂ε to
ε

K+φu+ε is unambiguously 0. This can be seen by considering for instance the following contraction

Tr
[

∂ 2c e−(K+φ)e−ε∂ε

(

ε
(K +φu + ε)

(φu−δφu)c∂c

)

]

(6.4)

= e−ε∂ε ε
∫ ∞

0
dt e−εtTr

[

(φu−δφu)e
−(t+1)(K+φ)

]

〈∂ 2c(t +1)c∂c(0)〉Ct+1

= e−ε∂ε ε
∫ ∞

0
dt e−εt〈(φu(0)−δφu(0))e−

∫ t+1
0 dsφ(s)〉Ct+1〈∂ 2c(t +1)c∂c(0)〉Ct+1

= −e−ε∂ε ε
∫ ∞

0
dt e−εtG(t)

u
t +1

∂ug
(

u(t +1)
)

= 2e−ε∂ε ε
∫ ∞

0
dt e−εt u

t +1
∂ug
(

u(t +1)
)

where the ghost contribution is given by

G(t) = 〈∂ 2c(t +1)(c∂c)(0)〉Ct+1 = −2.

Now we can write eq.(6.4) as

2
(

e−ε∂ε ε
)

e−ε∂ε

∫ ∞

0
dt e−εt u

t +1
∂ug
(

u(t +1)
)

= 2
(

e−ε∂ε ε
)

∫ ∞

0
dt

u
t +1

∂ug
(

u(t +1)
)

= 0. (6.5)

We note that this last result does not need any UV subtraction.

6.1 How to compute correlators with spurious terms

After these long preliminaries let us come to the would-be violation of the equationof motion
due to the second term in the RHS of (6.1), pointed out in [3]. To this end we rewrite

ψu → ψu,ε = cφu−e−ε∂ε 1
(K+φu+ε)(φu−δφu)Bc∂c (6.6)

and applyQ to it. Using in particular

Q

(

e−ε∂ε
1

(K +φu + ε)

)

= −e−ε∂ε
1

(K +φu + ε)
(Qφu)

1
(K +φu + ε)

(6.7)
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and proceeding as in section 3.2 of [1], we find

Qψu,ε = Q

(

cφu−e−ε∂ε
1

(K +φu + ε)
(φu−δφu)Bc∂c

)

(6.8)

= e−ε∂ε

[

1+
1

(K +φu + ε)
(c∂φu +∂cδφu)

1
(K +φu + ε)

B− 1
(K +φu + ε)

K

]

(φu−δφu)c∂c

= e−ε∂ε

[(

cφu−
1

(K +φu + ε)
(φu−δφu)∂c

)

1
(K +φu + ε)

+
ε

(K +φu + ε)
c

]

(φu−δφu)Bc∂c

= −ψu,εψu,ε +e−ε∂ε

(

ε
(K +φu + ε)

(φu−δφu)c∂c

)

In a regular setting, that is when inserted in a correlator regular inε, this boils down to the usual
eomQψu = −ψuψu, and in particular the second piece in the RHS of the last line vanishes. Let us
see what happens if we, nevertheless, insist in keeping (6.8) in the expression of the energy. We
have

−〈ψuQψu〉 → −〈ψu,εQψu,ε〉 (6.9)

= 〈ψu,εψu,εψu,ε〉+ 〈ψu,εe−ε∂ε

(

ε
(K +φu + ε)

(φu−δφu)c∂c

)

〉

The second term in the RHS equals

e−ε∂ε 〈 1
(K +φu + ε)

(φu−δφu)Bc∂c
ε

(K +φu + ε)
(φu−δφu)c∂c〉 (6.10)

With the usual procedure we can write this as (T = t1 + t2)

e−ε∂ε

(

ε
∫ ∞

0
dt1dt2 e−εT

G (t1, t2)u
2g(uT)

{(

− ∂uTg(uT)

g(uT)

)2
+2G2

2uT(
2πt1
T

)
}

)

, (6.11)

where the ghost part is given by

G (t1, t2) = 〈(Bc∂c)(t1)(c∂c)(0)〉CT =
t1
π

sin(
2πt1
T

)− 2T
π2 sin2(

πt1
T

). (6.12)

Let us show now that (6.11) reduces to the form

e−ε∂ε

(

ε
∫ ∞

0
dse−εs

F(s)

)

(6.13)

whereF(s) → const for larges and the integral is UV finite.
Denotingx = t1

T , Eq.(6.12) can be rewritten as

e−η̃∂η̃ η̃
∫ ∞

0
dss2

∫ 1

0
dxE (x) e−η̃sg(s)

{(

− ∂sg(s)
g(s)

)2
+

1
2

G2
s(2πx)

}

, (6.14)

whereη̃ = ε
2u and

E (x) = 〈(Bc∂c)(x)(c∂c)(0)〉C1 =
−1+cos(2πx)+πxsin(2πx)

π2 (6.15)
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Since
∫ 1

0 dxE (x) = − 3
2π2 , the term with noGs is given by

− 3
2π2 η̃

∫ ∞

0
dss2 e−η̃sg(s)

(

− ∂sg(s)
g(s)

)2
(6.16)

As g(s) ≈ 1√
s in the UV we are in the case of eq.(8.13) of [2] and so the UV contribution vanishes

for η̃ → 0. In the IR we are in the case of eq.(8.17) of [2] and so the IR contributionvanishes too.
It can be easily proven that

3
∫ 1

0
dxE (x)G2

s(2πx) =
4
π

∫ 1

0
dy
∫ y

0
dxsinπxsinπysinπ(x−y)

·
(

G2
s(2πx)+G2

s(2π(x−y))+G2
s(2πy)

)

(6.17)

where the expression in the RHS is the same as eq.(3.7) of [2]. Thereforewe have

e−η̃∂η̃

(

1
2

η̃
∫ ∞

0
dss2 e−η̃sg(s)

∫ 1

0
dxE (x,0)G2

s(2πx)

)

= e−η̃∂η̃

(

1
6

η̃
∫ ∞

0
dss2 e−η̃sg(s)

4
π

∫ 1

0
dy
∫ y

0
dxsinπxsinπysinπ(x−y)

·
(

G2
s(2πx)+G2

s(2π(x−y))+G2
s(2πy)

))

(6.18)

We can now avail ourselves of the results in [2]. The integration overx andy leads to an integrand
in s that behaves like a constant for larges, if one abstracts from the factore−η̃s. Thus we have
obtained (6.13). Under these conditions the limit forη̃ → 0 of thes integral is discontinuous and
we are not allowed to exchangee−η̃∂η̃ with the integration. We do not know what value should be
assigned to (6.13). As a consequence the additional piece in RHS of (6.9)cannot be assigned an
unambiguous value without anad hocprescription.

With anad hocprescription we can still obtain a finite result. If, for instance, we first multiply
η̃ by the result of the integration and subsequently applye−η̃∂η̃ we obtain−2β , whereβ is the
number introduced in [2], see also sec.2 above. This result is the same as the one obtained by [3].
But one should not forget that it is prescription-dependent. We remark, in addition, that the term
(6.18) appears in the RHS of eq.(6.9) together with〈ψu,εψu,εψu,ε〉. The latter is a UV divergent
term (in [4] it is even gauge-dependent) and needs a UV subtraction, which, we recall, carries some
arbitrariness into the problem. For instance, one could choose the UV subtraction in such a way as
to kill the contribution of−2β altogether and there would be no violation of the EOM. Therefore
it is not even clear what the would-be violation of the EOM means.

The ambiguity intrinsic in this problem reminds us of the discussion after eq.(4.10) in sec. 3.
There, by integrating a vanishing distribution over a non test function, we could obtain a nonva-
nishing result. This is no accident. The nonvanishing of the second term in the RHS of (6.9) is
analogous. The string fielde−ε∂ε ε

K+φu+ε (φu−δφu) plays the role of the vanishing distribution and
ψu,ε the role of the singular test function. The only difference here is that the singularity comes
from the IR, because of the inversion of roles introduced by the Schwinger representation. In this
regard we can be more precise. If we strip (6.10) of theε factor in the numerator, what remains
represents the string field 1

K+φu+ε (φu−δφu) contracted with itself, which can be interpreted as the
‘norm’ square of this string field, in the limitε → 0. Well, the above results tell us that this ‘norm’
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is infinite. It is this infinity that multiplied by the stripped factorε allows us to obtain the above
finite result. This clearly confirms the singular nature ofψu,ε as a test state.

It is instead possible to derive a prescription-independent (and subtraction-independent) result,
even taking into account the spurious term, provided one proceeds in another way. Let us rewrite
Φε

0, eq. (1.24), using the new representation:Φ(ε,ε) = ψu,ε −ψε
u , whereψε

u , in theε → 0 limit, is
the tachyon vacuum solution defined in [2]. We get

Qψu,ε = −ψu,εψu,ε +e−ε∂ε

(

ε
(K +φu + ε)

(φu−δφu)c∂c

)

Qψε
u = −ψε

uψε
u (6.19)

QΦ(ε,ε) = −Φ(ε,ε)Φ(ε,ε)+e−ε∂ε

(

ε
(K +φu + ε)

(φu−δφu)c∂c

)

whereQΦ = QΦ+ψε
uΦ+Φψε

u . Moreover

−〈Φ(ε,ε)QΦ(ε,ε)〉 = 〈Φ(ε,ε)Φ(ε,ε)Φ(ε,ε)〉 (6.20)

+〈Φ(ε,ε)e−ε∂ε

(

ε
(K +φu + ε)

(φu−δφu)c∂c

)

〉

If we use the just defined representation, the second term in the RHS equals

e−ε∂ε 〈ψu,ε

(

ε
(K +φu + ε)

(φu−δφu)c∂c

)

〉−e−ε∂ε 〈ψε
u

(

ε
(K +φu + ε)

(φu−δφu)c∂c

)

〉

= −2β −e−ε∂ε 〈 1
(K +φu + ε)

(φu + ε −δφu)Bc∂c
ε

(K +φu + ε)
(φu−δφu)c∂c〉

= −2β −e−ε∂ε 〈 1
(K +φu + ε)

(φu−δφu)Bc∂c
ε

(K +φu + ε)
(φu−δφu)c∂c〉

−e−ε∂ε 〈 ε
(K +φu + ε)

Bc∂c
ε

(K +φu + ε)
(φu−δφu)c∂c〉 (6.21)

In (6.21) there is no need of UV subtractions. The last two terms in the RHS equal, respectively,

e−ε∂ε 〈 1
(K +φu + ε)

(φu−δφu)Bc∂c
ε

(K +φu + ε)
(φu−δφu)c∂c〉 (6.22)

= e−ε∂ε

(

ε
∫ ∞

0
dt1dt2 e−εt2−εt1G (t1, t2)u

2g(uT)
{(

− ∂uTg(uT)

g(uT)

)2
+2G2

2uT(
2πt1
T

)
}

)

= e−η̃∂η̃

(

η̃
∫ ∞

0
dss2

∫ 1

0
dxE (x) e−T(ε(1−x)+εx)g(s)

{(

− ∂sg(s)
g(s)

)2
+

1
2

G2
s(2πx)

}

)

= e−η̃∂η̃

(

η̃
∫ ∞

0
dss2

∫ 1

0
dx e−η̃s

E (1−x) esε−ε
2u xg(s)

{(

− ∂sg(s)
g(s)

)2
+

1
2

G2
s(2πx)

}

)

and

e−ε∂ε 〈 ε
(K +φu + ε)

Bc∂c
ε

(K +φu + ε)
(φu−δφu)c∂c〉 (6.23)

= e−ε∂ε

(

εε
∫ ∞

0
dt1dt2 e−εt2−εt1G (t1, t2)

u
t1 + t2

∂ug(uT)

)

= e−ε∂ε

(

εε
∫ ∞

0
dT T

∫ 1

0
dx e−T(ε(1−x)+εx)

E (x)u∂ug(uT)

)

= e−η̃∂η̃

(

η̃
ε
2u

∫ ∞

0
dss2 e−η̃s

∫ 1

0
dxE (1−x) esε−ε

2u x∂sg(s)

)
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As we have learnt in section 2 these quantities must be evaluated in the limitε → 0. We are by now
very familiar with this type of integrals and can easily come to the conclusion that both angular
integrations are finite even without theesε−ε

2u x factors so that in the limitε,ε → 0 the integration is
continuous inε,ε and such factors can be dropped. Thus, using always the same representation,
the former integral is just−2β . The latter is the same as eq.(4.43) of [3]. It is convergent both in
the UV and the IR.

So we find

lim
ε→0

〈Φ(ε,ε)e−ε∂ε

(

ε
(K +φu + ε)

(φu−δφu)c∂c

)

〉 = −2β +2β −0 = 0

This is a prescription-independent (and subtraction-independent) result, the reason being that the
overall s integrand has, in the limitε → 0, the right convergent behaviour for larges in order to
guarantee continuity inε also atε = 0‖. We deduce thatthis is the right way to compute the lump
energy, and, as by now should be obvious,the spurious term does not contribute to it.

The termΓ(ε) ≡ e−ε∂ε ε
K+φu+ε (φu − δφu)c∂c in the RHS of (6.20) is clearly similar to the

spurious terms considered in connection with the solution to the Einstein EOM in section 3. It
violates the principle of continuity and (as a natural consequence) it is ambiguous. However when,
in spite of this, it is taken into account in our calculation of the energy outlined inthe introduction,
it yields a (non-ambiguous) vanishing contribution, as we have just shown, because the integral
it is inserted in is convergent (even without thee−η̃s factor). When inserted into non-convergent
integrals, in the limitε → 0 it gives rise to an ambiguous term, see (6.13) above. In a well-defined
setting, provided by distribution theory, the nature of this term is clear: it is a spurious term and
should notbe taken into account. In the language of distribution theory,φ ε

u andψu,ε are not good
test states because of their asymptotic behaviors, but their difference is.

7. Good test string fields

So far we have seen few example of good test states: one is the state defined implicitly by
eq.(6.4), another is in the second line of eq.(6.20) and others, possibly, inthe discussion of the
CSO. A question one might ask is whether there are enough good test statesin the theory. This is
connected with the problem of Fock space states. It is customary in SFT to verify a string field’s
properties by contracting it with Fock space states, the latter being considered a large enough set
of states (a completeness). The question of whetherΓ(ε) = e−ε∂ε ε

K+φu+ε (φu−δφu)c∂c when con-
tracted with a large enough set of states vanishes must be formulated in the appropriate way. These
states cannot be ‘naked’ Fock space (see some examples of them in [3])because such statesare not
good test states. Once again it is worth recalling that if we contract a formally vanishing distribu-
tion with a non-test state we can get something nonvanishing. First of all the states we are looking
for must be such that the resulting contractions withΓ(ε) be nonsingular (with respect to singular-
ities due to collapsing points). But, especially, they must be characterized byintegrable behaviour
in the UV and, ignoring the overalle−εt factor, in the IR. It is in fact self-evident thatall the states
with such properties annihilateΓ(ε). The only possibility of getting a nonzero result is linked, as

‖What happens here is that we have the difference of two integrals which are divergent (without thee−η̃s) but the
divergences cancel each other in the limitε → 0.
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usual, to correlators characterized by IR linearly divergent integrals (without the exponentiale−εt).
The question we have to ask is whether there are ‘enough’ such states. We would like to show in
the sequel that they are plentiful.

Consider states created by multiple products of the factorH(φu,ε) = 1
K+φu+ε (φu− δφu) and

contract them withΓ(ε). More precisely, let us define

Ψn(φu,ε) = H(φu,ε)n−1Bc∂cH(φu,ε)Bc∂cB, n≥ 2 (7.1)

Contracting withΓ(ε): 〈Ψn(φu,ε),Γ(ε)〉, we obtain a correlator whose IR and UV behaviour
(before thee−ε∂ε ε operator is applied) is not hard to guess. The correlators take the form

∫ ∞

0
dssne−η̃sg(s)

∫ n

∏
i=1

dxi E

(

(

−∂g(s)
g(s)

)n+1

+ . . .+

(

−∂g(s)
g(s)

)n−k+1

Gk
s + . . .+Gn+1

s

)

(7.2)

where the notation is the same as in section 1.1 (s= 2uT), but we have tried to make it as compact
as possible. The angular variablesxi have been dropped inE andGs (see, for instance, (1.19) where
they are explicitly written down). Using the explicit form ofGs (1.20), expanding the latter with
the binomial formula and integrating over the angular variables, one gets

∫ n

∏
i=1

dxi EGk
s =

k

∑
l=0

1
sk−l ∑

n1,...,nl

Pl (n1, . . . ,nl )

Ql (n1, . . . ,nl )

l

∏
i=1

1
pi(n1, . . . ,nl )+s

(7.3)

the labell counts the number of cosine factors in each term. Hereni are positive integral labels
which come from the discrete summation inGs; pi(n1, . . . ,nl ) are polynomials linear inni . Next,
Pl andQl are polynomials inni which come from the integration in the angular variables. Every
integration inxi increases by 1 the difference in the degree ofQl andPl , so that generically degQl −
degPl = n. But in some subcases the integration over angular variables give rise to Kronecker deltas
among the indices, which may reduce the degree ofQl . So actually the relation valid in all cases is
degQl ≥ degPl , but one has to take into account that the number of angular variables to besummed
over decreases accordingly.

We are now in the condition to analyze the UV behaviour of (7.2). Let us consider, for instance,
the first piece

∼
∫ ∞

0
dse−η̃ssng(

s
2
)

(

∂sg( s
2)

g( s
2)

)n+1

(7.4)

Since in the UVg( s
2) ≈ 1√

s, it is easy to see that the UV behaviour of the overall integrand is

∼ s−
3
2 , independently ofn. As for the other terms, let us consider in the RHS of (7.3) the factor that

multiplies 1
sk−l (for l ≥ 2). Settings= 0, the summation overn1, . . . ,nl−1 is always convergent, so

that the UV behaviour of each term in the summation is given by the factor1
sk−l , with 2≤ l ≤ k. It

follows that the most UV divergent term corresponds tol = 0,∼ 1
sk . Since in (7.2) this is multiplied

by

sng(
s
2
)

(

−∂g( s
2)

g( s
2)

)n−k+1

(7.5)
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we see that the UV behaviour of the generic term in (7.2) is at most as singular as∼ s−
3
2 . In

conclusion the statesΨn, when contracted withΓ(ε), give rise to the same kind of UV singularity
∼ s−

3
2 . Now, for any two such states, sayΨn andΨn′ , we can form a suitable combination such

that the UV singularity cancels. In this way we generate infinite many states, say Φn, which, when
contracted withΓ(ε), give rise to UV convergent correlators.

Let us consider next the IR properties (s≫ 1). All the correlators contain the factore−η̃s which
renders them IR convergent, but we have learnt that the crucial IR properties (in the limitε → 0)
are obtained by ignoring this exponential factor. So, in analyzing the IR properties we will ignore
this factor. The first term (7.4) is very strongly convergent in the IR, because∂sg( s

2) ≈ 1
s2 , while

g( s
2)→ 1. For the remaining terms let us consider in the RHS of (7.3) the factor that multiplies 1

sk−l

(for l ≥ 2). To estimate the IR behaviour it is very important to know the degree difference between
the polynomialsQl andPl . Above we said that this difference is always nonnegative. In principle
it could vanish, but from the example withn = 2, see [2], we know that there are cancellations and
that in fact the difference in degree is at least 2. If this is so in general, we can conclude that the IR
behaviour of the summation in the RHS of (7.3) with fixedl is∼ 1

sl . However, in order to prove such
cancellations, one would have to do detailed calculations, which we wish to avoid here. So we will
take the pessimistic point of view and assume that, at least for some of the terms,degQl = degPl

(in which case there remains only one angular integration). In this case the IR behaviour of the
corresponding term cannot decrease faster than∼ 1

sl−1 . This has to be multiplied by∼ 1
sk−l and by

the IR behaviour of (7.5). This means that the least convergent term with fixedk in(7.3) behaves
as∼ 1

sn−k+1 . Sincek ≤ n+1, we see that in the worst hypothesis in the integral (7.2) there can be
linearly divergent terms, before thee−ε∂ε ε operator is applied. If this is so the UV convergingΦn

states are not good test states. However we can repeat for the IR singularities what we have done
for the UV ones. Taking suitable differences of theΦn’s (this requires a two steps process, first for
the linear and then for the logarithmic IR singularities∗∗), we can create an infinite set of states,
Ωn, which, when contracted withΓ(ε), yield, before the application ofe−ε∂ε ε, a finite result. Upon
applyinge−ε∂ε ε they of course vanish. These are therefore good (and nontrivial) test states and, on
applyinge−ε∂ε ε, they give 0, i.e. suchΩn annihilateΓ(ε).

We remark that in eq.(7.1) the presence ofε in H(φu,ε) is not essential, because in estimating
the IR behaviour we have not counted thee−η̃s factor. Using 1

K+φu
everywhere instead of 1

K+φu+ε ,
would lead to the same results. This means that contracting theΩn states among themselves (keep-
ing the same ghost factor) leads to finite correlatorswith or without ε. This, together with the
property of annihilatingΓ(ε), is a distinctive feature of good test states.

TheΩn(φu,0) are however only a first set of good test states. One can envisage a manifold of
other such states. Let us briefly describe them, without going into too many details. For instance,
let us start again from (7.1) and replace the firstH(φu,0) factor with 1

K+φu+ε uX2k (the termδφ
can be dropped). In this way we obtain a new state depending on a new integral labelk. However
replacingX2 with X2k is a too rough operation which renders the calculations unwieldy, becauseit
breaks the covariance with respect to the rescalingz→ z

t . It is rather easy to remedy by studying

∗∗In the, so far not met, case where a logs asymptotic contribution appears in the integrand one would need a three
step subtraction process.
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the conformal transformation ofX2k. The following corrected replacements will do:

uX2 → u
(

X2 +2(logu+ γ)
)

= φu ≡ φ (1)
u

uX4 → u
(

X4 +12(logu+ γ)X2 +12(logu+ γ)2)≡ φ (2)
u

. . .

uX2k → u

(

k

∑
i=0

(2k)!
(2k−2i)!i!

(logu+ γ)i X2k−2i

)

≡ φ (k)
u (7.6)

The role of the additional pieces on the RHS is to allow us to reconstruct the derivatives ofg(s) in
computing the correlators, as was done in [1].

Now let us denote byΨ(k)
n the n-th state (7.1) whereφu− δφu in the firstH(φu,0) factor is

replaced byφ (k)
u . Contracting it withΓ(ε) it is not hard to see that the term (7.4) will be replaced

by

∼
∫ ∞

0
dse−η̃ssng(

s
2
)

(

∂sg( s
2)

g( s
2)

)n+k

(7.7)

with analogous generalizations for the other terms. It is evident from (7.7)that the UV behaviour
becomes more singular with respect to (7.4) while the IR one becomes more convergent. This is a
general property of all the terms in the correlator. Thus fixingk we will have a definite UV singu-
larity, the same up to a multiplicative factor for allΨ(k)

n . Therefore by combining a finite number of
them we can eliminate the UV singularity and obtain another infinite set of UV convergent states
Φ(k)

n for anyk. In general they will be IR convergent (IR subtractions may be necessary fork = 2).
It goes without saying that the previous construction can be further generalized by replacing

in (7.1) more than oneX2 factors with higher powersX2k.
Let us end this section by suggesting another set of states that may be usedin order to construct

good test states with a subtraction procedure as above. Let us considerstates containing a certain
number of derivatives ofφu

Ψn,k(φu,ε) =
1

(K +φu + ε)

1
(2u)k ∂ kφu Ψn−1(φu,ε) (7.8)

By contracting them withΓ(ε) we obtain correlators that, before applyinge−ε∂ε ε, are defined
by integrands in which the UV singularities are worse (and depend onk), while the IR seem to
improve by a factor∼ 1

sk−1 with respect toΨn. However the derivative∂ k, hitting the propagator
Gs, increases the degree ofPl . The two effects seem eventually to compensate each other, but
the exact IR asymptotic behaviour is more difficult to analyze in this case, unlike the previous
examples. For this reason we leave these states as a suggestion to be analyzed in the future.

8. Spurious terms: comments and conclusions

Let us summarize the results we have found. We think we have abundantly shown in section 6
that the termΓ(ε)≡ e−ε∂ε ε

K+φu+ε (φu−δφu)c∂c in (6.4,6.19), when inserted in correlators, is either
identically vanishing or ambiguous. The first case occurs when it is inserted in a regular correlator,
i.e. in a correlator which is convergent even when the factore−εt coming from the Schwinger
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representation of 1
K+φu+ε is replaced by 1, which implies that the resulting integral (with thee−εt

factor) is continuous atε = 0). This shows that our calculation of the energy in [2, 4] is not affected
by the termΓ(ε), as one might have feared (see section 3). That also means that the Schwinger
representation of an inverse is correct, provided it is used in the correct way.

The second case is when the correlator is at least linearly divergent in the IR (meaning that the
correlator is divergent when the factore−εt coming from the Schwinger representation of1K+φu+ε is
removed, which implies that the resulting integral (with thee−εt factor) is discontinuous atε = 0) :
the typical situation is represented by eq.(6.13). In this case we need anad hocprescription in order
to extract a finite value from the integral, finite value which is originated, as wehave shown, by
multiplying a zero by∞. It is clear that this is not the right way to compute the energy of anything
(neither solutions, nor non-solutions)

The formal presence of the termΩ∞
u in the RHS of (3.8) or ofe−ε∂ε ε

K+φu+ε in the RHS of (6.1)
is simply the spy of the fact that we are evaluating the identity (3.2) on a discontinuous correlator.
If the correlator’s integrand is convergent enough any such addition as 1

K+φu
Ω∞

u is irrelevant and
1

K+φu
is correctly represented by (3.1). The appearance ofΩ∞

u or e−ε∂ε ε
K+φu+ε becomes a pathology

of the Schwinger representation which may show up if the problem is not formulated in the proper
setting. The appropriate setting is that of distribution theory. In this framework the spurious terms
are identically vanishing and there are no violations of the equation of motion.

All these conclusions are based on explicit evaluations and are unquestionable. This said,
it would be nice to have a general framework for these problems, a formalization of the rules
and procedures we have used above that can be applied in general. Atthe moment, to our best
knowledge, the latter does not exist. The analogy with the case illustrated in section 4 has been
instrumental in understanding the nature of the lump solution problem; the treatment there was
based on the theory of distributions. We do not seem to have an analogoustheory in the case
of string fields, but no doubt this is the right instrument we need in order to treat the singularity
problems inherent in the search for solutions in SFT.

We cannot hope to solve this problem here. But we think we have clarified the issue at least on
one example (the relevant example for our present purposes), that isΓ(ε). An ordinary distribution
is just a linear continuous functional on a space of test functions. We canheuristically extend this
definition to string fields. A string field distribution is a linear functional on the space of test string
fields. In the previous section we have introduced a large set of test states. They are well defined
and contain as a particular case the good test states mentioned before. When Γ(ε) is evaluated
on them it gives 0. Therefore in distribution theory this expression is identically vanishing. Said
otherwise, it is correct to identifyΓ(ε) with the zero in distribution theory.

Invoking distribution theory in order to get rid of the spurious terms in the equation of motion
(and elsewhere) may seemad hocat first sight, but the interpretation in terms of distribution theory
provides a consistent regularization we need in order to make sense of ambiguities. As we have
pointed out in section 4, this is a familiar procedure in theoretical physics in order to carefully define
various physical solutions. Apart from the example in section 4, brane solutions in supergravity are
often characterized by a metric that explodes when we approach the brane location in the transverse
direction, as it depends on some negative power ofr, r being the transverse distance. However the
relevant physical quantities, like the energy density, are finite. There is only one way to give an
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unambiguous meaning to such solutions: it is to interpret them in the framework of distribution
theory.

A formalization of the idea of string field distribution (beyond the example ofΓ(ε) studied in
detail above) is possible, but, as we pointed out above, to our best knowledge the relevant formalism
has not been developed so far. Perhaps the right mathematical setting is offered by the vector
distribution theory. The theory of vector distributions was developed by Laurent Schwartz, [24].
The basic objects are a topological vector space and the space of test functions. A distributions is
a linear continuous map from the latter to the former. More practically we can think of test vector
functions as tensor products of ordinary scalar test functions by vectors and a vector distribution
as a space dependent vector, while the evaluation on a vector test function is the ordinary scalar
product followed by an ordinary integration. In our case the expression 1

K+φu
should be regarded

as a vector distribution. It goes without saying that much work has to be done in order to clarify
definitions and show applicability of such formalism in the context of SFT.
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