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Parametric Solution in Cosmology

1. Introduction

The Belgium Priest G. Lemaitre, in 1933, was the first to study spherically symmetric
distributions of matter without pressure in a non-static, inhomogeneous cosmological model [1].
For such a model, being dust sourced, one has the Lemaitre-Tolman-Bondi metric (for spherical
coordinates (r,θ ,φ))

ds2 = dt2−

(
∂R
∂ r

)2

1+2E(r)
dr2−R(t,r)2 (dθ

2 + sin2
θdφ

2) . (1.1)

Here E(r) is an arbitrary function (a local curvature function) and R(t,r) is both temporal and spa-
tially dependent. For Ṙ = ∂R

∂ t , the dynamical equation (or a first integral of the Einstein equations)

Ṙ2 = 2E(r)+
2M(r)

R
+

Λ

3
R2 (1.2)

holds, where M(r) is an arbitrary (mass) function and where Λ is a cosmological constant. Equa-
tion (1.2), which exhibits an energy interpretation of E(r) as well, was solved parametrically by
Lemaitre [1] in terms of the Weierstrass elliptic phi-function, sigma function, and zeta function.
Special case solutions were also obtained by R. Tolman, H. Bondi, B. Datta, as referenced in the
paper of G. Omer [2], for example.

More generally the present paper, which is a continuation of work initiated in [3], concerns a
parametric solution of the nonlinear differential equation

ẏ(t)2 =
f (y(t))
y(t)2n , (1.3)

with applications, where f (x) = a0x4+4a1x3+6a2x2+4a3x+a4 is a quartic polynomial and n≥ 0
is a fixed whole number. Even the case n = 1 is of some special interest as it includes equation
(1.2), for example. Namely, for n = 1 we write (1.3) as

ẏ(t)2 = By(t)2 +Ey(t)−K +
A

y(t)
+

D
y(t)2 , (1.4)

which is (1.2) for E = 0,D = 0. The case n = 2, for example, is of relevance in a discussion of
a Bianchi V cosmological model – as we shall see. Interestingly enough, similar to Lemaitre’s
solution of (1.2), a solution to (1.3) is also expressed in terms of Weierstrass’ phi, sigma, and zeta
functions – as we shall also see. Moreover, following Lemaitre, we also express our solution in
terms of theta functions (introduced by C. Jacobi in 1829) since the series for these functions are
known to converge quite rapidly and are therefore amenable to practical calculations.

An additional impetus for the present work is the nice paper of G. Krani-
otis and S. Whitehouse [4] which presents the most general exact solution of inhomogeneous rela-
tivistic cosmology, based on the Szekeres-Szafron family of metrics [5, 6] (also see [7])

ds2 = dt2− e2β (t,x,y,r) (dx2 +dy2)− e2α(t,x,y,r)dr2, (1.5)

2



P
o
S
(
R
i
o
 
d
e
 
J
a
n
e
i
r
o
 
2
0
1
2
)
0
0
7

Parametric Solution in Cosmology

where again pressureless matter is assumed, and the condition ∂β

∂ r 6= 0 is imposed. The other case
∂β

∂ r = 0 provides for a family that generalizes Friedmann and Kantowski-Sachs models [8]. The
functions α,β , by way of the Einstein field equations, assume the form

eβ (t,x,y,r) = Φ(t,r)eν(r,x,y),

(1.6)

eα(t,x,y,r) = h(r)Φ(t,r)
∂β

∂ r
(t,x,y,r),

where ν(r,x,y) has the form

e−ν(r,x,y) = A(r)(x2 + y2)+2B(r)x+2C(r)y+D(r) (1.7)

and where Φ(t,r) satisfies

Φ(t,r)
∂β

∂ r
(t,x,y,r) =

∂Φ

∂ r
(t,r)+Φ(t,r)

∂ν

∂ r
(r,x,y),

4
[
A(r)D(r)−B(r)2−C(r)2]= h(r)−2 +K(r), (1.8)(
∂Φ

∂ t

)2

(t,r) =−K(r)+
2M(r)
Φ(t,r)

+
Λ

3
Φ(t,r)2.

Thus the third equation in (1.8), which (mathematically) is equation (1.2) is (again) equation (1.4)
with E = 0,D = 0.

Solutions of (1.8) (in both cases ∂β

∂ r 6= 0 and ∂β

∂ r = 0) were also found by J. Barrow and J.
Stein-Schabes [9], for example. Also compare the earlier paper [10] of G. Covarrubias. The 1997
text [7] by A. Krasinski can be consulted for a rather comprehensive analysis of inhomogeneous
cosmological models. This is supplemented by the 2011 Review Article by K. Bolejko, M.-Noëlle
Celerier, and A. Krasinski [11] – the main thrust of which is a description of various cosmological
observations that are explainable by the models of Lemaitre-Tolman and Szekeres.

Part of our interest here is to extend portions of the Kraniotis-Whitehouse (K-W) paper [4].
For example: (i) We define and compute Hubble and deceleration parameters for our solution of
(1.4); the results are expressed in terms of the Weierstrass phi-function ℘(w) (ii) Whereas D in
(1.4) is zero in the K-W paper, we consider the case D 6= 0, which amounts to a constant electric
charge contribution to the third dynamical equation in (1.8). Here we find in the case of a vanishing
cosmological constant a new (non-parametrized) solution in terms of J. Lambert’s W-function. In
the literature this W -function is also called the product logarithm or the Omega function. Namely,
it is an inverse function, given a particular branch, of the function f (w) = wew (iii) We consider
briefly the zeros of ℘(w) in the general context of equation (1.4). In [4] an expression is derived
for the Hubble parameter in the de-Sitter phase (the inflationary scenario) at such a zero, where the
zeros are described there by the 1982 Eichler-Zagier formula [12]. There is, on the other hand,
a quite different, newer formula due to Duke-Imamoglu [13] which we present (for the record)
as it may be less familiar to Physicists (iv) We consider an automorphic (or modular) property
of our solution. Such a (deep) property is referred to (but not explicated) in the paper [14] of E.
Abdella and L. A. Correa-Borbonet, in the special case of a Friedmann universe – in connection
with conformal field theory on a torus and J. Cardy’s entropy formula – the torus being constructed

3
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Parametric Solution in Cosmology

from a ratio of the two periods of the Weierstrass function ℘(w). These authors also take the K-W
paper as impetus for their work.

Apart from the K-W paper and an application of the solution of (1.3) to Bianchi V cosmology,
we find in addition (v) a family of new solutions for a Bianchi IX model in Lyra geometry. This
extends some initial work of G. Bag, B. Bhui, S. Das, and F. Rahaman [15]. (vi) Some details are
provided that indicate why the differential equation for the second moment I2(t) of a wave function
of the Gross-Pitaevskii equation is also an example of (1.4), with A = B = 0. Thus we can compute
this moment (for a stiff fluid model), which is essential for the dynamic correspondence set up in
[16, 17] between Friedmann-Lemaitre-Robertson-Walker (FLRW) and/or Bianchi I cosmology and
Bose-Einstein condensates – a correspondence which one may regard as between cosmology and
condensed matter – or (very generally) between a gravitational and a non-gravitational system.

Various examples are presented, together with 3 appendices, to assist in the navigation between
theory and application.

As is well-known, the concept of entropy in the arena of quantum statistical mechanics was
developed by John von Neumann. One of his co-authors, and a staff member of his electronic
computer project at the Institute of Advanced Studies at Princeton during the year 1952-1953 was
A. Edward (Eddie) Nussbaum, to whom this paper is dedicated. Professor Nussbaum was one of
the most influential teachers and a mentor to the second named author – who expresses herewith
his manifold appreciation for that influence and inspiration over the course of many years.

2. The Solution of (1.3) in Terms of Theta Functions

Associated with the polynomial f (x) in (1.3) are the invariants g2,g3 and the discriminant
∆ given by

g2
de f .
= a0a4−4a1a3 +3a2

2,

g3
de f .
= a0a2a4 +2a1a2a3−a3

2−a0a2
3−a2

1a4 =

∣∣∣∣∣∣∣
a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣∣ ,
∆

de f .
= g3

2−27g2
3. (2.1)

Let e1,e2,e3 denote the roots of 4x3−g2x−g3 = 0 and fix a root x0 of f (x) = 0, which we assume
is non-repeated. If the leading coefficient a0 of f (x) is indeed non-zero, then x0 is non-repeated⇔
∆ 6= 0, as shown in chapter 3 of [18], for example. In [3] we have derived the following parametric
solution of equation (1.3), where we refer to Appendix A following section 4 of this paper for a
review of the definitions of the classical Weierstrass functions ℘(w) =℘(w;ω1,ω2),σ(w), and
ζ (w):

y = x0 +
f ′(x0)

4 [℘(w+ c)− f ′′(x0)/24]
, (2.2)

t =
∫ (

x0 +
f ′(x0)

4 [℘(w+ c)− f ′′(x0)/24]

)n

dw+δ , (2.3)

4
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for integration constants c,δ . Moreover, for a choice of any w0 with ℘(w0) = f ′′(x0)/24, ℘(w0) 6=
e1,e2,e3 we have for n = 1,2 respectively in (2.3)

t = x0w+
f ′(x0)

4℘′(w0)

[
log

σ(w+ c−w0)

σ(w+ c+w0)
+2(w+ c)ζ (w0)

]
+δ , (2.4)

t = x2
0w+

[
− x0 f ′(x0)

2℘′(w0)
+

f ′(x0)
2℘′′(w0)

16℘′(w0)3

]
log

σ(w+ c+w0)

σ(w+ c−w0)

− f ′(x0)
2

16℘′(w0)2 [ζ (w+ c+w0)+ζ (w+ c−w0)] (2.5)

+(w+ c)
(

x0 f ′(x0)

℘′(w0)
ζ (w0)−

f ′(x0)
2

16

[
2℘(w0)

℘′(w0)2 +
2℘′′(w0)ζ (w0)

℘′(w0)3

])
+δ ,

by formulas 1037.06, 1037.11, respectively, in [19]. In case n = 0, one has the (non-parametrized)
Biermann-Weierstrass solution [20, 21, 22]

y(t) = y(0)+

[
f (y(0))1/2℘′(t)+ f ′(y(0))

2

(
℘(t)− f ′′(y(0))

24

)
+ f (y(0)) f ′′′′(y(0))

24

]
2
[
℘(t)− f ′′(y(0))

24

]2
− f (y(0)) f ′′′′(y(0))

48

(2.6)

of (1.3). Here the periods ω1,ω2 of ℘(t) are constructed from the invariants g2,g3 of f (x) in (2.1),
according to Appendix A. Formula (2.6) simplifies quite a bit in case y(0) is a root of f (x), which
is the case if, for example, the boundary condition ẏ(0) = 0 is imposed:

y(t) = y(0)+
f ′(y(0))

4
[
℘(t)− f ′′(y(0))

24

] , (2.7)

which is reminiscent of equation (2.2). One can replace y(0) in (2.7) by any non-repeated root
x0 of f (x) in fact. We specifically choose the order of the roots e j, j = 1,2,3, by setting e j =

℘(ω j/2;ω1,ω2), where ω3
de f .
= ω1 +ω2.

We proceed now to a theta function expression of the solution – the importance of which was
indicated in the introduction. There is, unfortunately, no uniformity in the definitions/notation of
theta functions as indeed considerable variations exist across various texts. Here we shall employ,
specifically, the definitions and notation of the Chandrasekharan text [18], together with certain
results therein: For a complex number z ∈ C and τ ∈ the upper 1

2 -plane Π+ (i.e. Imτ > 0), and

q
de f .
= eπiτ

θ(z,τ)
de f .
= 2

∞

∑
n=0

(−1)nq(n+
1
2 )

2
sin((2n+1)πz),

θ1(z,τ)
de f .
= 2

∞

∑
n=0

q(n+
1
2 )

2
cos((2n+1)πz),

(2.8)

θ2(z,τ)
de f .
= 1+2

∞

∑
n=1

(−1)nqn2
cos(2πnz),

θ3(z,τ)
de f .
= 1+2

∞

∑
n=1

qn2
cos(2πnz).

5
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Parametric Solution in Cosmology

For τ fixed, these are entire functions of z. Obviously θ(z,τ) is an odd function of z and the θ j(z,τ),
j = 1,2,3, are even functions of z.

For the choice τ = ω2/ω1 ∈ Π+, the theta function expression of ℘(w) = ℘(w;ω1,ω2) is
given by

℘(w) = e j +
1

w2
1

[
θ ′(0,τ)
θ j(0,τ)

]2
θ j

(
w
ω1
,τ
)

θ

(
w
ω1
,τ
)
2

(2.9)

for j = 1,2,3, where θ ′(z,τ) denotes partial differentiation with respect to z. Similarly there are
theta function expressions of the sigma and zeta functions given by

σ(w) =
ω1

θ ′(0,τ)
eη1w2/ω1θ

(
w
ω1

,τ

)
,

(2.10)

ζ (w)
de f .
=

σ ′(w)
σ(w)

∴
=

2η1w
ω1

+
1

ω1

θ ′
(

w
ω1
,τ
)

θ

(
w
ω1
,τ
) ,

for τ
de f .
= ω2/ω1, η1

de f .
= ζ (ω1/2) . In particular

σ(u−w0)

σ(u+w0)
= e−4η1w0u/ω1

θ

(
u−w0

ω1
,τ
)

θ

(
u+w0

ω1
,τ
) , (2.11)

which with (2.10) gives

log
σ(w+ c−w0)

σ(w+ c+w0)
+2(w+ c)ζ (w0) =

(2.12)

log
θ

(
w+c−w0

ω1
,τ
)

θ

(
w+c+w0

ω1
,τ
) +

2(w+ c)θ ′
(

w0
ω1
,τ
)

ω1θ

(
w0
ω1
,τ
) ,

where in (2.12) the constant η1 no longer appears. Strictly speaking, in the argument for (2.12)
one has log(z1z2) = logz1 + logz2 +2πiN, logez = z, for N ∈ {−1,0,1} ,−π < Im(z)≤ π , for the
principal branch of the logarithm. However we absorb the 2πiN into the integration constant δ in
(2.3). That is, in summary we can express the solution of equation (1.4) parametrically by y and t
in (2.2) and (2.4), or equivalently (using (2.9), (2.12)) by

y = x0 +
f ′(x0)

4

e j−
f ′′(x0)

24
+

1
ω2

1

[
θ ′(0,τ)
θ j(0,τ)

]2
θ j

(
w+c
ω1

,τ
)

θ

(
w+c
ω1

,τ
)
2

−1

, (2.13)

t = x0w+
f ′(x0)

4℘′(w0)

log
θ

(
w+c−w0

ω1
,τ
)

θ

(
w+c+w0

ω1
,τ
) +

2(w+ c)θ ′
(

w0
ω1
,τ
)

ω1θ

(
w0
ω1
,τ
)

+δ , (2.14)

6
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for j = 1,2,3, τ = ω2/ω1, x0 = a non-repeated root of f (x) = 0, and for the theta functions defined
in (2.8); the e j, w0 are defined following (2.1) and (2.3). Here for n = 1 we have f (x) = Bx4 +

Ex3−Kx2 +Ax+D, in accordance with the notation in (1.4).

Equation (2.13) for y (or equivalently equation (2.2)) holds independently of whatever value
n assumes. Only the expression for t (as a function of w) depends on n, by (2.3). For n = 2, for
example, t is already given by formula (2.5), which we also express in terms of theta functions as
follows:

t = x2
0w+

[
−x0 f ′(x0)

2℘′(w0)
+

f ′(x0)
2℘′′(w0)

16℘′(w0)3

]4η1
w0

ω1
(w+ c)+ log

θ

(
w+c+w0

ω1
,τ
)

θ

(
w+c−w0

ω1
,τ
)


(2.15)

− f ′(x0)
2

16ω1℘′(w0)2

4η1(w+ c)+
θ ′
(

w+c+w0
ω1

,τ
)

θ

(
w+c+w0

ω1
,τ
) +

θ ′
(

w+c−w0
ω1

,τ
)

θ

(
w+c−w0

ω1
,τ
)


+(w+ c)
(

x0 f ′(x0)

℘′(w0)
ζ (w0)−

f ′(x0)
2

16

[
2℘(w0)

℘′(w0)2 +
2℘′′(w0)ζ (w0)

℘′(w0)3

])
+δ ,

by (2.10) and (2.11), where (again) η1
de f .
= ζ (ω1/2).

Although the cases n = 0,1,2 treated here are sufficient for the physical applications we have
in mind, one can in principle carry out the integration in (2.3) for n ≥ 3 by using the recursion
formula 1037.12 on page 312 of [19].

Naturally associated with the solution (2.2), (2.4) of equation (1.4) are the Hubble and decel-
eration parameters

H(t)
de f .
=

ẏ(t)
y(t)

, q(t)
de f .
= − ÿ(t)y(t)

ẏ(t)
, (2.16)

respectively. Using that (2.4) was derived by integration of (2.3) – i.e.

dt
dw

= x0 +
f ′(x0)

4 [℘(w+ c)− f ′′(x0)/24]
(2.17)

for n = 1, one applies parametric differentiation to deduce the following formulas:

H(t) =
−4 f ′(x0)℘

′(w+ c)(
4x0

[
℘(w+ c)− f ′′(x0)

24

]
+ f ′(x0)

)2 ,

q(t) = (2.18)℘′′(w+ c)
[
℘(w+ c)− f ′′(x0)

24

]
℘′(w+ c)2 −2

4x0

[
℘(w+ c)− f ′′(x0)

24

]
+ f ′(x0)

f ′(x0)

+1.

7
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Here f ′(x0) = 4Bx3
0 +3Ex2

0−2Kx0 +A, f ′′(x0)/24 = B
2 x2

0 +
E
4 x0− K

12 . These formulas simplify in
case x0 = 0 is a root of f (x) = 0 – say (for example) D = 0 in (1.4), the case considered in [4]:

H(t) =
−4℘′(w+ c)

f ′(0)
(2.19)

q(t) =
℘′′(w+ c) [℘(w+ c)− f ′′(0)/24]

℘′(w+ c)2 −1;

compare formulas (48) and (50) in [4]. Since ℘(z) satisfies the differential equation

℘
′(z)2 = 4℘(z)3−g2℘(z)−g3, (2.20)

one can use that ℘′′(w+ c) = 6℘(w+ c)2− g2/2 in formulas (2.18), (2.19). Note that a slight
misprint occurs in formula (46) of [4] for Ṙ(t). Namely, a minus sign is needed. Similarly formula
(65) should read ℘′(w0) =−i

√
g3.

We have assumed so far that the root x0 was non-repeated. For repeated roots, solutions of (1.3)
in fact are generally easier to obtain and they usually involve elementary, non-elliptic functions. As

an example, take f (x) = −4x4 + 2x2 + x/
√

2+ 1/16 which has x0
de f .
= −

√
2/4 as a repeated root:

(x−x0)
2 is a factor of f (x). Equation (1.3) (with n = 0) is u′(x)2 =−4u(x)4+2u(x)2+u(x)/

√
2+

1/16, which has elementary, non-elliptic solutions

u(x) = u∓(x;δ )
de f .
=

∓sin(x−δ )

2
√

2
[√

2± sin(x−δ )
] , (2.21)

as discussed in [3, 23], for example. One can “deform" the solution u+(x;0) to obtain a solution
u(x, t) of the modified Novikov-Veselov equation

ut = uxxx +24u2ux. (2.22)

Namely, one takes

u(x, t)
de f .
= u+(x+2t;0)

de f .
=

sin(x+2t)

2
√

2
[√

2− sin(x+2t)
] . (2.23)

Note that a solution of the differential equation

ẏ1(t)2 = y1(t)2 [B1 +E1y1(t)m−K1y1(t)2m +A1y1(t)3m +D1y1(t)4m] ,
(2.24)

where m 6= 0 is a fixed whole number, can be obtained from a solution y(t) of equation (1.4). For
this we set y(t) = y1(t)−m. Then for B = m2B1, E = m2E1, K = m2K1, A = m2A1, and D = m2D1,
equation (2.24) is transformed to equation (1.4).

8
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3. A Modular and Elliptic Property of the Solution of (1.3)

The phi-function is homogeneous of degree −2 in the sense that for any λ ∈ C−{0},
℘(λw;λω1,λω2) = λ−2℘(w;ω1,ω2). In particular for λ = ω

−1
1 and τ = ω2

ω1
∈ Π+ (as in (2.10))

℘(w;ω1,ω2) = ω
−2
1 ℘

(
w
ω1

;1;τ

)
, which means that the phi-function is determined by the special

phi-function ℘(w;1;τ) that we focus on here, and which we denote by ℘(w;τ) for an arbitrary
τ ∈Π+. ℘(w;τ) satisfies the wonderful modular property [24]

℘

(
w

cτ +d
;
aτ +b
cτ +d

)
= (cτ +d)2

℘(w;τ) (3.1)

for γ =

[
a b
c d

]
∈ SL(2,Z); i.e. a,b,c,d ∈ Z and detγ = 1. The elliptic (or quasi-periodicity)

property
℘(w+mτ +n;τ) =℘(w;τ) (3.2)

is also satisfied for m,n ∈ Z. The modular property is fundamental for the discussion in [14] re-
garding solutions of the Friedmann equation (in various settings such as that of a 4-dimensional
radiation dominated universe, for example) and connections to conformal field theory (CFT) on
a torus (defined by the modular parameter τ), and with some linkage to the Cardy entropy for-
mula. We offer a bit more on this later. Here ∆(1,τ) 6= 0 (see Appendix A) and τ depends on the
cosmological constant.

We illustrate how the modular property translates to a concrete modular property of the solu-
tion of equation (1.3). Thus we incorporate the dependence of the solution on τ and write y(w;τ)

for y in (2.2), where the choice of lattice in Appendix A is L = L (1,τ):

y(w;τ) = x0 +
f ′(x0)

4 [℘(w;τ)− f ′′(x0)/24]
. (3.3)

Here we have chosen the integration constant c in (2.2) to be zero. Then for γ =

[
a b
c d

]
∈ SL(2,Z)

with γ · τ de f .
= aτ+b

cτ+d

y
(

w
cτ +d

;γ · τ
)
= x0 +

f ′(x0)

4
[
℘
( w

cτ+d ;γ · τ
)
− f ′′(x0)

24

] . (3.4)

The idea now is simple: In (3.4), apply (3.1) and then use (3.3) to express ℘(w;τ) in terms of
y(w;τ). The result is

y
(

w
cτ +d

;
aτ +b
cτ +d

)
= (3.5)

x0 +
f ′(x0)[y(w;τ)− x0]

f ′′(x0)
6 [(cτ +d)2−1] [y(w;τ)− x0]+ f ′(x0)(cτ +d)2

.

In addition to the modular property (3.5) of the solution (3.3), equation (3.2) provides for the (less
profound) elliptic property

y(w+mτ +n;τ) = y(w;τ) (3.6)

9
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for m,n ∈ Z.
If (again) x0 = 0 is a root, our formulas simplify. Suppose in fact, for example, that also

f ′′(0) = 0 which means that K = 0 in (1.4). Then equation (3.5) reduces to

y
(

w
cτ +d

;
aτ +b
cτ +d

)
= (cτ +d)−2y(w;τ), (3.7)

which also follows directly from (3.1), (3.3). The case K = 0 is discussed in section 5 of [4], where
a flat universe with non-zero cosmological constant is considered. One can’t help but note the
comparison of (3.7) with (3.1).

The authors in [14], seeking new connections between the Friedmann equation and Cardy
formula, set up the “chain of connections" (using their phase on page 5): Friedmann equation −→
Weierstrass equation −→ torus −→ CFT partition function Z(τ) −→ Cardy formula, where for

q
de f .
= e2πiτ

Z(τ) = trace qL0−c/24 = trace e−βH (3.8)

with c = a central charge, H = L0− c/24 a Hamiltonian corresponding to the Virasoro generator
L0, β =−2πiτ an inverse temperature, and with the Cardy entropy formula [25] given by

S = 2π

√
c
6

(
L0−

c
24

)
. (3.9)

Here L0 also denotes the eigenvalue of L0 and, for simplicity, the anti-holomorphic sector (which
involves τ) is not considered. As mentioned above τ depends on the cosmological constant Λ; it
also depends on the spacetime dimension.

We are positioned to mimic this chain of connections as follows. The Friedmann equation
is replaced, more generally, by equation (1.3). The Weierstrass equation (or solution) is given by

(3.3) (and by (2.3)). τ in (3.3) defines a corresponding complex torus T
de f .
= C/L (1,τ), which

(as is well known, based on (2.20)) is an elliptic curve parametrized by the phi-function and its
derivative. The remainder of the chain is as before, given by (3.8), (3.9).

John Cardy’s great insight was that the key property of modular invariance of CFT partition
functions was deeply consequential. In particular it lead to his asymptotic density of states formula
and hence to his entropy formula – (3.9) being a special case of the general formula that also
incorporates the non-holomorphic sector.

If we write (3.1), (3.2) as

℘

(
w

cτ +d
;
aτ +b
cτ +d

)
= e2πi j cw2

cτ+d (cτ +d)k
℘(w;τ),

(3.10)

℘(w+mτ +n;τ) = e−2πi j(m2τ+2mw)
℘(w;τ)

for j,k ∈ Z (namely for j = 0,k = 2), we see that ℘(w;τ) is a (meromorphic) Jacobi form of index
j = 0 and weight k = 2 [24]. Similarly, given (3.6), (3.7), we can regard y(w;τ) as a Jacobi form
of index 0 and weight −2. Strictly speaking, a growth condition at infinity is also imposed in the
definition of a Jacobi form (which we shall not have a concern with here) – a condition analogous
to that imposed in the definition of a modular form [26]. The elliptic genus of an N = (2,2) Super
CFT with central charge c = 6 j is, for example, a Jacobi form of index j and weight k = 0.

10
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4. Some Applications

We present some examples to provide further clarity and applications of the formulas in
section 2.

Example 1. Among various modifications of Einstein’s GR was one introduced by G. Lyra in
1951 in which a gauge function was introduced to affect Riemannian geometry that rendered it a
generalization of Weyl’s 1918 geometry. More specifically, the purpose of the gauge function was
to remove the non-integrability of vector length under parallel transport. Many cosmological and
string models based on Lyra geometry have been studied. In particular the Bianchi IX model in
this geometry was studied in [15]. Here, for the metric

ds2 = −dt2 +a(t)2dx2 +b(t)2dy2 +
[
b(t)2 sin2 y+a(t)2 cos2 y

]
dz2

−2a(t)2 cosydxdz (4.1)

and a constant flat potential V (φ) = 2λ , the modified Einstein equations yield the relation φ̇ =

φ0/ab2 for an integration constant φ0, and the assumption a = bn leads moreover to the first integral

ḃ2 =
1

n2−1
− b2n−2

2(n2−n)
+D1b−2n−2, (4.2)

for n 6= 0,±1 and an integration constant D1. The authors in [15] found solutions of (4.2) only
for D1 = 0, n = 2, 1

2 ,
3
2 , and 3

4 . A solution for n = 2, D1 6= 0 (say D1 =
7
12 ) was found in [3]. We

indicate here how to construct an infinite family of solutions with ∆ 6= 0 corresponding to

D1 = D1(λ )
de f .
=

3λ 4 +4λ 3

12
,λ 6= 0,−1,−4

3
,
1±
√

2i
3

, (4.3)

where for λ = 1 we obtain the solution just mentioned, corresponding to D1 =
7
12 .

For n = 2, a = b2 and equation (4.2) is transformed to the equation

ȧ(t)2 =−a(t)2 +
4
3

a(t)+
4D1

a(t)2 , (4.4)

which is equation (1.4) for B = −1,E = 4
3 , K = 0, A = 0, D = 4D1. From (2.1), g2 = −4D1,

g3 = −4D1/9 = g2/9, and ∆ = −16D2
1
(
4D1 +

1
3

)
. ∆ = 0⇒ D1 = 0,− 1

12 , which for D1 = D1(λ )

in (4.3) means that λ = 0,−4
3 and 3λ 4 + 4λ 3 = −1. The latter equation is 0 = 3λ 4 + 4λ 3 + 1 =

(λ +1)2(3λ 2−2λ +1), which gives λ =−1,(1±
√

2i)/3. That is, by (4.3), ∆ 6= 0 for D1 = D1(λ )

so by the remarks following (2.1) f (x) =−x4+ 4
3 x3+4D1(λ ) = 0 has no repeated roots, where we

note that x0 = −λ is indeed a root. As f ′(−λ ) = 4λ 2(λ + 1) and f ′′(−λ )/24 = −λ (3λ + 2)/6,
we obtain the parametric solutions

a = −λ +
λ 2(λ +1)

℘(w+ c)+λ (3λ +2)/6
,

(4.5)

t = −λw+
λ 2(λ +1)

℘′(w0)

[
log

σ(w+ c−w0)

σ(w+ c+w0)
+2(w+ c)ζ (w0)

]
+δ

11
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of equation (4.4), by formulas (2.2), (2.4), for λ 6= 0,−1,−4
3 ,(1±

√
2i)/3. Then in the metric

(4.1), b(t)2 = a(t).

Example 2. Consider next, briefly, the metric

ds2 =−dt2 +X(t)2dx2 + e2bx [Y (t)2dy2 +Z(t)2dz2] (4.6)

for a Bianchi V anisotropic cosmological model, where b 6= 0 is a constant. R(t)
de f .
= [X(t)Y (t)Z(t)]1/3,

as a consequence of the Einstein equations, satisfies a differential equation

Ṙ(t)2 = f (R(t))/R(t)4 (4.7)

for a suitable 4th degree polynomial f (x) with leading coefficient b2. A key, useful observation
here is that the quantity/function

D0(t)
de f .
= (4.8)

R(t)2

[(
Ẋ(t)
X(t)

)2

+

(
Ẏ (t)
Y (t)

)2

+

(
Ż(t)
Z(t)

)2

− Ẋ(t)Ẏ (t)
X(t)Y (t)

− Ẋ(t)Ż(t)
X(t)Z(t)

− Ẏ (t)Ż(t)
Y (t)Z(t)

]
is actually a constant, independent of t, which we may therefore denote by D0. D0 is used, in
fact, to construct the constant term of f (x). Other coefficients of f (x) involve radiation and matter
constants, and the gravitational constant, where we assume that the energy momentum tensor is
given by that of a perfect fluid. For full details of these remarks and further related information the
reader can consult [3, 27].

Since equation (4.7) assumes the form (1.3) with n = 2, R(t) is given parametrically by y, t
in equations (2.2), (2.5) – or equivalently by (2.13), (2.15). On the other hand, the “scale factors"
X(t),Y (t),Z(t) can be determined from R(t) by the formulas in [3, 27], and thus the metric (4.6) is
also determined by R(t).

Example 3. The influence of an electro-magnetic field on the collapse of dust is considered briefly
by Krasinski in section 7 of [28]. A more extended discussion and list of references is found in
his text [7]; see section 2.14, for example. Here, again with spherical symmetry assumed, the
third equation in (1.8) (or, equivalently, the Lemaitre equation (1.2)) is supplemented by a term
−(Q/Φ(t,r))2, where Q is a constant electric charge:

Φ̇(t,r)2 =−K(r)+
2M(r)
Φ(t,r)

+
Λ

3
Φ(t,r)2− Q2

Φ(t,r)2 . (4.9)

It will turn out (see (2.1)) that

g2 =−
Λ

3
Q2 +

K(r)2

12
, g3 =

ΛQ2K(r)
18

+
K(r)3

216
− ΛM(r)2

12
,

(4.10)

∆ = Λ

[
−Λ2Q6

27
− ΛQ4K(r)2

18
− Q2K(r)4

48
+

ΛQ2K(r)M(r)2

4

+
K(r)3M(r)2

48
− 3ΛM(r)4

16

]
.

12
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In particular ∆ = 0 when the cosmological constant Λ vanishes, in which case one expects non-
elliptic solutions of (4.9). Indeed for Λ = 0, Shikin [29] has found parametric solutions of (4.9) in
terms of elementary, non-elliptic functions.

On the other hand, however, since (4.9) is a special case of (1.4) (with B= Λ

3 , E = 0, K =K(r),
A = 2M(r), D =−Q2, f (x) = Λ

3 x4−K(r)x2 +2M(r)x−Q2, from which one computes (4.10)) we
have that its general parametric solution (for arbitrary Λ) is given already by equations (2.2), (2.4):

Φ = x0 +
Λ

3 x3
0−

K(r)
2 x0 +

M(r)
2

℘(w+ c)+ K(r)−2Λx2
0

12

,

(4.11)

t = x0w+

[
Λ

3 x3
0−

K(r)x0
2 + M(r)

2

]
℘′(w0)

[
log

σ(w+ c−w0)

σ(w+ c+w0)

+2(w+ c)ζ (w0)]+δ ,

where now the integration constants c= c(r), δ = δ (r) depend on r; throughout it is best to consider
r fixed. Also, as usual, w0 is a choice such that ℘(w0) = f ′′(x0)/24 = (2Λx2

0−K(r))/12 6= the
roots e1,e2,e3 of 4x3− g2x− g3 = 0. In general (unless Q = 0, as in [4]) the non-repeated root
x0 of f (x) = 0 in (4.11) is non-zero, which means (in particular) that the formulas in (2.18) for
the Hubble and deceleration parameters do not simplify as in (2.19). x0 of course also depends on
r. Formulas (2.13), (2.14) provide, in addition, theta function expressions of the solution (4.11).
Although Q does not appear explicitly in (4.11), the solution there is indeed Q−dependent as x0

also depends on Q, and the invariants g2,g3 depend on Q as well by (4.10).

Section 5.2.2 of [4] contains the intriguing remark that interesting physics and mathematics
arise when equation (2.20) is solved at the zeros z0 of ℘(z):

℘
′(z0)

2 =−g3. (4.12)

Appendix C contains a description of these zeros (that supplements that given in [4]), where (as
in section 3) the choice of lattice L (1,τ) is made for τ ∈ Π+ that we shall also employ here.
Particularly in section 5.2.2, a Euclidean universe with g2 = 0,g3 6= 0,∆ < 0 is considered. Given
the presence of the electric charge Q, we can slightly extend part of the discourse there as follows,
where for convenience we write K,M for K(r),M(r). Note first that for g2 = 0,K2 = 4ΛQ2 ⇒
K3 = 4ΛKQ2⇒

g3 =
ΛQ2K

18
+

4ΛKQ2

216
− ΛM2

12
=−Λ

3

(
M2

4
− 2KQ2

9

)
(4.13)

by (4.10). If we take w = z0− c in (2.18) and denote by t0 the corresponding value of t (where we
could take c = 0 if we wished) then using (4.12) we see that

H(t0) =
−4 f ′(x0)(±

√
−g3)

(−4x0 f ′′(x0)/24+ f ′(x0))
2 , (4.14)

13
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which by (4.13) simplifies as

H(t0) =
±8
(−2Λ

3 x2
0 +Kx0−M

)(2
3 Λx3

0−
5
3 Kx0 +2M

)2

√(
M2

4
− 2KQ2

9

)√
Λ

3

for M>0
= ±

(
−2Λx2

0
3M + Kx0

M −1
)

(
Λx3

0
3M −

5Kx0
6M +1

)2

√
1− 8KQ2

9M2

√
Λ

3

(4.15)

for Q6=0
= ±

(
−K2x2

0
6MQ2 + Kx0

M −1
)

(
K2x3

0
12MQ2 − 5Kx0

6M +1
)2

√
1− 8KQ2

9M2

√
Λ

3
,

where in the latter equation we use again that K2 = 4ΛQ2 for g2 = 0. In case Q = 0, the 2nd

equation here reduces to H(t0) =∓
√

Λ

3 since we can then choose x0 = 0 as in [4], where we take

the speed of light = 1. In fact by (4.10) since also K = 0, ∆ =−3Λ2M4

16 < 0 for Λ 6= 0 (i.e. ∆ 6= 0),
which shows that x0 = 0 is a non-repeated root. In general we see that for Λ > 0, H(t0) is a multiple

of the Hubble constant
√

Λ/3 for the de Sitter model with inflationary scale factor Aexp
(√

Λ

3 t
)

,

for some constant A.
Kraniotis and Whitehouse discuss quite a bit more (again for the case Q = 0) regarding other

possibilities also such as Λ < 0 (which leads to periodic solutions), Λ > 0 with g2 6= 0, g3 = 0
(for a non-Euclidean universe), or (generally) ∆ 6= 0, g2 6= 0, g3 6= 0 – including some “bouncing"
models, and asymptotic inflationary models.

Equation (4.9) with Q = 0 also appears in the work of N. Meures and M. Bruni on ΛCDM
cosmology [30], for example. The general solution (4.11) of course is not given there. In fact these
authors also take the curvature constant K = 0, and thus they solve the equation

Φ̇
2 =

2M
Φ

+
Λ

3
Φ

2. (4.16)

In general, note that the equation

ẏ(t)2 =
A

y(t)
+By(t)2 (4.17)

has the non-elliptic solution

y(t) =
(

A
B

)1/3[
sinh

(
3
2

√
Bt
)]2/3

, (4.18)

for example.
Consider now the special case Λ = 0. We present solutions of (4.9) not found in Shikin [29].

In this case f (x) = −K(r)x2 + 2M(r)x−Q2 is quadratic. Hence the roots of f (x) = 0 are given
by x0 =

(
M±

√
M2−KQ2

)
/K, where for convenience we write M,K for M(r),K(r); we also

assume that K 6= 0. There are 2 possibilities to think about: (i) M2 6= KQ2, (ii) M2 = KQ2. If M2 6=
KQ2, the roots are distinct (non-repeated). Thus for x0 =

(
M±

√
M2−KQ2

)
/K the equations

14
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−Kx0 +M =∓
√

M2−KQ2, Λ = 0, with equation (4.11) provide for the solutions

Φ =
M±

√
M2−KQ2

K
∓

√
M2−KQ2

2 [℘(w+ c)+K/12]
(4.19)

t =
M±

√
M2−KQ2

K
w∓

√
M2−KQ2

2℘′(w0)

[
log

σ(w+ c−w0)

σ(w+ c+w0)

+2(w+ c)ζ (w0)]+δ

for ℘(w0) =−K/12 6= e1,e2,e3.
To obtain quite different solutions we therefore focus on the 2nd possibility: M2 = KQ2, in

which case x0 = M/K is a repeated root: f (x) = −K(x−M/K)2, and the general formulas (2.2),
(2.4) that lead to (4.11) do not apply. However, equation (4.9) now assumes the form

Φ̇
2 =−K(Φ−M/K)2/Φ

2, (4.20)

which has (non-parametric) solutions in terms of Lambert’s W -function mentioned in the introduc-
tion:

Φ(t,r) =
Q2

M(r)

[
W
(

Be±M(r)
√
−K(r)t/Q2

)
+1
]

(4.21)

where B 6= 0 is an integration constant that depends on r. Note that since M(r)2 = K(r)Q2 and
K(r) 6= 0 we also have M(r) 6= 0 for Q 6= 0, and Q2/M(r) = M(r)/K(r). One can derive (4.21)
from the general fact that the differential equation

ẋ(t) = b+
a

x(t)
(4.22)

with a,b 6= 0 has the solution
x(t) =

a
−b

[
W (Be−tb2/a)+1

]
(4.23)

for B 6= 0 since W (z) satisfies W ′(z) =W (z)[z(1+W (z))]−1.
Apart from the application here, the Lambert W -function has been applied in a variety of

disciplines ranging from statistical mechanics and quantum chemistry to enzyme kinetics, the en-
gineering of thin films, and the physiology of vision [31].

Example 4. A dynamic correspondence between FLRW and/or Bianchi I cosmology and Bose-
Einstein condensates (BECs) governed by a time-dependent, harmonic trapping potential was set
up in [17]. A cosmological constant Λd was present, where the spacetime dimension d ≥ 3 was
arbitrary. Thus an extension of work of James Lidsey [16] was realized. The correspondence is
presented in Tables I and II below where cosmological parameters (scale factors, scalar pressure
and energy density pφ ,ρφ , Hubble parameters) are matched with wavepacket parameters expressed
in terms of the harmonic trapping frequency ω(t) and moments I j(t), j = 2,3,4 (with I2(t) > 0)
of a wave function of the Gross-Pitaevskii (G-P) equation. Here t is “laboratory" time that one
obtains from the “cosmic" time in the Einstein field equations. We also assume constancy of the
atomic interaction parameter in the G-P equation. In Table I, a(t) is the scale factor for the FLRW

cosmological model and H(t)
de f .
= ȧ(t)/a(t) is the corresponding Hubble parameter. In Table II,

15
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R(t) = (X1(t)X2(t) · · ·Xd−1(t))1/(d−1) is the average scale factor with X j(t) the scale factor in the

jth spatial direction and HR(t)
de f .
= Ṙ(t)/R(t). Also we have Kd

de f .
= 8πGd for Gd the gravitational

constant.

Table 1: BEC↔ FLRW correspondence

I2 ↔ a2

I3 ↔ 2(aH)

I2
3/4I2 ↔ H2

[(d−1)(d−2)I4−Λd ]/Kd ↔ ρφ[
(d−2)ω2I2− (d−1)(d−2)I4 +Λd

]
/Kd ↔ pφ

Table 2: BEC↔ Bianchi I correspondence

I2 ↔ R2(d−1)

I3 ↔ 2(d−1)(R(d−1)HR)

I2
3/4I2 ↔ (d−1)2H2

R[
(d−2)
(d−1) I4−Λd

]
/Kd ↔ ρφ[

(d−2)
(d−1)ω

2I2− (d−2)
(d−1) I4 +Λd

]
/Kd ↔ pφ

λ ↔ −2(d−1)KdD/(d−2)

16
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The Tables are based on an equation of state pφ = (γ − 1)ρφ with γ > 0. γ = 6/(d− 1), for
example, corresponds to a stiff perfect fluid. The moments satisfy the conservation law

2I2(t)I4(t)− I2
3 (t)/4 = a constant

de f .
= λ . (4.24)

The two basic equations derived in [17] in conjunction with Table I (with the help of (4.24)) were

ω
2 =

α0γ(d−1)

I[γ(d−1)+2]/2
2

,
İ2
2
4
=

2α0

I[γ(d−1)−2]/2
2

+
2ΛdI2

(d−1)(d−2)
−λ (4.25)

for an integration constant α0. These equations govern the time-dependent trapping frequency
ω(t), and hence they also govern the external potential V (r, t) = ω(t)2r2/2. In particular, for a stiff
perfect fluid the second equation here is written

İ2(t)2 =
α

I2(t)2 +
8ΛdI2(t)

(d−1)(d−2)
−4λ , (4.26)

for α = 8α0, which is equation (1.4) with A = B = 0 there. Instead of the parametric solution given
by (2.2), (2.4), we have an alternate (simpler) parametric solution

I2 = a℘(w;g2,g3)+b

(4.27)

t = −a2
ζ (w;g2,g3)+abw+δ ,

as constructed in [3], where a3 = (d− 1)(d− 2)/2Λd , b = λ (d− 1)(d− 2)/6Λd , g2 = 2a(d−
1)(d−2)λ 2/3Λd , g3 = 2λ 3(d−1)2(d−2)2/27Λ2

d−α .
The Biermann-Weierstrass solution (2.6) applies directly to provide for an explicit solution of

the scale factor a(η) of one of the two the Friedmann equations, where eta is “conformal" time
- the other equation being a local conservation of energy equation. This is discussed in [32, 33],
for example. There energy and matter in the universe are assumed to be a perfect fluid consisting
of radiation, non-relativistic matter, and a cosmological constant. The modular property (3.1) and
the “chain of connections" of [14] discussed in section 3, and the solution (4.11) in the special
Friedmann case (with Q = 0, x0 = 0) are also discussed in [37], for example, where a holographic
description of the early universe is considered.

Appendices

A. Definition of the Weierstrass phi, sigma and zeta functions

Given the central importance of the Weierstrass phi function ℘(w) for the present work we
recall briefly, for the reader’s convenience, its construction/ definition. A more detailed account is
available in [18, 21, 34].
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Let ω1,ω2 be non-zero complex numbers. Since the imaginary parts of a non-zero complex
number z and its reciprocal are related by Im z−1 = −(Im z) |z|−2, one has that Im ω2/ω1 6= 0 if
and only if Im ω1/ω2 6= 0. In particular we assume that Im ω2/ω1 > 0, which is equivalent to the
assumption Im ω1/ω2 < 0. The corresponding lattice L = L (ω1,ω2) generated by ω1 and ω2 is
defined to be the set of points ω = mω1 +nω2 where m and n vary over the set of whole numbers.
The lattice L gives rise to the phi function

℘(w)
de f .
=

1
w2 + ∑

ω∈L−{0}

[
1

(w−ω)2 −
1

ω2

]
(A.1)

which is also denoted by ℘(w;L ), or by ℘(w;ω1,ω2). ℘(w) is a meromorphic function, which is
doubly periodic with periods ω1,ω2. Thus, by definition, ℘(w) is an elliptic function. ℘(w) has
double poles at w = ω ∈L , and it satisfies the differential equation

℘
′(w)2 = 4℘(w)3−g2(ω1,ω2)℘(w)−g3(ω1,ω2) (A.2)

for invariants

g2(ω1,ω2)
de f .
= 60 ∑

ω∈L−{0}

1
ω4 , g3(ω1,ω2)

de f .
= 140 ∑

ω∈L−{0}

1
ω6 (A.3)

where, moreover,

∆(ω1,ω2)
de f .
= g2(ω1,ω2)

3−27g3(ω1,ω2)
2 6= 0. (A.4)

Conversely, it is an amazing fact that if two complex numbers g2 and g3 are given that satisfy
the condition g3

2− 27g2
3 6= 0, then there exists a pair of non-zero complex numbers ω1,ω2 with

Im ω2/ω1 > 0 such that g2(ω1,ω2)= g2 and g3(ω1,ω2)= g3, for g2(ω1,ω2) and g3(ω1,ω2) defined
in (A.3) with respect to the lattice L = L (ω1,ω2) generated by ω1 and ω2. Thus from g2 and g3

one can also construct the corresponding phi function ℘(w;ω1,ω2) (according to definition (A.1)),
which in this case we also denote by ℘(w;g2,g3).

Associated with ℘(w) are the Weierstrass sigma and zeta functions σ(w) and ζ (w), respec-
tively:

ζ
′(w)

de f .
= −℘(w), lim

w→0

(
ζ (w)− 1

w

)
de f .
= 0,

(A.5)
σ ′(w)
σ(w)

de f .
= ζ (w), lim

w→0

σ(w)
w

de f .
= 1.

B. Theta function notation

The notation for Jacobi theta functions varies widely and wildly from text to text, as we indi-
cated in section 2. There, in (2.8), we used the notation (and definitions) presented in chapter 5 of
K. Chandrasekharan [18]. On the other hand, many researchers (including Kraniotis and White-
house [4]) employ the notation in the Abramowitz-Stegun Handbook [34]. Thus for the reader’s
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convenience we set up the following comparison:

K. Chandrasekharan Abramowitz-Stegun
θ(z,τ) θ1(πz,q)
θ1(z,τ) θ2(πz,q)
θ2(z,τ) θ4(πz,q)
θ3(z,τ) θ3(πz,q)

for q= eπiτ , τ ∈Π+. Also the notation in Whittaker-Watson [21] is the same as that in Abramowitz-
Stegun, where the θ4(z,q) in [21] is initially denoted by θ(z,q).

The periods ω1,ω2 of the phi-function in Appendix A are denoted by 2ω,2ω ′ in [34]: ω1 =

2ω , ω2 = 2ω ′. Applications of theta functions to FLRW cosmology also appear in [36], where the
notation of [21] is employed.

C. On the zeros of ℘(w;τ)

The physical significance of the zeros of ℘(w;τ) has been pointed to in Example 3. For the
sake of completeness we provide a description of these zeros.

With definitions (A.3), (A.4) in mind, we introduce the normalized Eisenstein series

E4(τ)
de f .
=

3
4π4 g2(1,τ), E6(τ)

de f .
=

27
8π6 g3(1,τ), (C.1)

and normalized discriminant

∆n(τ)
de f .
=

∆(1,τ)
642π12 =

27
64×1728

∆(1,τ)
π12 (C.2)

for τ ∈Π+. Then the zeros z0 of ℘(w;τ) are given by the following explicit integral formula of M.
Eichler and D. Zagier [12, 24]:

z0 = m+
1
2
+nτ±

[
log(5+2

√
6)

2πi
+144

√
6πi

∫ i∞

τ

(σ − τ)∆n(σ)

E6(σ)3/2 dσ

]
(C.3)

for m,n∈Z, where the integral is over the vertical line σ = x0+(y0+t)i, t ≥ 0, in Π+ commencing
at τ = x0 + y0i, y0 > 0.

An alternate formula for the zeros was found by W. Duke and O. Imamoglu [13], who “deu-
niformized" the Eichler-Zagier formula and expressed the zeros in terms of the classical modular
invariant

j(τ)
de f .
= E4(τ)

3/∆n(τ). (C.4)

The generalized hypergeometric series

pFq(a1, . . . ,ap;b1, . . . ,bq;z)
de f .
=

∞

∑
n=0

(a1)n · · ·(ap)n

(b1)n · · ·(bq)n

zn

n!
(C.5)

are needed, where |z|< 1 and each (bk)n 6= 0 for the Pochhammer symbol

(a)n
de f .
= a(a+1)(a+2) · · ·(a+n−1) =

Γ(a+n)
Γ(a)

,n≥ 1,

(C.6)

(a)0
de f .
= 1.
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For p = 2,q = 1, 2F1(a1,a2;b1;z) is the standard Gauss hypergeometric function F(a1,a2;b1;z).
Let

c2
de f .
=
−i
√

6
3π

, u = u(τ) = 1− 1728
j(τ)

= 1− 1728∆n(τ)

E4(τ)3 , (C.7)

and choose the principal branch of u1/4. Then the zeros of ℘(w;τ) are ±z0 where z0 is given by
the Duke-Imamoglu formula

z0 =
1+ τ

2
+ c2u1/4 3F2(

1
3 ,

2
3 ,1; 3

4 ,
5
4 ;u)

2F1(
1

12 ,
5
12 ,1;1−u)

. (C.8)

u is given in terms of τ in (C.7). τ , conversely, is given in terms of u as a quotient of hypergeometric
functions:

τ =−i+
2i
√

π

Γ
( 7

12

)
Γ
(11

12

) 2F1
( 1

12 ,
5

12 ; 1
2 ;u
)

2F1
( 1

12 ,
5
12 ;1;1−u

) . (C.9)

In a completely different context, formula (C.8) also has an application (interestingly enough)
in the work of Conte, Grundland, and Huard [35], for example, on isentropic ideal compressible
fluid flow. More specifically, (C.8) is used to conclude the boundedness (and hence the physical
relevance) of a certain elliptic solution of theirs.

Note that by (C.1), (C.2), (C.4), one also has the following expression for j:

j(τ) = 1728
g2(1,τ)3

∆(1,τ)
de f .
=

1728g2(1,τ)3

g2(1,τ)3−27g3(1,τ)2 , (C.10)

which is the form expressed in [4], where a flat universe with cosmological constant Λ 6= 0 and
j(τ) = 0 is considered (as we have discussed in Example 3), and where a non-Euclidean universe is
also considered with j(τ) = 1728. A full discussion of the modular invariant j(τ) and of Eisenstein
series and modular forms, including explicit Fourier expansion formulas, is presented in [26]. In
particular, we discuss there the key role that the Fourier expansion of j(τ) plays in the duality
between 3-dimensional pure gravity with a negative cosmological constant and extremal conformal
field theories with central charge 24k, for a positive integer k.
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