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1. Introduction

We deal in this paper with applications of modular forms (and spectral functions related to
the congruence subgroup of SL(2,Z)) to partition functions connected to suitable Lie algebras.
The connection that can be established is particularly striking in the case of the correspondence
between three-dimensional quantum gravity, in a space-time which is asymptotic to AdS3, and
2D conformal field theories. In the case of AdS3 one has Selberg-type spectral functions and
Ruelle functions while, on the field theory side, the correspondence is established with the Casimir
effect for quantum contribution to the partition functions. We seek appropriate expressions for the
partition functions of minimal three-dimensional gravities in a space-time which is asymptotic to,
respectively, AdS3, pure N = 1 supergravity, two-variable elliptic genera of an hyperesurface, and
complete intersections. In the case of hypersurfaces the elliptic genera coincide with those of the
orbifold Landau-Ginzburg model [1].

Elliptic genera are natural topological invariants, which generalize classical genera. They
appear, for instance, when one considers the supersymmetric indices of superconformal vertex
algebras. For mathematicians elliptic genera (and the respective elliptic cohomology) may be asso-
ciated to new mathematical invariants for spaces while, for physicists, elliptic genera are one-loop
string partition functions and, therefore, they are very relevant in topological Casimir effect calcu-
lations [2, 3]. They have been proven to be useful in black hole entropy computations, too [4].

Let us briefly explain the construction of the action of the Heisenberg/Clifford algebra on
homology groups of varieties, which is key to this project. One can start with the construction
of (integrable) highest weight representation of the affine Lie algebra on the homology group of
moduli spaces of torsion-free sheaves. Thus the generators of the affine Lie algebra (as a Kac-
Moody algebra) are given by moduli spaces of sheaves. Then, the characters of highest weight
modules may be identified with the holomorphic parts of partition functions on the torus, for the
corresponding field theories. This structures arises naturally, but not exclusively, in string theory,
and is particularly clear and treatable when supersymmetry is involved.

Our interest in this example stems from the AdS3/CFT2 correspondence. The geometric
structure of three-dimensional gravity (and black holes) allows for exact computations, since its
Euclidean counterpart is locally isomorphic to a constant curvature hyperbolic space. There is
an agreement between spectral functions related to Euclidean AdS3 and modular-like functions
(Poincaré series). This occurs when the arguments of the spectral functions take values on a Rie-
mann surface, viewed as the conformal boundary of AdS3. According to the holographic principle,
a strong correspondence exists between certain field theory quantities in the bulk of an AdS3 mani-
fold and related quantities on its boundary at infinity. To be more precise, the classes of Euclidean
AdS3 spaces are quotients of the real hyperbolic space by a discrete group (a Schottky group). The
boundaries of these spaces can be oriented compact surfaces with a conformal structure (compact
complex algebra ic curves).

In Sect. 2 we consider multiplicative operations on graded vector spaces which are useful for
the two-variable elliptic genus. We introduce the Petterson-Selberg and Ruelle spectral functions
of hyperbolic three-geometry.

In Sect. 3 we discuss the theories of a minimal three-dimensional quantum gravity in a space-
time asymptotic to AdS3, and the Neveu-Schwarz and Ramond sectors of N = 1 supergravity. The
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symmetry group of AdS3 gravity (with appropriate boundary conditions) is generated by the Vi-
rasoro algebra, and the one-loop partition function is indeed the partition function of a conformal
field theory in two dimensions. We investigate the corresponding Casimir effect, namely one-loop
corrections to the three-dimensional gravity: the holomorphic contribution to the partition func-
tions corresponds to the formal character of the Virasoro-module [5]. We extend our results to
N = 1 supergravity and show there that the infinite series of quantum corrections for the cases
of three-dimensional gravity and the Neveu-Schwarz and Ramond sectors of supergravity can be
actually reproduced in terms of spectral functions of Selberg type in a holomorphically factor-
ized theory. Three-dimensional gravity (as a function of the inverse temperature, β ) exhibits, in
the semi-classical limit, a Hawking-Page phase transition for a thermal gas of Brown-Henneaux
boundary excitations. The analysis of the condensation of Lee-Yang zeros of the partition function
on the phase boundary clearly shows that this phase transition can be compatible with holomorphic
factorization [6]. We assume that, in accordance with the holographic principle, the zeros of the
partition function are encoded in an analytic structure of Selberg-type meromorphic functions.

In Sect. 4 we briefly consider two-variable elliptic genera for a complex manifold, in particular,
the elliptic genus of a complex manifold, the Hirzebruch χy-genus, the Riemann-Roch number of
a holomorphic vector bundle on a complex manifold, and the arithmetic genus of an irreducible
projective curve.

In Sect. 5 we discuss and calculate—in terms of spectral functions of the hyperbolic three-
geometry—the elliptic genera of an hypersurface and of a smooth complete intersection and make
manifest the similarities between the two cases. Finally, in Sect. 6 we provide some conclusions.

2. Prototypes for the elliptic genera

The problem of defining elliptic genera for singular varieties has been addressed in [?], where
the definitions for orbifolds and for pairs consisting of projective varieties are given. The authors
of that work used resolutions of the singularities and proved their definitions to be independent of
these resolutions. In the present article we follow a completely different approach. More precisely,
we will use resolutions of the structure sheaf, instead of the variety itself.

For a holomorphic vector bundle, E on X , and a formal variable, z, we use the following
identities

Sq (zE) = 1 ⊕ zqE ⊕ z2q2Sym2E ⊕ z3q3Sym3E ⊕ ·· ·= SzqE , (2.1)

Λq (zE) = 1 ⊕ zqE ⊕ z2q2Alt2E ⊕ z3q3Alt3E ⊕ ·· ·= ΛzqE , (2.2)

Sq (zE)C = Sq (zE)⊗Sq
(
zE
)
, (2.3)

Λq (zE)C = Λq (zE)⊗Λq
(
zE
)
. (2.4)

These identities have good multiplicative properties and its elements should be understood as ele-
ments of the K-theory of the underlying space.

Sq (E⊕F) = (SqE)⊗ (SqF) , Sq (E	F) = (SqE)⊗ (SqF)−1 , (2.5)

Λq (E⊕F) = (ΛqE)⊗ (ΛqF) , Λq (E	F) = (ΛqE)⊗ (ΛqF)−1 . (2.6)
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In Eqs. (2.5) and (2.6) we have used the fact that

Symn(E⊕F) =
n⊕

i=0

Symi(E)⊗Symn−i(F) , (2.7)

Altn(E⊕F) =
n⊕

i=0

Alti(E)⊗Altn−i(F) . (2.8)

In the case of a line bundle L , we have SqL = 1
⊕

n∈Z+
qnL n = (1	qL )−1 = (Λ−qL )−1, and

therefore (SqE)−1 =Λ−qE for any vector bundle E, and similarly (ΛqE)−1 = S−qE. The prototypes
for the elliptic genera are the expressions (see for detail [7]):⊗

n∈Z+

Sσqn((ξP)C)
⊗

n∈Z+

Λλqn

(
(ζQ)C

)
,

⊗
n∈Z+

Sσqn((ξP)C)
⊗

n∈Z+/2

Λλqn

(
(ζQ)C

)
, (2.9)

⊗
n∈Z+/2

Sσqn((ξP)C)
⊗

n∈Z+

Λλqn

(
(ζQ)C

)
,

⊗
n∈Z+/2

Sσqn((ξP)C)
⊗

n∈Z+/2

Λλqn

(
(ζQ)C

)
.(2.10)

Let us recall some well known examples of vertex operator algebra bundles, which have been
used in the literature to study the elliptic genus and the Witten genus. If X is a Riemannian mani-
fold, then the transition functions of the complex tangent bundle (T X)C lie in the special orthogonal
group SO(d), where d is the dimension of X . Then

⊗
n∈Z+

Sqn((T X)C) is a V SO(d)
H -bundle. Here VH

is the Heisenberg vertex operator algebra of dimension d, with SO(d) as a subgroup of Aut(VH),
and VH

SO(d) is the set of SO(d)-invariants of VH , which is the vertex operator subalgebra of VH .
Similarly,

⊗
n∈Z+∪{0}Λqn+1/2(TCX) is an L(1,0)SO(d)-bundle, where L(1,0) is the level one mod-

ule for the affine algebra D(1)
d/2. In this case we assume that d is even. If X is further assumed

to be a spin manifold, we denote the spin bundle by S . Then S ⊗
⊗

n∈Z+
Λqn((T X)C) is also a

L(1,0)SO(d)-bundle.
For

⊗
n∈Z+

Sqn((T X)C) the resulting Chern character takes the form

ch(
⊗

n∈Z+

Sqn((T X)C)) = ∏
j

∏
n∈Z+

[(1−qnex j)(1−qne−x j)]−1

= ∏
j
[R(s = x̂ j(1− it)) ·R(s =−x̂ j(1− it))]−1 , (2.11)

where q = exp(2πiτ), t = Reτ/Imτ and x̂ j = x j/2πi. One of the important feature of the theory of
infinite dimensional Lie algebras is the modular properties of characters of certain representations.
The Chern polynomials (and elliptic genera) can be converted into product expressions which in-
herit modular and cohomological properties (in the sense of characteristic classes of foliations) of
appropriate (polygraded) Lie algebras. The final result can be written in terms of spectral func-
tions of the hyperbolic three-geometry associated with q-series. The spectral Patterson-Selberg
and Ruelle functions, ZΓ(s) and R(s) respectively, can be attached to a closed oriented hyperbolic
three-manifold X = H3/Γ (with an acyclic orthogonal representation of π1(X)), as follows [8, 7]:

ZΓ(s) := ∏
k1,k2∈Z+∪{0}

[1− (eiβ )k1(e−iβ )k2e−(k1+k2+s)α ], R(s) =
dimX−1

∏
p=0

ZΓ(p+ s)(−1)p
, (2.12)

∞

∏
n=`

(1−qn+ε) = R(s = ξ (1− it)) (ξ = `+ ε). (2.13)
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3. The Casimir effect in three-dimensional gravity and N = 1 supergravity

A remarkable link between the theory of the highest-weight modules over the Virasoro alge-
bra, conformal field theory, and statistical mechanics was discovered in [9, 10]. Here we briefly
note some elements of the representation theory of the Virasoro algebra which are, in fact, very
similar to those for Kac-Moody algebras. Consider the highest-weight representation of the Vi-
rasoro algebra. Let M(c,h)(c,h ∈ C) be the Verma module over the Virasoro algebra (see, for
example, [11]). The conformal central charge c acts on M(c,h) as cI. As [e0,e− j] = ne− j,
e0 is diagonalizable on M(c,h), with spectrum h+Z+ and eigenspace decomposition given by:
M(c,h) =

⊕
j∈Z+

M(c,h)h+ j, where M(c,h)h+ j is spanned by elements of the basis {e− jk}n
k=1 of

M(c,h). The number Z j = dimM(c,h)h+ j, is the classical partition function. This means that the
Konstant partition function for the Virasoro algebra is in fact the classical partition function. On
the other hand, the partition functions can be rewritten in the form

TrM(c,h) qe0 := ∑
λ

dimM(c,h)λ qλ = qh
∞

∏
j=1

(1−q j)−1 . (3.1)

The series TrV qe0 is called the formal character of the Virasoro-module V .
Quantum gravity in AdS3. It has been shown that the contribution to the partition function

of three-dimensional gravity in a space-time asymptotic to AdS3 comes from smooth geometries
X = AdS3/Γ, where Γ is a discrete subgroup of SO(3,1). To be more precise, it comes from
geometries Xc,d (see for detail [6]), where c and d are a pair of relatively prime integers, c≥ 0, and
a pair (c,d) is identified with (−c,−d). The manifolds Xc,d are all diffeomorphic to each other, and
therefore the contribution Wc,d(τ) to the partition function can be expressed in terms of any one of
them, say W0,1(τ), by a modular transformation. One has the following formula

Wc,d(τ,τ) =W0,1((aτ +b)/(cτ +d),τ) , W0,1(τ,τ) := |qq̄|−k
∞

∏
n=2
|1−qn|−2 . (3.2)

In Eq. (3.2) 24k = cL = cR = c, and c is the central charge of a conformal field theory, q =

exp(2πiτ) = exp[2π(−Imτ + iReτ)] such that |qq|−k = exp(4πkImτ) corresponds to the classi-
cal prefactor.

Recall that H3/Γ is also the geometry of a Euclidean three-dimensional black hole. To make
a correspondence between models one must set k = (8πG)−1:

− logW0,1(classical)(τ,τ) = klog|qq|= 2πr+(4G)−1 , (3.3)

where r+ > 0 is the outer horizon of a black hole. This result is the classical part of the contribution;
Eq. (3.2) is one-loop exact as has been claimed in [6]. Note that the one-loop contribution (3.2)
is qualitatively similar to the quantum correction to a three-dimensional black hole [12, 13]. On
general grounds one would expect that the generating function (3.2) would be connected to the
relevant one-loop determinant. Indeed, one-loop determinants can be re-summed with the help
of the Poisson summation procedure and may give a possibility to realize this connection. (An
analogous procedure of Poisson summation for regularized Poincaré series associated with W (τ)

has been analyzed in [6], Sect. 3.2.).

5
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Holomorphic factorization of supergravity quantum corrections. In this subsection we
show that quantum corrections for three-dimensional gravity and for the Neveu-Schwarz and Ra-
mond sector of N = 1 supergravity can be reproduced in terms of Selberg-type spectral func-
tions in a holomorphically factorized theory. For three-dimensional gravity in a real hyperbolic
space the one-loop generating function has the form of a product of holomorphic and antiholo-
morphic functions. The full gravity partition function (3.2) admits the factorization W0,1(τ,τ) =

W (τ)hol ·W (τ)antihol, where

W (τ)hol = q−k
∞

∏
n=1

(1−qn+1)−1 , W (τ)antihol = q−k
∞

∏
n=1

(1−qn+1)−1 . (3.4)

Note that the holomorphic contribution in (3.4) corresponds to the formal character of the Virasoro-
module (3.1).

The modulus of a Riemann surface Σ of genus one (the conformal boundary of AdS3) is defined
up to γ · τ = (aτ + b)/(cτ + d) with γ ∈ SL(2,Z). The generating function as the sum of known
contributions of states of left- and right-moving modes in the conformal field theory takes the form

∑
c,d

Wc,d(τ,τ) = ∑
c,d

W0,1((aτ +b)/(cτ +d),τ) . (3.5)

We would like to comment about the sum over geometries. The generating function, including the
contribution coming from the Brown-Henneaux excitations, have the form

∑
c,d

Wc,d(γ · τ,τ) = ∑
c,d

∣∣∣∣∣q−k
∞

∏
n=2

(1−qn)−1

∣∣∣∣∣
2

γ

= ∑
c,d

{
|qq|−k · [R(s = 2−2it)]−1

hol · [R(s = 2+2it)]−1
antihol

}
γ

. (3.6)

Here |...|γ denotes the transform of an expression |...| by γ . The summand in (3.6) is independent
of the choice of a and b in γ . Note that the sum over c and d in (3.6) should be thought of as a
sum over the coset PSL(2,Z)/Z≡ (SL(2,Z)/{±1})/Z. Three-dimensional gravity (as a function
of the inverse temperature, β ), exhibits in the semi-classical limit a Hawking-Page phase transition
for a thermal gas of Brown-Henneaux boundary excitations. The analysis of the condensation of
Lee-Yang zeros of the partition function on the phase boundary, shows that this phase transition
can be compatible with holomorphic factorization [6]. We assume that, in accordance with the
holography principle, the zeros of the partition function are encoded in the analytic structure of the
Selberg-type meromorphic functions.

The Neveu-Schwarz and Ramond sectors of N = 1 supergravity. We shall consider only
the basic case of N = 1 supergravity (see [6] for an explanation). The symmetry group SL(2,R)×
SL(2,R) of AdS3 is replaced by OSp(1|2)×OSp(1|2), where OSp(1|2) is a supergroup whose
bosonic part is Sp(2,R) = SL(2,R). The boundary CFT has (1,1) supersymmetry (N = 1 super-
symmetry for both left- and right-movers). There are a few closely related possible choices for
the partition function: Tr exp(−βH− iθJ) or Tr(−1)F exp(−βH− iθJ) . The conserved angular
momentum J = L0− L̄0 generates a rotation at infinity of the asymptotic AdS3 space-time. The
operator (−1)F is equivalent to (−1)2J; states of integer or half-integer J are bosonic or fermionic,

6
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respectively. This property is inherited from the perturbative spectrum of Brown-Henneaux exci-
tations. The trace could be computed in either the Neveu-Schwarz (NS) or the Ramond (R) sector.
One can compute these partition functions by summing over three-manifolds X that are locally
AdS3 and whose conformal boundary is a Riemann surface Σ of genus one. The four possible
partition functions associated with NS or R sectors (with or without an insertion of (−1)F ) cor-
respond to the four spin structures on Σ. An element g of G = SL(2,R) acts on a spin structure

by g ·

[
µ

ν

]
→

[
a b
c d

]
·

[
µ

ν

]
, µ,ν ∈ (1/2)Z/Z , where the four spin structures on the two-torus Σ

are represented by the column vector, and µ,ν take the values (1/2) for antiperiodic (NS) bound-
ary conditions and 0 for periodic (R) ones. Taking into account the choice of the spin structure
on Σ, one can sum over choices of X such that the given spin structure on Σ does extend over X .
The NS spin structure on Σ is compatible with X0,1, and therefore X0,1 contributes to traces in the
NS sector, and not to the R sector. The partition function of left- and right-moving excitations is
F(q,q) = TrNS exp(−βH− iθJ). Let us also study partition functions with other spin structures. If
we let µ = 0, ν = 1/2, then we get G(q,q) = TrNS (−1)F exp(−βH− iθJ). Thus, the contribution
to F(q,q) and G(q,q) associated with X0,1, for all spin structures, becomes [6]:

F0,1(τ,τ) = F(ground)
0,1 · F̂0,1(τ,τ)≡

∣∣∣q−k∗/2
∣∣∣2 · ∣∣∣∣∣ ∞

∏
n=2

1+qn−1/2

1−qn

∣∣∣∣∣
2

, (3.7)

G0,1(τ,τ) = G(ground)
0,1 · Ĝ0,1(τ,τ)≡

∣∣∣q−k∗/2
∣∣∣2 · ∣∣∣∣∣ ∞

∏
n=2

1−qn−1/2

1−qn

∣∣∣∣∣
2

. (3.8)

Here the contributions F(ground)
0,1 = G(ground)

0,1 ≡
∣∣q−k∗/2

∣∣2 are related to the groundstate energy; the
contribution G0,1 of X0,1 is obtained by reversing the sign of all fermionic contributions in (3.7).
The complete functions F(τ), G(τ) can be computed by adding F0,1 and G0,1 over modular images
with (c+ d) odd. It corresponds to the spin structure with µ = ν = 1/2 and µ = 0 and ν = 1/2,
respectively:

F̂

[
1
2
1
2

]
(τ,τ) = ∑

c,d|(c+d) odd
F̂0,1((aτ +b)/(cτ +d),τ) , (3.9)

Ĝ

[
0
1
2

]
(τ,τ) = ∑

c,d|d odd
Ĝ0,1((aτ +b)/(cτ +d),τ) . (3.10)

Note that the summand in (3.9) and (3.10) does not depend on the choice of a,b. A modu-
lar transformation τ → τ + 1 exchanges the pair (µ,ν) = (0,1/2) with (µ,ν) = (1/2,1/2); in
particular, F(τ) = G(τ + 1) = F(τ + 2) . One can compute the Ramond partition function K =

TrR exp(−βH − iθJ) for µ = 1/2, ν = 0, so K(τ) = G(−1/τ). This completes the list of three
of the four partition functions. In a supersymmetric theory with discrete spectrum, the fourth par-
tition function Q = TrR(−1)F exp(−βH − iθJ) is an integer, independent of β and θ (it can be
interpreted as the index of a supersymmetry generator). This function has to be computed using
the odd spin structure, the one with µ = ν = 0. Typically in three-dimensional gravity the partition
function Q vanishes, since the odd spin structure does not extend over any three-manifold with

7
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boundary Σ. Our goal here will be to use the spectral functions representation for holomorphycally
{R(s),R(σ)} and antiholomorphycally {R(s),R(σ)} factorized theory. We get (see also [5])

F̂0,1(τ,τ) =

[
∏

∞
n=2(1+qn−1/2)

∏
∞
n=2(1−qn)

]
·

[
∏

∞
n=2(1+qn−1/2)

∏
∞
n=2(1−qn)

]

=

[
R(σ = 3/2− (3/2)it + iη(τ))

R(s = 2−2it)

]
·
[
R(σ = 3/2+(3/2)it + iη(τ))

R(s = 2+2it)

]
, (3.11)

Ĝ0,1(τ,τ) =

[
∏

∞
n=2(1−qn−1/2)

∏
∞
n=2(1−qn)

]
·

[
∏

∞
n=2(1−qn−1/2)

∏
∞
n=2(1−qn)

]

=

[
R(s = 3/2− (3/2)it)

R(s = 2−2it)

]
·
[
R(s = 3/2+(3/2)it)

R(s = 2+2it)

]
. (3.12)

The complete functions F(τ) and G(τ) become

F

[
1
2
1
2

]
(τ,τ) = ∑

c,d|(c+d) odd
F(ground)

0,1 (γ · τ,τ) F̂0,1(γ · τ,τ)

= ∑
c,d|(c+d) odd

F(ground)
0,1 (γ · τ,τ)

{[
R(σ = 3/2− (3/2)it +(1+2d/c)iη(τ))

R(s = 2−2it + iη(τ))

]}
γ

×
{[

R(σ = 3/2+(3/2)it +(1+2d/c)iη(τ))

R(s = 2+2it + iη(τ))

]}
γ

, (3.13)

G

[
0
1
2

]
(τ,τ) = ∑

c,d|(c+d) odd
G(ground)

0,1 (γ · τ,τ) Ĝ0,1(γ · τ,τ)

= ∑
c,d|(c+d) odd

G(ground)
0,1 (γ · τ,τ)

{[
R(s = 3/2− (3/2)it +(1+2d/c)iη(τ))

R(s = 2−2it +(2d/c)iη(τ))

]}
γ

×
{[

R(s = 3/2+(3/2)it +(1+2d/c)iη(τ))

R(s = 2+2it +(2d/c)iη(τ))

]}
γ

. (3.14)

In the case the final sums (3.6), (5.5), and (3.14) are divergent (this kind of divergences have also
been encountered in similar sums in [14, 15, 16]) the one-loop corrections has to be regularized.
This procedure can be developed by using the Poisson summation technique in a way similar to
the calculations of Poincaré series in [6], Sect. 3.2 (see also [17]). This is a natural regularization
which can actually be viewed as just a type of the zeta function regularization, as proven in many
related examples [2, 18]. We hope we will return to this interesting problem in a forthcoming paper.

4. Two-variable elliptic genera for a complex manifold

In the physics literature a two-variable elliptic genus can be associate with N = (2,2) super-
conformal field theory (cf. [19, 20, 21]). A two-variable elliptic genus is given by

TrH (−1)FyJ0qL0−c/24qL0−c/24 , (4.1)
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where H is the Hilbert space of the superconformal field theory, L0 (resp. L0) is the Virasoro
generator of left (resp. right)-movers and J0 (resp J0) is the U(1) charge operator of left (resp.
right)-movers. In addition the trace is taken over the Ramond sector and F = FL−FR with FL (resp.
FR) the fermion number of left (resp. right)-movers. Let X be a smooth manifold, one has the
following mathematical expression for the field theory genus (cf. [21, 22, 23]):

Ell(X) =
∫

X
ch(E ll(q,y))Td(X) , (4.2)

where

E ll(T X ;q,y) = y−dimX/2
⊗

n∈Z+

(
Λ−yqn−1(T X)⊗Λ−y−1qnT X⊗Sq(T X)⊗SqnT X

)
. (4.3)

• Suppose X ≡ XC is a compact complex manifold of dimension d. Let T X denote the holo-
morphic tangent bundle of X , and consider the holomorphic vector bundle
E ll(T X ;q,y). The formal power series

χ(X ;q,y) := χ(X ,E ll(T X ;q,y))

(by HRR)
=====y−d/2

∫
XC

d

∏
j∈Z+

x j ∏
n∈Z+

(1− yqn−1e−x j)(1− y−1qnex j)

(1−qn−1e−x j)(1−qnex j)

=

[
R(s = (w− x̂ j)(1− it))

R(s =−x̂ j(1− it))

][
R(s = (1−w+ x̂ j)(1− it))

R(s = (1+ x̂ j)(1− it))

]
(4.4)

is called the elliptic genus of X , and its computation (last line in Eq. (4.4)) follows from the
Hirzebruch-Riemann-Roch (HRR) theorem. In Eq. (4.4) we put y = exp(2πiw).

• For a compact complex d-manifold X , one is often interested in its Hirzebruch χy genus [24],
which is defined by

χy(X) =
d

∑
p∈Z+∪{0}

(−y)p
d

∑
k∈Z+∪{0}

(−1)k dimHk(X ,Λp(T X))
(by HRR)
=====

∫
X

∏
j∈Z+

x j(1− ye−x j)

(1− e−x j)
.

(4.5)
The χy-genus reduces to other invariants for special values of y:

• Suppose, as before, that X is a compact complex manifold, and π : E → X an holomorphic
vector bundle on X . The Riemann-Roch number of E is defined by

χ(X ,E) = ∑
k∈Z+∪{0}

(−1)kdimHk(X ,OX(E)) , (4.6)

where OX(E) is the sheaf of holomorphic section to E, and Hk(X ,OX(E)) is the k-th coho-
mology of OX(E). It has the following property: If 0→ E1→ E2→ ···→ En→ 0 is an exact
sequence of holomorphic vector bundles on X , then we have

χ(X ,E1) − χ(X ,E2) − ·· · + χ(X ,En) = 0. (4.7)

Hence, if one denotes by K(X) the Grothendieck ring of holomorphic vector bundles over
X , then one gets an additive homomorphism χ(X ,•) : K(X)→ Z . It is straightforward to

9
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extend χ(X ,•) to formal power series with coefficients in K(X). The Riemann-Roch number
of E can be computed by the HRR Theorem, as follows. Let x1, . . . ,xd and z1, . . . ,zr be the
formal Chern roots of T X and E, respectively, then

χ(X ,E) =
∫

X
ch(E)Td(T X) =

∫
X

r

∑
k=1

ezk ∏
j

x j

1− e−x j
. (4.8)

• The arithmetic genus of an irreducible, projective curve C is dimH1(C ,O), where O is the
structure sheaf of holomorphic functions on C . For a smooth curve, this is the same as the
geometric genus, χy(X) = ∑

d
k∈Z+∪{0}(−1)kdimHk(X ,OX); however, unlike the geometric

genus, the arithmetic genus has the nice feature that it remains constant in families of curves
with possibly singular fibers. Intuitively, this means that the arithmetic genus of a nodal
curve is the geometric genus of the curve obtained by smoothing out the nodes.

5. Elliptic genera of hypersurfaces and complete intersections

Let X be a finite dimensional Z-graded complex vector space. Consider the formal power
series of vector spaces

E ll(X ;q,y) = y−dimX/2
⊗

n∈Z+

(
Λyqn−1(X)⊗Λqn−1(X)⊗Sqn(X)⊗Sqn(X)

)
. (5.1)

Suppose E ll(T X ;q,y) = ∑k,` ykq`Ek`, then the graded space E ll(X) = ∑k,`Ek` has a structure of
an N = 2 superconformal vertex algebra. It is straightforward to see that the operation E ll is
multiplicative in the following sense:

E ll(X⊕X ′;q,y) = E ll(X ;q,y)⊗E ll(X ′;q,y) . (5.2)

Elliptic genera of hypersurfaces. Let X be a complex manifold and let Y ⊂ X be a smooth
hypersurface. Denote by [Y ] the line bundle on X associated to the divisor Y . The adjunction
formula states that NY/X

∼= [Y ]|Y , where NY/X = T X |Y/TY is the normal bundle of Y in X . The
exact sequence

0−→ TY −→ T X |Y −→ NY/X → 0 can be rewritten as

0−→ TY −→ T X |Y −→ [Y ]|Y −→ 0

Note that, in K-theory, TY = (T X− [Y ])|Y (the later can be referred to as the virtual tangent bundle
of Y in X). The following statement holds [25]: Suppose Y is a smooth hypersurface of a compact
complex manifold X , then 1

χ−y(Y ) = χ
(
X ,Λ−y(T X)(1	 y[−Y ])−1(1	 [−Y ])

)
. (5.3)

1Note that c(TY ) = c(T X)c([Y ])−1|Y . Let us introduce the following notation: c(E) = ∏ j c(E j)
(−1) j

for a Z-
graded vector bundle E =

⊕
j E j. We have c(TY ) = c(T X 	 [Y ])|Y , and χ(Y ) =

∫
Y c(TY ) =

∫
X c(TY )c1(NY/X ) =∫

X c(T X	 [Y ])c1([Y ]), where c1([Y ]) is the first Chern class of [Y ].

10
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In terms of formal Chern roots {x j} we have

χ−y(Y )
(by HRR)
===== y−dimY/2

∫
X

∏
n∈Z+

(1−qn−1e−c1)(1−qnec1)

(1− yqn−1e−c1)(1− y−1qnec1)

×
dimX

∏
j=1

x j ∏
n∈Z+

(1− yqn−1e−x j)(1− y−1qnex j)

(1−qn−1e−x j)(1−qnex j)
.

= y−dimY/2
∫

XC

[
R(s =−ĉ(1− it))

R(s = (w− ĉ)(1− it))

][
R(s = (1+ ĉ)(1− it))

R(s = (1−w+ ĉ)(1− it))

]
×

dimX

∏
j=1

x j

[
R(s = (w− x̂ j)(1− it))

R(s =−x̂ j(1− it))

][
R(s = (1−w+ x̂ j)(1− it))

R(s = (1+ x̂ j)(1− it))

]
, (5.4)

where c1 = ĉ/2πi. If q= 0, one has E ll(T X ;0,y)= y−dimX/2Λ−y(T X) and E ll([Y ];0,y)= y−1/2(1−
y[−Y ]). For a smooth hyperface Y of a compact complex manifold X , we have [25]: χ−y(Y ) =
χ
(
X ,Λ−y(T X)(1	 y[−Y ])−1(1	 [−Y ])

)
. And, in terms of formal Chern roots, we finally obtain

χ−y(Y ) =
∫

X

1− e−c1

1− ye−c1

dimX

∏
j=1

x j(1− ye−x j)

(1− e−x j)
. (5.5)

Smooth complete intersections. Assume now that π : V →X is an holomorphic vector bundle
on X of rank r, s : X → V an holomorphic section transverse to the zero section, and Y := s−1(0)
is a complex submanifold of X , with NY/X

∼= V |Y . From the exact sequence 0→ TY → T X |Y →
NY/X → 0 by the multiplicative property of E ll, it follows that [25]

E ll(TY ;q,y)E ll(V |Y ;q;y) = E ll(T X |Y ;q,y) = E ll(T X ;q,y)|Y ,
E ll(TY ;q,y) = E ll(T X ;q,y)E ll(V ;q;y)−1|Y =⇒
χ(Y,E ll(TY ;q,y)) = χ(Y,E ll(T X	V ;q,y)|Y ) .

Tensoring the Koszul complex [26]

0−→ OX(Λ
r(V ))

is−→ OX(Λ
r−1(V ))

is−→ ·· · is−→ OX(Λ
1(V ))

is−→ OX −→ OY −→ 0

by E ll(T X	V ;q,y), we get the exact sequence

0 −→ OX(E ll(T X	V ;q,y)ΛrV )
is−→ OX(E ll(T X	V ;q,y)Λr−1(V ))

is−→ ·· ·
is−→ OX(E ll(T X	V ;q,y)Λ−1(V )

is−→ OX(E ll(T X	V ;q,y))

−→ OX(E ll(T X	V ;q,y))|Y −→ 0,

Suppose now that Y is the zero set of an holomorphic section to an holomorphic vector bundle V
on a compact complex manifold X , which is transverse to the zero section. Then, by taking the
Riemann-Roch number, one gets [25]:

χ(Y ;q,y) = χ(Y,E ll(T X	V ;q,y)|Y ) = χ(X ,E ll(T X	V ;q,y)Λ−1(V )). (5.6)

11
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ASs before denote by {zk}r
i=1 the formal Chern roots of V . Then, we have

χ(Y ;q,y) = y−dimY/2
∫

X

r

∏
k=1

∏
n∈Z+

(1−qn−1e−zk)(1−qnezk)

(1− yqn−1e−zk)(1− y−1qnezk)

×
dimX

∏
j=1

x j ∏
n∈Z+

(1− yqn−1e−x j)(1− y−1qnex j)

(1−qn−1e−x j)(1−qnex j)

= y−dimY/2
∫

X

r

∏
k=1

[
R(s =−ẑk(1− it))

R(s = (w− ẑk)(1− it))

][
R(s = (1+ ẑk)(1− it))

R(s = (1−w+ ẑk)(1− it))

]
×

dimX

∏
j=1

x j

[
R(s = (w− x̂ j)(1− it))

R(s =−x̂ j(1− it))

][
R(s = (1−w+ x̂ j)(1− it))

R(s = (1+ x̂ j)(1− it))

]
, (5.7)

where ẑk = zk/2πi. The last products in integrands (5.4) and (5.7) are the same, both have been
calculated in terms of formal Chern roots of T X . (Recall that the first product in integrand (5.7)) is
given in terms of formal Chern roots of vector bundle V on X .) If q = 0 then we get back a similar
to result to (5.5):

χ−y(Y ) = χ
(
X ,Λ−y(T X)(Λ−yV )−1

Λ−1V
)
=
∫

X

r

∏
k=1

(1− e−zk)

(1− ye−zk)

dimX

∏
j=1

x j(1− ye−x j)

(1− e−x j)
. (5.8)

6. Conclusions

In this paper we have discussed how the spectral functions of an AdS3-asymptotic geometry
are intertwined with the Casimir effect in topological field theory, quantum gravity and elliptic
genera of an hypersurface and complete intersections. It is of course of utmost importance to
find generalizations of the examples considered here. Perhaps one could make analogues of N-
fold products for other type of supergravity solutions, the Hilbert modular variety, for example
[27, 5]. The Hilbert modular variety carries a natural structure as a quasi-projective variety and
its cohomology groups inherit a Hodge structure. In fact the Hilbert modular group is a simplified
example of the cohomology theory of arithmetic groups and it is the only special case in which the
cohomology can be determined explicitly.

Having advocated in this paper the basic role of cohomologies of infinite-dimensional Lie
algebras, we are now naturally led to other problems, related to the quantization of nonlinear sigma
models and gravity and the Casimir effect for the quantized models. One might ask whether the
quantum behaviours of these models can be algebraically interpreted by means of infinitesimal
deformations of the corresponding Lie algebra. No doubt this analysis requires a new degree of
mathematical sophistication. Perhaps all the concepts of what should be the “deformation theory
of everything" might be tested in the case of associative algebras, which are algebras over operads
[28]. In many examples dealing with algebras over operads, specific arguments on the universality
of associative algebras are called forth. This may suggest that a connection between the Casimir
effect for deformation theory and algebras over operads could indeed exist.
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