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1. Introduction

The Seiberg-Witten equations has been a powerful device to topologist understand the topol-
ogy of smooth four dimensional manifolds. The differential phenomenons are difficult to under-
stand because the invariants must be defined in terms of a smooth structure on the underlying
topological space. The Gauge Theory developed by theoretical physicists turned out to be an im-
portant source of methods to define smooth invariants, this is so because Gauge Theory is a Vector
Bundle Theory endowed with equations. In dimension 4, a smoothable topological 4-manifold may
admit a infinite number of smooth structures in contrast with 3 dimension where there is only one.
The Seiberg-Witten theory is claimed to be dual, in the sense of Montonen-Olivie [5] to a twisted
version of N = 2 supersymmetric Yang-Mills Theory [9], but this is still an open question. Never-
theless, from the mathematical point of view, none is concerned with the origin of the equations as
far as they are useful. Let X* be a closed, smooth manifold. The cohomology H*(X) = &%_,H'(X)
turns out to be of fundamental importance to the study topological and geometrical properties of X.
Let b;(X) = dimH'(X), 1 <i < 4, be the Betti numbers, y(X) =2 —2b;(X) + b>(X) be the Euler
characteristic, and 6(X) = b — b, the signature of X, where H*(X) = H> & H? and b; =dimH?.
In order to describe the theory on a closed 4-manifold X, let’s fix a riemannian metric g and a spin®
structure on X. The choice of a riemannian metric on X reduces the structural group of the tangent
bundle 7X to SO4, so the frame (vierbein) bundle FX is a principal SO4-bundle. The space of Spin®
structures on X is Spin‘(X) = {s = as + B € H*(X,Z) DH'(X,Z) | w2(X) = ot mod 2}. Because
Spin§ = (SUy x SU, x Uy) /7, and U, = (SU, x Uy)/Z, we get two representations p-. : Spin§ —
U, = (SU, x Uy)/Z, C GL(2,C). In practice, a Spin‘-structure on X is given by a pair of rank 2
complex vector bundles .= with isomorphisms det(.7,") = det(.7,”) = %;, where det(.>) are
the determinant line bundle such that ¢; (%) = o € H*(X,Z) (denote c;(s) = ¢1(-%)). Spinor
bundles are powerful tools because they carry a Dirac operator Dy : Q°(.7.") — Q°(.%,). Let o7,
be the space of Uj-connections on .%; and Q°(.#,") be the space of sections of .#,". The con-
figuration space on X is €, = 7 x Q°(.7,"). The gauge group acting on %, is ¢ = Map(X,U;),
the space of maps from X to Uy, g.(A,9) = (A+2g 'dg,g'¢). The Gauge action is not free on
%5, the moduli space s = €5/9 is singular at the points (A,0); the isotropic subgroups ¥ o) are
isomorphic to U;. By restricting to the subgroup ¥* = {g € ¢4 | g(xo) = I} the action becomes
free and the moduli space Z; = %,/¥" is an infinite dimensional manifold. Indeed, %; is a uni-
versal principle bundle over %}, so the classifying space for principle ¢-bundles is BY* = %;
whose homotopy type is the same as CP™ x _Zx, where #x = H'(X,R)/H'(X,Z) is diffeomor-
phic to 7' (X) (jacobian torus). Another way of avoiding the singular set is by blowing-up the
configuration space, this new new setting will be considered in a forthcoming paper.

2. Variational Set Up
The Seiberg-Witten monopole equations on X are

Ff=0(¢), Di¢=0, @2.1)

where F, A+ is the self-dual component of the curvature Fy, D:{ is the positive component of the Dirac
operator and o is the sel-dual 2-form
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1 1
oc(v)(X,Y)=<XYvv> +§ <X, Y>|v[, |ob)|*= 1 | v[*.

The Seiberg-Witten functional . % : €; — R is defined by

IW(A,9) = /X{i |y >+ | VA9 | +Z—g 1o +% |9 |*Ydv, + 2722 (s)[X], (2.2)

where k, is the scalar curvature of (X,g) and ¢2(s) = c1(s) Aci(s) = 4%2 Il Fi PP = | By [Hdvg.
Because of the gauge invariance, the . #;-functional defines a function %; : %; — R. The
Euler-Lagrange equations are

|0 +k

d'Fy + 4ilm(< V29,0 >) =0, and A9 + =)

=0, 2.3)
The solutions (A, ¢) of the monopole equations (2.1) are stable critical points of the . -functional.
Moreover, they also satisfy the equations (2.3);

d*(Fy) =2d"Ff — = d*[0(9)] = —4ilm (< D" 9,X.0 >+ < Vx¢,¢ >)
DO=0 = 0=D D 9=n,+ 2 By ke L0

However, it is not always true that a stable critical point satisfies equation (2.1). In [9], Wit-
ten proved that at most a finite number of classes in Spin(X) admit solutions for the monopole
equations (2.1). (A, ¢) € % is called a . #;-monopole if satisfies eqgs. (2.1) and is called a .77 #-
critical point if satisfies the equations (2.3). There are two kinds of critical points, the irreducibles
when ¢ # 0 and the reducibles (A,0). The difference between these categories is measured by the
isotropic subgroup %4 o) = {2 €9 | 8.(A,9) = (A,0)}; Gap) = {I}if ¢ #0and G, o) = U;. The
reducible .7 #;-monopoles satisfy F,” = 0, they are abelian instantons. The set of reducible . ¥
critical point satisfying d*F, = 0 is exactly the Jacobian torus _Zx. In the ./ -functional formula
the scalar curvature k, plays a important role by noticing that if it is non-negative, then Zx is a
stable critical submanifold of %, because .7 #5(A,0) < S #s(A,¢) for all ¢ # 0. Due to Hodge
theory the space Zx is never empty because for all (A,0) € Zx the curvature F4 is a harmonic
2-form. When 7 (X) = 0, by considering [®] the class of the trivial connection, Zy = [@] is just
a point. By measuring the instability at each point in _#x it might be possible to learn about the
existence of a . #;-monopole. It would be a big achievement to find a sufficient condition on a
smooth manifold to guarantee the existence of an irreducible . #;-monopole, though it is a hard
question to me answered by now. The classes s € Spin®(X) admitting a irreducible . #;-monopole
are named Basic Classes.

3. Existence x Non-Existence

The Basics Classes play a central role to the applications in differential topology. Let .#; C A,
be the moduli space of .”# -monopoles. If b; (X) > 2, then ., is either empty or a smooth,
compact and orientable manifold whose dimension is giving by the formula (ref. [4])
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d(s) = § {@2[X] ~ [22(x) +30(x)]}

The abelian nature of the gauge group in the Seiberg-Witten theory is an essential ingredient to
turn it into a simpler theory than the Donaldson theory. A 4-manifold X is simple type if for
all s € Spin®(X) either .#, = @ or d(s) = 0. In the last case, .#; must be a finite set of points
{ou,...,00,}, 0; = (A;,§;), each one carrying attached a sign n; = +1 according with orientation.
The Seiberg-Witten invariant associated to a class s € Spin(X) is

n
y%(ﬁ) _ {Zi—lnia M 7& a, (3.1)
0, #;=02
Though naively defined as the sum (3.1), .”"# (s) has a cohomological interpretation and defines
a smooth invariant of X (see ([4]). Thus the existence of irreducible .¥#;-monopoles is essential
to apply the SW-theory. In contrast to the instanton equation, there are no finite energy .7 #s-
monopole on R*. The deepest result concerning the existence of monopoles is Taubes’ theorem.

3.1 Existence Theorems

The main theorems concerning the existence of . -monopoles are enunciated next. In [9]
Witten proved the following theorem for Kéhler 4-manifolds (ref [4], thm 7.3.1);

Theorem Let X be a Kihler surface of general type and minimal endowed with the Kéhler metric.
() If ¢3(%)[X] < 0, then there is no irreducible .#'% -monopoles, the only critical points are
reducible. (i) If ¢2(.%)[X] > 0, then .7 # (k*) = £1. (k* is the canonical class)

Shortly after, Taubes proved [8] that the symplectic structure implies existence;

Theorem (Taubes) Let X be a simply connected 4-manifold with bz+ (X) > 2. If X admits a sym-
plectic structure @ (w A @ > 0), then £x* = *£¢;(J,) are basic classes, and .7 % (£K*) = *1.

A deep theorem (ref. [7]) due to Taubes relates the existence of . #;-monopoles with the ex-
istence of pseudo J-holomorphic curves (J=almost complex struc.). Indeed, he proved .7 #;(a) =
#HECX|[X] = a € Hy(X;Z), X is a J-holomorphic curve}. There is no known sufficient condi-
tion on a smooth manifold to guarantee the existence of Basic Class. The differential topologist
managed to produce examples of non-symplectic 4-manifod with non-trivial SW-invariant, a re-
markable manner is by using the Knot Surgery developed by Fintushel-Stern ([3]). They discov-
ered a wide amount of non-symplectic homotopic K3 surfaces, almost as much as the number of
isotopic classes of knots K C S°. So far, there is no way of proving the existence of monopoles on
any X without using Taubes’ thm 3.1. Thus, it rises the following question "is every 4-manifold
homemorphic to a symplectic one ?"

4. Instability of Critical points

The existence of the critical manifold ¢ is guarantee by the topology of X. Starting from
them, it could be argued if their instability could provide us information about the existence of
< Ws-monopoles. The instability of Zy is established by performing the analysis of the 2nd

.. 2 oy . .
variation 55 éé/[? of the . -functional. In order to do so, a short review on the tangent space of %,
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is listed next. The tangent space to the orbit 04 4y = {g.(A,0) [§ €G } is T4 3O (a,9)} = Imag(T),
where

T:Q%X,iR) — Q'(X,iR)®Q°(.7"),
Ty(A) = (dA,—N.9).
Since T has closed range, a local slice for the space <% x« ['(S7) at (A, ¢) is given by Ker(T*),
where
T, : Q'(X,iR) @ Q(SF) — Q(X,iR),
T,(0,V)=d"6 —<V,¢ >.
So, ker(Ty) = ker(d*) & ¢+. Because (d*)? = 0, it can be further decomposed into ker(d*) =

imag(d*) ® 74, where 7 = {6 € Q!(X,iR) | d8 = d*0 = 0} is the subspace of harmonic 1-
forms and also the tangent space to the Jacobian torus _Zx at (A,0).

The tangent space of €, at (A,9) is T4 96 = Q' (X:iR) & Q°(.7,"), so 5;(%? defines a
symmetrical bilinear form H@”Z/)((el,vl), (62,V2)) =< (6y,V1),H(6,,V,) >, where the operator

hiy h
H= ( 1 12) has entries given by

ha1 hao
LI,
Sasg 0 (0.8) =< 0,(d"dA+4 <A(9),9 >) =< 8, (A) >,
SLW ) )
Swsg (4o (B:W)=2(<VI9,6(W) >+ <VIW,0(9) >) =< 8,h2(W) >, (ha1 = h12)
W(‘Svs a0 (VW) =< V’AAW"'%W“‘Z <OW > ¢ >=<V,hp(W)>.

The induced 2"?-variation on %, at (A, ¢), is defined by just restricting it to the subspace ker(Tq;") =
ker(d*) @ ¢+. Therefore, H : ker(Ty') — ker(Ty) is an elliptic operator because the leading terms
d*d = /\ and A4 are laplacians whose symbol are isomorphisms.

The spectrum of 7 : ker(Ty) — ker(Ty) is a discrete set such that each eigenvalue has finite
multiplicity and no accumulation points, besides, there are but a finite number of eigenvalues below
any given number. All of these are consequences from the fact that the spectral analysis depends
on the leading terms of .7#” which in this case are laplacian operators. At each point (A,0), the
d*d 0

0 Ly
operator L (V) = AV + Z—gV. L4 can be diagonalized and the eingenspace %) C T4 )%s associ-
ated to the eigenvalue A is finite dimension for all A. Furthermore, the spectrum of .77 is bounded
below. Thus, ker(7) = Tia0) Zx © ker(La), where ker(Ls) = 5 is a finite dimensional space.
By assuming ker(Ls) = {0}, the Morse-Bott index of the critical submanifold _Zy is equal to the
dimension of the largest negative eingenspace of Ls. The lower eingenvalue A;,(g,A) of L4 can be

hessian operator is H = < ) where Ly : Q°(.7") — Q(7) is the elliptic self-adjoint

estimate by the Rayleigh quotient
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k,
An(g,A) = inf B[V E A 1Y P
m\&; VeQO(.7) x|V 2 dvg

The purpose is to compare A, (g,A) with the lowest eigenvalue of the linear, elliptic and self-adjoint
operator L(u) = Agu+ %gu defined on functions u : X — R, (A, = —d*d is the Laplace-Beltrami
operator on (X,g)). The Kato’s inequality | d | V |?|<| VAV |? turns out to be useful tool; fix an
orthonormal frame 8 = {¢; | i =1,2,3,4} on X, then

4 d
2
(d!VIZ):Zi:(f?i!V!) and \VAV\ZZZ;W?VV- (0= 7).
Besides, by taking the identities (i) 30; | V [*=|V | .9; | V | and (ii) 30; | V [*=< VAV,V >, and
applying Cauchy-Schwartz inequality, we get |V | .| d; (| V |) [<|V | .| VAV |. So, if V # 0, then

|V PI=Y 0V )P <Y | VAV = VAV
1

1

The equality happens if, and only if, there exist complex functions o; : X — C, i = 1,2,3,4 such
that V?V = o;V. If there exists V € .%; and functions o; € C*(X) such that V?V = o;V and the
1-form @ = ¥; a;dx’ is closed, then X is Kihler. This relies on the relationship among the existence
of parallel spinors and a Kihler structure on X, namely, the section f.V is parallel (VAfV = 0), f :
X — R, if the system 0;f +a; f =0, i = 1,2,3,4, admits solution. Consider the 1-form @ = ¥, odx’
and assume it is closed. If the system admits a solution, then d;0;f = d;d;f implies d;; = d;a},
so o is closed. Now, let’s assume @ is closed, so the identity 8jal~ = 8,-aj allow us to define the
function

1) = ¢ @)

Of course, d, f = —a f. The @ closeness guarantee that

X1
Ohf = (—/ Ocl(t,xz,...,xn)dt) f,i=1,2,3,4.
0

Indeed, it follows that @ = d(In(f)), hence ® is an exact 1-form.

4.1 Estimating the Lowest Eigenvalue

Whenever the lowest eigenvalue of operator L is negative, there is a change of existing a
" Ws-monopole, so let’s investigate this possibility by comparing with the lowest eigenvalue of
the operator L. Let A,,(g) be lowest eigenvalue of L, and define A(g) = A,(g).[vol(X,g)]"/>.
Let M(X) be the space of riemannian metrics on X and [g] = {{.g | { : X — (0,00)} the conform
class of g. The Yamabe constant of [g] is defined by

. Jx kedvg
Y= inf —2 2 ° 4.1
(8] glen[g] vol(X,8)]1/2 @.1)
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The condition Y <0 implies the existence of unique metric realizing the the Yamabe constant ([1]).
The smooth Yamabe invariant is defined as Y (X ) = SUp(g o Yjg- In [1] they prove, under the con-
dition Y (X, g) <0, the relation ¥ (X) = sup,c(, A (X, g) < 0. By analogy, associated to the operator
Ly we define A1%(g,A) = A5(g,A).[vol(X,g)]'/? and Y*(X,A) = U 2%(g,A). From the Euler-

Lagrange equations we get
/ VA |2 +2 ¢ |*| dv ———71/\¢|dv and so
X 4 g A g s

: 1
Ai(eA) [ 10Pdve < =5 [ 1o v,

The Cauchy-Schwartz inequality for integrals implies that [y | ¢ |> dv, < [vol(X,g)]'/%. [ [y | ¢ [* dv,]
Therefore, the lowest eigenvalue is negative whenever there exist an irreducible solution for the

1/2

Euler-Lagrange eqs. If there exists an irreducible . #;-monopole than the lowest eigenvalue is
upper bounded by a topological number because the equation F,” = o(¢) implies | F," |>= 1 | ¢ [*
and ¢ (%) = ﬁ[x“ F [P = | Fy Pldvg , hence

| | ¢ |4 I/ZS —|/ |FAJr |2 dve 1/2<—27r\/ C%(-’%)[X]
X X

If 2(g) = A°(g,A), then from last section we conclude X is Kihler; in this case the Yamabe invariant

e

guarantee the negativeness.
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