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1. The area law in QCD and the heavy quark potentials in AdS/CFT

A crucial breakthrough in the attempt to deal with strongly-coupled Yang-Mills theories came
with the nowadays celebrated AdS/CFT correspondence whose the bulk-to-boundary dictionary has
been established essentially in [2]. Shortly afterwards, the issue of calculating expectation values of
Wilson loops was considered [3], which is of significant importance since the Wilson loop, through
the area law, consists of one of the most efficient tools for probing the large distance properties of
confining QCD-like gauge theories [4]:

W [C ]≡ 1
N
〈TrPe−ıg

∮
C Aµ (x)dxµ 〉A =

C→∞

e−ıσt A[C ] (1.1)

with A[C ] the area of the minimal surface of boundary C . Then, the Feynman-Kac formula gives
a linear static potential for an infinitely massive quark-antiquark pair:

VQQ̄(r) =− lim
T→∞

1
ıT

ln W [C ] = σtr . (1.2)

On the contrary, because of the underlying conformal symmetry on which AdS/CFT relies, the
supergravity side computation of the infinitely heavy QQ̄ pair (non-dynamical external probes)
potential shows instead a 1/r behavior for all distances r and goes in terms of the ’t Hooft coupling
λ as

√
λ , which reflects an intrinsically non-perturbative result [3]:

VQQ̄(r) =− 4
√

2π2

Γ(1/4)4

√
λ

r
. (1.3)

According to Maldacena’s recipe, the expectation value of the spacetime Wilson loop (spatial loops
- which follow the same prescription - will also be considered when deriving area law for 3d and
4d conformal field theories at finite temperature) is dual to the full partition function of the string
theory which, in the low-energy supergravity limit where the stringy effects are small, reduces to
the proper area of the string world-sheet with the loop as the boundary. One might sketch the
AdS/CFT steps of the calculation as follows:

W [C ] ∼
AdS/CFT

Zstring[C ] ∼
sugra

e−S[S ] (1.4)

where S[C ] is the classical Euclidean action of the string world-sheet (that, in fact, does not de-
scribe the Wilson loop (1.1) but instead its supersymmetric generalization). In practice, one usually
takes the simplest action which describes the dynamics of an open string, namely the Nambu-Goto
action SNG[C ] = 1

2πα ′
∫

d2ξ
√

det(γab) where α ′ = `2
s is related to the typical length scale `s of the

string and γab(ξ ) (a,b = 1,2) is the induced metric tensor on the two-dimensional world-sheet. Fur-
thermore, it turns out necessary to regularize the potential (by cutting off the infinite range of the
holographic coordinate in the ultraviolet) as infinities arise: they correspond to the two infinitely
stretched strings associated with the infinitely heavy Q and Q̄ respectively1. Hence, the final recipe
for computing Wilson loops and regularized potentials is:

VQQ̄(r) = lim
T→∞
M→∞

1
T

(SNG− `M) (1.5)

1In a flat spacetime, the mass-squared M2 of a string stretched between x1 and x2 reads in broad outline and
neglecting the quantum fluctuations as M2 =

( x2−x1
2πα ′

)2.
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from which is derived (1.3) and where the second term on the r.h.s. consists precisely in subtracting
the contribution of the two infinitely stretched Q and Q̄ strings (` is the total perimeter of the loop
C on the boundary).

2. The static potential at finite temperature in supergravity

Following Hawking and Page’s work on the thermodynamics of black holes in anti-de Sitter
spacetimes, a gauge/string duality involving a gauge theory at finite temperature was proposed [5].
In this framework, the bulk accommodates a Schwarzschild black hole (BH) whose the metric in
Euclidean reads as

ds2
BH = α

′
{ u2

R̃2

(
f (u)dt2 +d−→x 2)+ R̃2

u2
du2

f (u)
+ R̃2dΩ

2
5

}
(2.1)

where f (u) = 1− u4
T

u4 and R̃4 ≡ R4

α ′2
= 4πgsN = 2λ is the dimensionless AdS radius2. u is the

holographic coordinate. There is a curvature singularity at u = 0 hidden behind the event horizon
at u = uT whose the location is given by the Bekenstein-Hawking temperature T of the black hole
uT = πR̃2T . In particular, at zero temperature, i.e. when uT = 0, one recovers the line element
of AdS5× S5. To the high (low) energy regime of the dual boundary theory corresponds u→ ∞

(u→ 0). Then, considering a spacetime Wilson loop (that is, a loop along one space-like dimension
and one time-like dimension) and following Maldacena’s recipe, the subtracted static potential is
[6]:

VQQ̄ =
U0

π

∫ Umax/U0

1
dv

√v4−1+ ε

v4−1
−1

+
UT −U0

π
(2.2)

where v≡U/U0 and ε ≡ f (U0). U(x) is the string coordinate along the fifth holographic dimension
which is only a function of the spatial boundary coordinate x. Because the string world-sheet is
symmetric under the mirror transformation x↔−x, U(x) presents a minimum which then occurs
at x = 0. By definition, U0 ≡ U(0) (and U ′(0) = 0). UT is the value of the string coordinate at
the event horizon while Umax is the ultraviolet cutoff (U ≤ Umax). Let us focus on the limiting
case U0 � UT (ε ' 1) where the string world-sheet is close to the boundary such that it does
not feel the presence of the horizon. In fact, this configuration corresponds to the low temperature
limit rT � 1. Obviously, for small temperatures, the potential behaves approximately as in the zero
temperature case V ∼−1

r , Eq.(1.3). Moreover, the leading non-zero temperature correction exhibits

scaling consistent with the conformal invariance of the boundary theory [6]: V ∝−1
r

(
1+a(rT )4

)
with a a positive numerical constant which does not depend on R̃. Without length scale, it is
indeed meaningless to speak, at low temperature, of a large or small compactification radius of
the Euclidean temporal dimension (whose the period gives the temperature). The high temperature
limit rT � 1 when U0 ' UT is more subtle. As shown in [6], there is a critical value of the
inter-quark distance above which the potential starts to be positive. At this point, the bound-state
potential (2.2) is not valid because the lowest energy configuration consists instead of two straight

2gs is the closed string coupling constant. Using a standard convention in string theory, the world-sheet coordinates
will be written with capital letters.
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strings ending at the horizon. In other words, the quarks become free as screened by the effects of
the temperature. Hence, the potential exhibits behavior expected for the deconfinement phase at
high temperature when the meson decays into a configuration of quarks without interaction.

As a matter of fact, linear potentials can also appear in supergravity. For this, we will consider
spatial Wilson loops (i.e. along two spacelike dimensions) at fixed value of the temperature [5][7].
Then, the heavy quark potential and the interquark distance as functions of U0 and UT are [7]:

r =
2R̃2

U0

∫
∞

1

dv√
(v4−1+ ε)(v4−1)

, (2.3)

VQQ̄ =
U2

0

2πR̃2 r +
U0

π

∫
∞

1
dv

√ v4−1
v4−1+ ε

−1

+
UT −U0

π
. (2.4)

In the limit U0 ' UT (ε � 1) where the string world-sheet reaches the horizon, the interquark
distance diverge, which thus corresponds to the large distance limit. On the other hand, when rT �
1, the circle S1(1/T ) around the compactified Euclidean time direction is small and, as a result, the
number of dimensions of the 4d gauge theory on the boundary reduces to three. By choosing
appropriate boundary conditions along this circle (namely, by taking antiperiodic fermions around
S1(1/T ) in contrast to the periodic bosons), the supersymmetry can also be broken [5]. Moreover,
as both fermions and scalars get masses related to the temperature (due to renormalization for the
latter), they decouple at high enough temperature and the theory reduces to a pure non-conformal
gauge theory. We are thus considering, at large distances, 3d non-supersymmetric Yang-Mills
theory at zero temperature. On the contrary, at small distances rT � 1, the compactification radius
of the circle is sizeable. We deal therefore with 4d supersymmetric Yang-Mills theory at zero
temperature and, not surprisingly, we recover Maldacena’s result (1.3). An expansion in power
series of ε gives the leading and subleading terms in the static potential at large quark separation:

VQQ̄ =
U2

T

2πR̃2 r
(

1− 1
2

e−
2UT
R̃2 r
)

. (2.5)

As expected, the string tension is proportional to (the square of) the temperature since it is our only
dimensionful parameter at hand:

σT =
U2

T

2πR̃2 =
1
2

πR̃2T 2 =
√

π3gsNT 2 . (2.6)

The subleading term in the potential (2.5) is not the Lüscher term in -1/r as predicted by effective
string models and Lattice QCD. The result (2.5) is not so surprising in fact since the limits at work
in the supergravity approach are the large N and the large ’t Hooft coupling constant limits and it
is known that there is no Lüscher term in the strong coupling regime on the lattice. In this respect,
Ref.[7] argued that the Lüscher term could arise from quantum fluctuations of the classical world-
sheet approximation. Let us also mention that the linear behavior of the potential is not spoilt by
the leading stringy corrections O(α ′3) of the metric (2.1). The expressions (2.3) and (2.4) of r and
VQQ̄ are modified only by terms in 1/v which do not rule out their singular behaviors in the limit
U0 'UT .
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The Schwarzschild black hole−AdS5 geometry described above was required in order to deal
with a 3d gauge theory (after compactification of the Euclidean time direction). If we are interested
in studying higher-dimensional gauge theories, it is then necessary to consider the general case of
a stack of N coincident Dp-branes in the decoupling limit. We are therefore led to the (Euclidean)
metric [8]:

ds2 =α
′
{ u

(7−p)
2

g(p+1)
Y M

√
dpN

(dt2 +d−→x 2)+
g(p+1)

Y M
√

dpN

u
7−p

2

du2

+g(p+1)
Y M

√
dpNu

(p−3)
2 dΩ

2
8−p

}
(2.7)

with dp ≡ 27−2pπ
9−3p

2 Γ(7−p
2 ) and where the coupling constant g(p+1) of the (p + 1)-dimensional

SU(N) supersymmetric Yang-Mills theory is related to gs as g(p+1)2
= (2π)p−2gs α ′

(p−3)
2 . The case

of interest here consists of p = 4, for which g(5)2
= 4π2gs

√
α ′, and non-zero temperature. The

solution of the equations of motion for the stack of N coincident Dp-branes in the decoupling limit
is then:

ds2
BH = α

′
[ u3/2

R3/2
4

(
g(u)dt2 +d−→x 2

)
+

R3/2
4

u3/2

du2

g(u)
+R3/2

4
√

udΩ
2
4

]
(2.8)

where g(u) = 1− u3
T

u3 and uT = 16
9 π2R3

4T 2 = 4
9 πg(5)2

N T 2 3. In this case, the interquark distance
and the static potential read as follows (ε ≡ g(U0)):

r =
2R3/2

4

U1/2
0

∫
∞

1

dv√
(v3−1+ ε)(v3−1)

(2.9)

and

VQQ̄ =
U3/2

0

2πR3/2
4

r +
U0

π

∫
∞

1
dv
(√ v3−1

v3−1+ ε
−1
)

+
UT −U0

π
. (2.10)

Here also, one can show that the potential presents an area law behavior (when U0 'UT ) with a
string tension:

σt =
U3/2

T

2πR3/2
4

=
8
27

πg(4)2
N T 2 (2.11)

expressed in terms of the 4d gauge theory coupling g(4)2
= g(5)2

T . To summarize, we observe
an area law for spatial Wilson loops in 4d and 5d supersymmetric Yang-Mills theories at finite
temperature. This is then interpreted as the area law of spacetime Wilson loops (after having
identified one of the spatial coordinates of the higher-dimensional theory to the non-compactified
Euclidean time) in 3d and 4d non-supersymmetric Yang-Mills theories at zero temperature.

3We have defined R3/2
4 ≡ g(5)√d4N = g(5)

√
N
4π

such that R4 has the dimension of a length1/3 (g(5) has the dimen-

sion of a length1/2).
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3. The supergravity description of baryons

In a SU(N) Yang-Mills theory, a color-singlet baryon must be made of N quarks. As described
in the supergravity dual, such a baryon consists of N quarks living on the boundary. On each of
these quarks ends a string whose the other endpoint is attached to a D5-brane wrapped around S5:
the so-called baryon vertex located at the holographic coordinate u0 [9]. The typical radius of the
baryon is denoted r. Moreover, the configuration of the N quarks on the boundary is symmetric
with respect to the boundary dimensions such that the resulting force acting on the baryon vertex is
zero along these directions. In the following, we will consider only the induced metric contribution
in the Dirac-Born-Infeld action of the D5-brane [10]4:

SD5 = T5

∫
d6x
√

det gD5 =
T NU0

8π
. (3.1)

The total action of the baryonic system is thus:

Stotal =SD5 +
N

∑
i=1

S(i)
string

=
T NU0

8π
+

T N
2π

∫ r

0
dx

√
U ′2 +

U4

R̃4 (3.2)

where the integral over the boundary spatial coordinate x runs from 0 to the typical radius r of the
baryon. The stability (or no-force) condition for the baryon vertex along the holographic coordinate
stems from variational principle and reads:

δStotal|surface
term at U0

= 0 ⇒
U ′0√

U ′0
2 + U4

0
R̃4

=
1
4

. (3.3)

On the other hand, Maldacena’s recipe gives the energy of the baryon:

VB(r) =−NαB

√
2λ

r
(3.4)

with a coefficient given by

αB =
1

2π

∫
∞

1

du

u2
√

β 2u4−1

{3
4
−
∫

∞

1
dv
[

βv2√
β 2v4−1

−1
]}

(3.5)

of numerical value αB ' 0.036 (β =
√

16
15 ) and whose the behavior in 1/r is dictated by the con-

formal invariance of the field theory on the boundary.
Remarkably, another string configuration has been identified [10] which allows, on the super-

gravity side, to account for baryons made of a smaller number of quark constituents k < N. In such
a configuration, k strings attached to the baryon vertex end on the k quarks at the boundary while

4In general, Dp-branes carry electromagnetic fields on their (p+1)-dimensional world-volume whose the dynamics
is governed by the so-called Dirac-Born-Infeld action: SDp = Tp

∫
dp+1x

√
−det(ηMN +2πα ′FMN) with Tp = 2π

(2πls)p+1gs
the brane tension and M,N = 0,1, . . . , p the spacetime indices on the (flat) world-volume of the Dp-brane. Especially,
T−1

5 = (2π)5α ′3gs.
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the N− k remaining strings stretch out up to the brane at u = 0. The total action governing the
dynamics of the baryon is then:

Stotal =SD5 +
k

∑
i=1

S(i)
string +

N−k

∑
j=1

S( j)
string

=
T NU0

8π
+

k T
2π

∫ r

0
dx

√
U ′2 +

U4

R̃4 +
T (N− k)U0

2π
(3.6)

with the following stability condition for the baryon vertex along the holographic coordinate:

δStotal|surface
term at U0

= 0 ⇒
U ′0√

U ′0
2 + U4

0
R̃4

=
5N−4k

4k
≡ A . (3.7)

If k = N, then A = 1
4 and we recover (3.3). The upper bound for A (which corresponds to the lower

bound for k) is obtained for radial straight k-type strings ending on the baryon vertex such that
U ′0→ ∞. Then, A = 1 or k = 5N

8 . Finally, the condition for having a stable string-brane system into
the bulk demands 5N

8 ≤ k≤ N. As for the potential, if k = 5N
8 then VB(U0) = 0 independently of the

location U0 of the baryon vertex along the holographic coordinate (actually, the size r(U0) of the
baryon vanishes). If 5N

8 < k ≤ N then the energy VB(r) = −α U0(r) can be written as the product
of a negative constant −α with U0 expressed in terms of the baryon radius r [10].

To conclude this section, let us consider a spatial string/brane configuration in the Schwarzschild
black hole−AdS5 background (2.1). Following the same techniques as described above, the total
action as well as the stability condition of the system can be derived. We are interested in the large
distance regime where the typical radius of the baryons is large and where the D5-brane reaches
the horizon (U0 'UT ). A linear potential then arises with a string tension equals to N times the
mesonic string tension (2.6):

VB(r) = N
(1

2
πR̃2T 2

)
r . (3.8)
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