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1. Introduction

Although general relativity and the standard model are different in nature, is widely known that
gravity can be viewed as a gauge theory [1, 2, 3]. To do that, two fundamental fields are introduced,
the vierbein e and the spin connection ω . The geometric properties of spacetime are obtained from
specific composite fields that are constructed using these fundamental fields [3]. It turns out that
the deep relation between the fields of gravity and spacetime ruins the possibility of a quantum
description of gravity independent of the background geometry, i.e., a quantum field should not
depend on parameters that also fluctuate. Moreover, even in a background dependent quantization,
the Einstein-Hilbert action itself is not enough to ensure perturbative quantum stability of gravity
[4]. To circumvent these problems, by generalizing the gauge groups and their respective actions,
many other theories have been proposed. For instance, as discussed in [5, 6, 7, 8, 9], spontaneous
symmetry breaking based on a Higgs-like mechanism was used to make the vierbein emerge. In
these works, besides de Sitter groups, several groups were considered, as well as different starting
actions that encode gravity as a limit.

The present work is about de Sitter gauge theories in four-dimensional Euclidean spacetime.
The starting action is the massless pure Yang-Mills action with SO(m,n) gauge symmetry where
m+n = 5 and m ∈ {0,1,2}. Thus, renormalizability is ensured at least to all orders in perturbation
theory. The choice of a Euclidean space is not accidental; it follows from the fact that any quan-
tum field theory is actually treatable only in Euclidean spaces (even perturbatively, where a Wick
rotation is needed for reliable quantum computations). Moreover, in a Euclidean manifold, space
and time are indistinguishable, and thus, time evolution of any physical system becomes, at least,
unclear. On the other hand, non-Abelian gauge theories have two main effects. First, the theory
is perturbatively asymptotically free [10, 11]. Second, dynamical mass parameters might arise at
non-perturbative level as the coupling parameter increases [12, 13]. The combination of both ef-
fects can be used to show that an induced gravity theory can emerge naturally, where the running
parameters induce a dynamical symmetry breaking to Lorentz type groups. Then, a suitable map-
ping enables a gravity theory to rise. In this theory, the dynamical mass plays the fundamental role
of distinguishing the quantum and classical sectors of gravity. The quantum sector is a standard
spin-1 gauge theory, and the classical sector is an effective geometrodynamics [14].

2. de Sitter gauge theories and effective geometry

The gauge group SO(m,n) defines an internal flat space Rm,n
S which has no relation to the

four dimensional spacetime R4. The 10 anti-hermitian generators JAB of the gauge group, where
{A,B, . . .} ∈ {5,0,1,2,3}, are antisymmetric in their indices. The invariant Killing metric is ηAB ≡
diag(ε,ε,1,1,1) where ε = (−1)(2−m)! and ε = (−1)m!+1. The group can be decomposed by
projecting the fifth coordinate, SO(m,n)≡ SO(m!−1,n)⊗S(4), in such a way that[

Jab,Jcd
]
= −1

2

[(
η

acJbd +η
bdJac

)
−
(

η
adJbc +η

bcJad
)]

,[
Ja,Jb

]
= −ε

2
Jab ,[

Jab,Jc
]
=

1
2

(
η

acJb−η
bcJa

)
, (2.1)
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where, {a,b, . . .} ∈ {0,1,2,3} and J5a = Ja and ηab ≡ diag(ε,1,1,1).
The fundamental field is the 1-form gauge connection, an algebra-valued quantity in the ad-

joint representation, Y = Y A
BJ B

A = Aa
bJ b

a +θ aJa, whose gauge transformation is given by Y 7−→
u−1

(
κ−1d+Y

)
u
∣∣∣ u ∈ SO(m,n), where, obviously, κ is a dimensionless coupling parameter and d

the exterior derivative. At infinitesimal level, we have Y 7−→Y +∇ζ , where u = exp(κζ )≈ 1+κζ

and ∇ = d+κY is the full covariant derivative. This transformation decomposes as

Aa
b 7−→ Aa

b +Dα
a
b−

εκ

4
(θ a

ξb−θbξ
a) ,

θ
a 7−→ θ

a +Dξ
a +κα

a
bθ

b , (2.2)

where ζ = αa
bJ b

a + ξ aJa and D = d+ κA is the covariant derivative with respect to the sector
SO(m!−1,n). The 2-form field strength is obtained from F = ∇2 = dY +κYY , which decomposes
as F =

(
Ωa

b−
εκ

4 θ aθb
)

J b
a +KaJa where Ωa

b = dAa
b +κAa

cAc
b and Ka = Dθ a = dθ a−κAa

bθ b.
It turns out that, the most general, gauge invariant, massless, renormalizable action is the usual

Yang-Mills action. This action can be written as

SYM =
1
2

∫ [
Ω

a
b∗Ω b

a +
1
2

Ka∗Ka−
εκ

2
Ω

a
b∗(θaθ

b)+
κ2

16
θ

a
θb∗(θaθ

b)

]
, (2.3)

where ∗ denotes the Hodge dual operation in spacetime. Besides quantum stability, this action has
three main properties. First, the theory is asymptotically free [10, 11]. As a consequence, a non-
pertubative behavior is expected at the infrared regime, which becomes more evident by means
of an increasing of the coupling parameter κ . Second, the non-linearity of the theory also favors
the condensation of composite operators and thus the possibility of dynamical mass parameters to
emerge [12, 13]. Third, on the other hand, at least one mass parameter is required for quantization
improvements in order to fix the so called Gribov ambiguities [12, 13].

At the ultra-violet regime, an important feature of the present action is the absence of mass
parameters. Usually, in de Sitter gravity [6, 8], the field θ a possesses components θ a

µ that carry
ultra-violet (UV) dimension 0 and always appear with a mass scale factor (the cosmological con-
stant) to adjust the correct UV dimension of a connection component. In the present model, the
components θ a

µ carry UV dimension 1 and then cannot be directly associated with coframes. The
realization of such identification is only possible at the IR regime where dynamical masses emerge.
The first step in this achievement is to assume, independently of the physical mechanism, the exis-
tence of a mass scale, denoted here by γ . The existence of a mass allows a rescaling of the fields
A 7−→ κ−1A and θ 7−→ κ−1γθ . In this rescaling, the mass parameter affects only the θ -sector,
transforming it in a field with dimensionless components. The consequence for the action (2.3) is

S =
1

2κ2

∫ [
Ω

a
b∗Ω

b
a +

γ2

2
Ka∗Ka−

εγ2

2
Ω

a
b∗(θaθ

b)+
γ4

16
θ

a
θb∗(θaθ

b)

]
, (2.4)

where Ω
a

b = dAa
b +Aa

cAc
b, Ka

= Dθ a and the covariant derivative is now D = d+A.
The consequence for the Lie algebra is that the second of Eq. (2.1) is replaced by

[
Ja,Jb

]
=

− εγ2

2κ2 Jab. Thus, assuming that, at low energies, the quantity γ2/κ2 is very small for some non-
perturbative scales, an Inönü-Wigner contraction takes place [15]. The result is that the de Sitter
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group is contracted down to the Poincaré group where Ja 7−→Pa. However, this contraction induces
a symmetry breaking of the action in Eq. (2.4), not to the Poincaré group ISO(m!− 1,n), but to
the Lorentz group SO(m!− 1,n). This is evident if one realizes that the Poincaré group is not a
subgroup of the de Sitter group, and the Lorentz group is a stability subgroup with respect to the
de Sitter group. Under this dynamical breaking, the gauge transformations in Eq. (2.2) reduce to
Aa

b 7−→ Aa
b +Dαa

b and θ a 7−→ θ a−αa
bθ b. Thus, the field θ migrates to the matter sector while

A is a gauge connection for the Lorentz group.
To associate the action in Eq. (2.4) with gravity [14, 16, 17], it is necessary to define an iso-

morphism that maps each point x ∈R4 into a point X ∈M4, the latter being the effective deformed
spacetime. The local gauge group SO(m!−1,n) defines, at each point X , the isometries of the tan-
gent space TX(M). It is also convenient to impose that the space of p-forms in R4 is identified with
the space of p-forms in M4, and the same for the Hodge duals, i.e., Πp 7−→ Π̃p and ∗Πp 7−→ ?Π̃p,
where ? is the Hodge dual in M4. Moreover, θ and A can be identified with the vierbein e and
spin connection ω , i.e., ωab

µ (X)dX µ = δ a
a δ b

b Aab
µ (x)dxµ and eaµ(X)dX µ = δ a

a θ a
µ(x)dxµ . The indices

{a,b, . . .} belong to the tangent space TX(M). Thus, each gauge configuration (A,θ) is identified
with an effective geometry (ω,e), and gravity emerges from a QFT as an effective phenomenon.

Finally, the action in Eq. (2.4) is then mapped into

S =
1

8πG

∫ [ 1
2Λ2 Ra

b ?R b
a +T a ?Ta−

ε

2
εabcdRabeced+

Λ2

4
εabcdeaebeced

]
, (2.5)

where Ra
b = dωa

b+ωa
cω

c
b and T a = dea−ωa

beb are the curvature and torsion in M4, respectively.
Moreover, Newton and cosmological constants are obtained from the relations γ2 = κ2/2πG and
Λ2 = γ2/4.

As a gauge theory in the cotangent bundle [16, 17], the physical observables have to be gauge
invariant operators. In this case, two relatively simple quantities determine the geometry os space-
time, namely, the metric tensor g = ηabea⊗ eb and the affine connection Γµ = eα

a (δ
a
b ∂µ +ωa

µb)e
b
ν .

3. Discussion

We started with a standard gauge theory in a Euclidean four-dimensional spacetime. The the-
ory is actually renormalizable, at least through all orders in perturbation theory. As a non-Abelian
gauge theory, it presents asymptotic freedom and the possibility of dynamical mass generation.
Then, a proposition for quantum gravity has been made, as long as it induces an effective geometry
that could be interpreted as gravity. The fact that the theory possesses a mass parameter enabled the
vierbein to emerge. Moreover, the deformation of the de Sitter algebra at low energies induces a
symmetry breaking for the Lorentz group, which finally allows the identification for the fundamen-
tal fields with geometric quantities. The resulting effective theory is a geometrodynamical gravity
described by action in Eq. (2.5). It is easy to show that the simplest vacuum solution is a de Sitter
type spacetime [14].

The fact that the gauge group determines the local isometries has a remarkable consequence:
For the cases m ∈ {0,1}, the reduced group is SO(4) implying that the local isometries are that of
an Euclidean space. On the other hand, for m = 2, it is the Lorentz group SO(1,3) that determines
the local isometries. As a consequence of the latter case, space and time are then explicitly distinct
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from each other. This effect can be interpreted as the rising of the equivalence principle. If unitarity
is required for quantum consistency, then a Wick rotation can be attached to the mapping [14].

It is also remarkable that Newton’s and cosmological constants can be actually computed from
the standard quantum field theory techniques, at least at perturbative level. Moreover, they are
related quantities through Λ2 = κ2/8πG. Thus, for a small G solution, Λ should be big and might
compensate for the quantum field theory predictions in order to generate an effective cosmological
constant consistent with astrophysical observations.

Nevertheless, one may argue that the presented mechanism violates Weinberg-Witten theorems
[18] which forbid: (i) massless charged states with helicity j > 1/2 that have conserved Lorentz-
covariant current and (ii) massless states with helicity j > 1 that have conserved Lorentz-covariant
energy-momentum tensor. However, this is not the case here. First, the theory has a few mass
parameters and the theorem holds for massless states only. Second, and more important, there are
no spin-2 states in this model. The fields are identified with geometry and not with spin-2 composite
fields. Gravity emerges as geometrodynamics and not as a field theory for spin-2 particles.

Let us also compare the present mechanism with the standard model. Strong, weak and elec-
tromagnetic interactions are described by gauge theories. At high energies, these theories are very
similar (except for the gauge groups). At low energies, however, these theories tend to behave in
very different ways. While electrodynamics remains essentially in a perturbative regime, weak in-
teractions suffer spontaneous symmetry breaking through the Higgs mechanism. On the other hand,
quark-gluon confinement show up in chromodynamics, and hadronization phenomena take place.
Specifically, confinement and the gauge principle state that physical observables must be gauge
invariant and colorless. Those states are recognized as hadrons and glueballs. Now, if the present
theory can describe gravity, then: (i) at high energies, gravity is a gauge theory very similar to the
other fundamental interactions; (ii) at low energies, instead of hadrons and glueballs, the physical
observables are identified with geometry, and spacetime itself is affected by this theory. Thus, ge-
ometry appears as the low energy manifestation of gravity, in the same way that hadronization and
spontaneous symmetry breaking are the low energy manifestations of chromodynamics and weak
interactions.

Finally, for now, we can only say that a standard four-dimensional renormalizable Yang-Mills
theory can generate a gravity theory at low energy regime. Obviously, many computations and
tests must be performed before we recognize this theory (or some variation) as the quantum gravity
theory or only an academic exercise.
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