
P
o
S
(
R
i
o
 
d
e
 
J
a
n
e
i
r
o
 
2
0
1
2
)
0
2
3

Nonlocal multiplicative anomaly in fermionic
effective actions

Dante D. Pereira∗†

Departamento de Física - ICE, Universidade Federal de Juiz de Fora - UFJF
36036-330, Juiz de Fora, Minas Gerais, Brazil
E-mail: dante.pereira@fisica.ufjf.br

We discuss an ambiguity in the one-loop effective action of massive fields which takes place in
massive fermionic theories. The universality of logarithmic UV divergences in different space-
time dimensions leads to the nonuniversality of the finite part of effective action. This can be
observed in the fermionic determinants and can be called nonlocal multiplicative anomaly. We
will discuss this phenomenon in full details to the case of a Dirac fermion coupled to external
scalar field by the Yukawa interaction.

7th Conference on Mathematical Methods in Physics - Londrina 2012,
16 to 20 April 2012
Rio de Janeiro, Brazil

∗Speaker.
†The author is grateful to Ilya L. Shapiro and Guilherme de Berredo-Peixoto for collaboration and discussions. The

work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:dante.pereira@fisica.ufjf.br


P
o
S
(
R
i
o
 
d
e
 
J
a
n
e
i
r
o
 
2
0
1
2
)
0
2
3

Nonlocal multiplicative anomaly in fermionic effective actions Dante D. Pereira

1. Introduction

The one-loop calculations have a prominent role in Quantum Field Theory (QFT) and in many
of its most relevant applications. In the background field method the one-loop effective action
(EA) can be always reduced to the derivation of Ln sDetĤ of the operator Ĥ , which is typically
a bilinear form of the classical action with respect to the quantum fields. In particular, relations
such as

det( ˆA · B̂) = det ˆA · detB̂, tr ln ˆA = ln det ˆA , (1.1)

which can be easily proved for finite dimensional matrices, may be incorrect for the functional
determinants of differential operators, including the ones which are relevant for QFT applications.
Considerable work has been done to prove that this equality can be violated, but in all previously
known cases the difference could be reduced to renormalization ambiguity. In this manuscript we
present an example where the difference between the two functional determinants is a nonlocal
expression and therefore can not be explained by the renormalization ambiguity [1].

This contribution represents a brief version of our paper [2]. The content is not original, but
the purpose is to present it in a maximally simple and qualitative form.

2. General considerations

Consider the one-loop quantum corrections to EA for a general fermionic operator

Γ̄(1) = − i Ln sDetĤ , Ĥ = i(γµ∇µ − im1̂− iΘ̂) . (2.1)

Here sDet represents the functional superdeterminant (also called Berezinian) and Θ̂ corresponds
to a condensed notation for a set of external fields.

We will define the expression (2.1) through the heat-kernel method and the Schwinger-DeWitt
technique, and this requires reducing the problem to the derivation of Ln sDet ξ̂ , where1

ξ̂ = 1̂�+2ĥµ∇µ + Π̂ . (2.2)

In order to use the Schwinger-DeWitt technique, we need to make a reduction to the second-order
operator, for this end one has to multiply Ĥ by an appropriate conjugate operator and arrive at
ξ̂ = Ĥ ·Ĥ ∗, and use the relation

Ln sDet Ĥ = Ln sDet ξ̂ − Ln sDet Ĥ ∗ . (2.3)

Indeed, there is more than one option for choosing the conjugate operator which enables one to use
the relation (2.3) in an efficient way. The simplest choice is

Ĥ ∗
1 ≡ Ĥ = i(γµ∇µ − im1̂− iΘ̂) ⇒ Ln sDet Ĥ =

1
2

Ln sDet
(
Ĥ Ĥ ∗

1
)
. (2.4)

An alternative choice of the conjugate operator is

Ĥ ∗
2 = i

(
γµ∇µ − im1̂

)
⇒ Ln sDetĤ

∣∣∣
Θ̂
= Ln sDet

(
Ĥ Ĥ ∗

2
)∣∣∣

Θ̂
, (2.5)

1In this work we consider a Wick rotation of the Euclidean space to Minkowski space.
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where the index Θ̂ means we are interested only in the Θ̂-dependent part of EA.
It is easy to note that if the relations (1.1) hold for the fermionic functional determinants, we

are going to meet the two equal expressions,

1
2

Ln sDet
(
Ĥ Ĥ ∗

1
)∣∣∣

Θ̂
= Ln sDet

(
Ĥ Ĥ ∗

2
)∣∣∣

Θ̂
. (2.6)

As we shall see below, in reality the Eq. (2.6) is satisfied for divergencies, but not for the
nonlocal finite parts of the two effective actions. This is nothing else, but the nonlocal version of
Multiplicative Anomaly (MA) [3, 4]. The possibility of this mathematical feature of the functional
determinants has been discussed for the long time on the basis of ζ -regularization (see, e.g., [5]),
but it was soon realized that the difference can be just a manifestation of the different choice of µ
for the distinct determinants [4]. The only safe way to obtain MA is to detect it in the nonlocal
part of EA, which is qualitatively different from the local one related to divergences. In this case
we will see that the MA is some new ambiguity of EA and not a particular case of the well-known
µ-dependence.

Before starting practical calculations, let us make some general observations on the relation
(2.6) for divergencies and for the finite part of EA. Within the heat-kernel method and Schwinger-
DeWitt technique [6], the one-loop EA is given by the expression (see, e.g., [7])

Γ̄(1) =
i

2(4π)ω

∞

∑
k=0

Ak

∞∫
0

ds(is)(k−ω−1) exp(−ism2) , (2.7)

where 2ω is space-time dimension and Ak are the global Schwinger-DeWitt coefficients.
The first three coefficients have the form

A0 =
∫

d2ωx
√
−g tr 1̂ , A1 =

∫
d2ωx

√
−g tr P̂ ,

A2 =
∫

d2ωx
√
−g tr

{ 1̂
180

(R2
µναβ −R2

µν +�R) +
1
2

P̂2 +
1
6
(�P̂) +

1
12

Ŝ2
µν

}
, (2.8)

where the operators

P̂ = Π̂+
1̂
6

R−∇µ ĥµ − ĥµ ĥµ , Ŝµν = 1̂[∇ν ,∇µ ]+∇ν ĥµ −∇µ ĥν + ĥν ĥµ − ĥµ ĥν , (2.9)

are defined in terms of operators (2.2).
Finally, is easy to see that only terms in the summation which can contain divergences are those

with k ≤ ω [6]. For example, in the 4-dimensional case the A2 coefficient defines the logarithmic
UV divergence, while the A1 defines the quadratic divergences and A0 is associated to quartic
divergences.

3. Multiplicative anomaly in QFT

In this section we present an example in QFT in which the MA takes place in the framework
of the Yukawa theory.
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3.1 Calculation of Ak coefficients

In order to verify the validity of the relation (2.6), we perform the calculation of the first two
Schwinger-DeWitt coefficients in two different schemes for calculating defined from Eqs. (2.4)
and (2.5) and then evaluating the quantity

△Ak(ω,Θ̂) = A(1)
k (ω,Θ̂)

∣∣∣
Θ
−A(2)

k (ω,Θ̂)
∣∣∣
Θ
, k = 1,2, (3.1)

which is associated with the phenomenon of MA.
In the general case of fermionic operator (2.1) with conjugate operators (2.4) and (2.5), one

can take care of the most simple coefficient of A1 to arrive at the criteria of existence for the MA.
The calculations of the traces can be done by using Eq. (2.9). The difference between these two
expressions can be presented as

△A1(ω,Θ̂) =
1
2

∫
d2ωx

√
−g

{
(ω −1) tr(Θ̂Θ̂)− i tr(∇µΘ̂γµ)

}
. (3.2)

We can see that this difference consists of two terms. The first one is proportional to ω −1, exactly
as we have anticipated in the previous section from general qualitative arguments. According to
what we have discussed, this term does vanish in two dimensions (ω = 1), where it defines the
logarithmic UV divergence. However, due to the (ω − 1) factor, it does not vanish in ω ̸= 1, and
hence the quadratic divergence in ω = 2 is scheme-dependent. Another part of (3.2) is the surface
term, which is also quite remarkable, but for different reason. First of all, this kind of ambiguity
is not related to the mass of quantum field and therefore has absolutely different origin compared
to the terms of the first type as it was discussed previously in the literature on conformal anomaly
[8]. Any way, the difference (3.2) includes two terms of very different origin which represent two
distinct types of the QFT ambiguities and hence can not cancel.

Let us now perform complete analysis for a simplest case of Yukawa model where Θ̂ = 1̂hϕ .
The calculation of the second global Schwinger-DeWitt coefficient can be done in a usual way
for the two calculational schemes (2.4) and (2.5) in 2ω space-time dimensions. The difference
△A2(ω, ϕ̂) can be presented in the form

△A2(ω, ϕ̂) =
∫

d2ωx
√
−g

{1
3

h2�ϕ 2 +2
[
m2h2ϕ 2 +mh3ϕ 3 +

7
24

h4ϕ 4
]
(ω −2)3

+
[
7m2h2ϕ 2 − 1

12
Rh2ϕ 2 − 1

6
(∇ϕ)2h2 +7mh3ϕ 3 +

25
12

h4ϕ 4
]
(ω −2)2

+ 2
[
3m2h2ϕ 2 − 1

12
Rh2ϕ 2 − 1

6
(∇ϕ)2h2 +3mh3ϕ 3 +

11
12

h4ϕ 4
]
(ω −2)

}
. (3.3)

It is easy to see that the difference consists of two kinds of terms. All but the first term do vanish
in and only in the four dimensional case, exactly as the difference △A1 vanish in two dimensions.
Obviously, the structure of these terms confirm our consideration about the universality of the
dynamical terms in logarithmic UV divergences [9] and, at the same time, the non-universality of
power-like divergences and finite terms in the case ω ̸= 2.

3.2 Calculation of form factors and β -functions to Yukawa theory

The calculation of form factors has been described in full details in [10], so we shall just give
the result of the calculations in our case. The one-loop contribution to the EA can be presented in
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the form

Γ̄(1) =
1
2

∫
d4x

√
−g

{
∇µϕ kkin(a)∇µϕ +ϕ 2 kRϕ 2(a)R+ϕ 2 kϕ 2ϕ 2(a)ϕ 2

}
, (3.4)

where the form factors k are defined in terms of useful notations

Y = 1− 1
a

ln
(

2+a
2−a

)
, a2 =

4�
�−4m2 . (3.5)

We have found the following two sets of form factors corresponding to the calculational schemes
(2.4) and (2.5).

k(1)Rϕ 2(a) = −h2(−14a2 +45Ya2 −168Y )
9(4π)2 a2 , k(2)Rϕ 2(a) =−h2(−3a2 +10Ya2 −36Y )

3(4π)2 a2 ,

k(1)ϕ 2 ϕ 2(a) =
2h4(−8a2 +27Ya2 −96Y )

3(4π)2 a2 , k(2)ϕ 2 ϕ 2(a) =
2h4(6Ya2 −a2 −12Y )

3(4π)2 a2 ,

k(1)kin(a) = −2h2(a2 +12Y )
3(4π)2 a2 , k(2)kin(a) =−h2(a2 +3Ya2 +12Y )

3(4π)2 a2 . (3.6)

The UV (a → 2) limits of the two sets of expressions do coincide,

k(1,2) UV
Rϕ 2 =−h2 ln(a−2)

6(4π)2 , k(1,2) UV
ϕ 2 ϕ 2 =

h4 ln(a−2)
(4π)2 , k(1,2) UV

kin =−h2 ln(a−2)
(4π)2 , (3.7)

and the IR limit (a → 0) for the same form factors are different,

k(1) IR
Rϕ 2 =

11h2

60(4π)2 a2 +O(a4), k(2) IR
Rϕ 2 =

23h2

180(4π)2 a2 +O(a4),

k(1) IR
ϕ 2 ϕ 2 = − 7h4

10(4π)2 a2 +O(a4), k(2) IR
ϕ 2 ϕ 2 =− 7h4

30(4π)2 a2 +O(a4),

k(1) IR
kin =

h2

10(4π)2 a2 +O(a4), k(2) IR
kin =

2h2

15(4π)2 a2 +O(a4). (3.8)

Another way to observe the MA in massive theories is though the physical β -functions. In the
framework of the momentum-subtraction renormalization scheme, we obtain the corresponding
β -functions

β (1)
ξ =

h2
{

a2(15a2 −56)+(228a2 −672−15a4)Y
}

12(4π)2 a2 ,β (2)
ξ =

h2
{

a2(5a2 −18)+(74a2 −216−5a4)Y
}

6(4π)2 a2 ,

β (1)
λ = −

h4
{

a2(9a2 −32)+(132a2 −384−9a4)Y
}

2(4π)2 a2 ,β (2)
λ =−

h4
{

a2(a2 −2)+(10a2 −24−a4)Y
}

(4π)2 a2 ,

γ(1)kin =
2h2

{
a2 +(12−3a2)Y

}
(4π)2 a2 , γ(2)kin =

h2
{

a2(a2 +4)+(48−8a2 −a4)Y
}

4(4π)2 a2 . (3.9)

The UV limit in the complete β -functions (3.9) is the same for the two calculational approaches,

β (1,2)UV
ξ =

h2

3(4π)2 , β (1,2)UV
λ =− 2h4

(4π)2 , γ(1,2)UV
kin =

2h2

(4π)2 . (3.10)
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In the opposite, IR, limit the situation is quite different, indicating an ambiguity in the Appelquist
and Carazzone theorem [11],

β (1) IR
ξ =

11h2

30(4π)2 a2 +O(a4) ,β (2) IR
ξ =

23h2

90(4π)2 a2 +O(a4) ,

β (1) IR
λ = − 7h4

5(4π)2 a2 +O(a4) ,β (2) IR
λ =− 7h4

15(4π)2 a2 +O(a4) ,

γ(1) IR
kin =

h2

5(4π)2 a2 +O(a4) ,γ(2) IR
kin =

4h2

15(4π)2 a2 +O(a4) . (3.11)

We can see that in all cases the decoupling in Eqs. (3.11) is quadratic, according to the Appelquist
and Carazzone theorem, but the coefficients depend on the choice of calculational scheme. Let
us note that from physical viewpoint the first choice with Ĥ ∗

1 is much better because it helps to
preserve the gauge invariance [10].

4. Conclusions

We have explored in details an ambiguity which takes place in the derivation of fermionic
functional determinants by means of the heat kernel method. There are two kind of ambiguities,
which have essentially different origins. The first one takes place only in case of massive theories
and shows the deep importance and universality of the logarithmic UV divergences. Another sort
of ambiguity does not depend on whether the quantum field is massive or massless, it occurs in the
divergent total-derivative terms. The common point is that both of them can not be compensated
by the change of coefficients in the infinite local counterterms, which are introduced in the process
of renormalization. It would be very interesting to find other examples of such an ambiguity for
other (nonfermionic) theories, and we hope to find such examples in the future.
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