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Modular data for Drinfeld doubles

1. Introduction

1.1 Summary

To any finite group H one can associate not only its group algebra CH (a cocommutative Hopf
algebra) but also a non-cocommutative Hopf algebra D(H) called its Drinfeld double [7].

Usual representation theory of a finite group is the representation theory of its group algebra.
One can also consider the representation theory of its Drinfeld double. Fusion rules describing the
reduction of a tensor product of irreducible representations of CH can be deduced from the char-
acter table of the group. In the same way, fusion rules describing the reduction of a tensor product
of irreducible representations of D(H) can be deduced from the modular S matrix of the double,
which is often called the “finite group modular data”, like in [4], or, sometimes, the “character table
of its quantum double”.

One can associate with D(H) a fusion category (of representations) that is modular – i.e., we
have an action of the modular group SL(2,Z) generated by the so-called S and T modular matrices
on the linear span of the irreps. The construction of D(H) can be twisted by a cocycle, but here we
only refer to the untwisted case.

Character tables for finite groups can be found in many places. This is not so for their modular
data. Although general formulae for S and T exist in the literature [4], [5], and although the subject
is not really new, very few explicit results – i.e., very few tables of modular data– are available, even
in the untwisted situation (see the discussion in section 1.2). In view of applications to conformal
field theory, and for possible applications of Drinfeld doubles to the theory of quantum computers
[10], [11], or maybe for other reasons yet to be discovered, such tables should be calculated and
made accessible. Because of their size, S matrices cannot usually be published in printed form, even
for small groups. The main purpose of this contribution is to announce that several new examples
are now available on-line, on the web site:
http://www.cpt.univ-mrs.fr/~coque/quantumdoubles/comments.html

Our motivation, for undertaking these calculations, was to provide the necessary material that
would allow one to test several conjectures generalizing the results obtained in [2]. We refer the
interested reader to the forthcoming article [3].

For the finite groups listed on the website – a list that includes all exceptional finite subroups of
SU(2) and SU(3), and a few members from their infinite series of subgroups– the available tables
give their modular data, i.e., the matrices S and T , and in most cases the fusion matrices; each
example also comes with a summary text file. Information about the conjugacy classes and their
centralizers was obtained from GAP [13]. Part of the calculation was performed with Magma [14],
with an algorithm which, like in [11], uses a variant of equation 3. The results were then handled
to Mathematica [15]. On the website, S matrices are given as lists of lists whereas T matrices
and fusion matrices are usually described as sparse arrays (Mathematica syntax). Calculation of
fusion matrices, using the Verlinde formula [12], was performed with Mathematica. Properties of
the Drinfeld doubles of finite subgroups of SU(2) and SU(3), together with their fusion graphs, are
given and commented, together with a number of other topics, in the article [3].

The present contribution contains:
1) A sketch of the Drinfeld double construction – see [5, 7, 9] – that we repeat here mostly for cul-
tural reasons, since we are only interested in the representation ring of the latter (in our framework,
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Modular data for Drinfeld doubles

knowing “what” is represented is not necessarily useful).
2) The formulae giving S and T , which can be extracted from [4] or [5], but we use a variant of the
latter (eq. 3).
3) Details about one example whose modular data can be found on the aforementioned website,
namely the Drinfeld double of the binary tetrahedral group.

1.2 Miscellaneous remarks

About existing tables. As it was mentioned, character tables for finite groups can be found in
many books and computerized data basis. They are used by many scientific communities, rang-
ing from chemists and crystallographers to mathematicians. In the same way, for applications of
quantum doubles (in particular Drinfeld doubles) one would need to have access to their modular
data1 (in particular to the S matrix) without having to calculate it from scratch. Unfortunately, such
tables for Drinfeld doubles of finite groups, abstractly defined about 25 years ago, are not easily
available. The situation is even worse for more general quantum doubles (ie twisted Drinfeld dou-
bles) and for c 6= 0 orbifold theories where one considers a Lie group G at level k together with a
finite subgroup H of G. Of course, general expressions that we shall recall later giving the S and
T modular generators for Drinfeld doubles can be found in [4] and [5], but these are intricate for-
mulae involving summations over characters of various subgroups. These are not “tables”. Several
explicit examples of S matrices for c = 1 orbifolds have been worked out for instance in [1] and
[8], and several explicit formulae for S matrices of Drinfeld doubles can be found in [4], in the
case of abelian groups (in particular cyclic groups Zn), dihedral groups Dn, and for the permutation
group S3. More recently, and in the framework of investigations on quantum computing, fusion
rules were published by [11] for the doubles of D3, S3, S4 and of the alternating group A4.

About motivations. Several results (sum rules) recently obtained by [2] for WZW theories, more
precisely for representation theory of simple Lie groups at level k (Kac-Moody algebras) and at
infinite level, i.e., for the Lie groups themselves, lead to various conjectures that we wanted to test
on the representation theory of Drinfeld doubles – see the article [3]. The lack of available explicit
results for modular data concerning doubles made necessary their determination for a variety of
cases. Such results cannot be published in printed form; indeed, for instance, the rank of the
Drinfeld double of the subgroup Σ360×3 of SU(3), a group with class number 17, is 240, so that its
S matrix is a 240×240 matrix with complex coefficients.

2. A sketch of the Drinfeld double construction

Le H be a finite group, F(H), the (commutative) algebra of functions on H. A base is {δg}
where g are the group elements. Let C(H) the (cocommutative) group algebra of H. A base
is {g}, better call it {x}. The Drinfeld double, as a vector space, is : D(H) = F(H)⊗C(H).
A base is {δg ⊗ x}. Multiplication is (δg ⊗ x)(δh ⊗ y) = δg,xhx−1 δg ⊗ xy . Comultiplication is
∆(δg⊗x) = ∑h,k∈H,hk=g(δh⊗x)(δk⊗x). Counit is ε(δg⊗x) = δg,e 1⊗e. Antipode is S (δg⊗x) =

1We already mentioned that the S matrix is the analog of a character table, but the latter is usually normalized in
such a way that the first line is 1,1....1, so that a better analog of the character table is not S itself but the matrix χ with
elements χm,n = Sn,m/Sn,1.
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Modular data for Drinfeld doubles

δx−1g−1x⊗x−1. The Drinfeld double D(H) is a quasi-triangular Hopf algebra (existence of an R ma-
trix obeying Yang-Baxter equations). Its R-matrix is R = ∑g∈H(δg⊗e)

⊗
(1⊗g) ∈D(H)

⊗
D(H).

More generally one can construct the Drinfeld double of a Hopf algebra: the result is a quasi-
triangular Hopf algebra, even if the first is not; in the present case, it was not. The square of the an-
tipode (an automorphism) is given by conjugation by an invertible element u: ∀a∈D(H), S 2(a) =
uau−1. The category of representations of D(H) is modular (it was not so for the category of rep-
resentations of C(H)). There is a finite number of simple objects (irreducible representations or
irreps). Call i, j two simple objects. The modular group SL(2,Z), generated by two elements called
S and T , acts (projective representation): one build matrices Si j and Ti j indexed by irreps i, j of
D(H) and obeying C = S2 = (ST )3,C2 = S4 = 1. To an irrep j of D(H) one associates a complex
number (called conformal weight h j). To this (finite list) of numbers h j we associate the (diagonal)
T matrix: diag(T ) = exp[−2iπ c/24] exp[2iπ {hi}], here we take c = 0. From u (using the square
of the antipode S ) and the list {h j} we associate the matrix S : Si j/S00 = e2iπ(hi+h j) tri⊗ j ∆(u).
Now consider tensor products of irreducible representations of D(H). They are usually reducible:
i⊗ j = ∑k Nk

i j k. From the S matrix one can determine (Verlinde formula) the fusion coefficients
Nk

i j (non negative integers). To i, we associate a fusion matrix Ni with elements (Ni)k
j = Nk

i j. To the
matrix Ni we associate a fusion graph whose adjacency matrix is Ni.

3. General formulae for S and T

As discussed in [4, 5, 7] there is a one to one correspondence between irreps of the Drinfeld
double D(H) and pairs (A,α) where A is a conjugacy class of the finite group H, and α is an irrep
of the centralizer (defined up to conjugation), in H, of any representative2 element of A.

Call Ca the centralizer, in H, of a representative element a of the conjugacy class A. Notice
that |A| |Ca| = |H|. The following expressions for S and T matrix elements of the untwisted case
can be extracted from [4] or [5]. Let A and B be two conjugacy classes of H. We take a ∈ A, b ∈ B,
call Ca and Cb their centralizers, and choose α , an irrep of Ca, and β , an irrep of Cb. Then,

S(A,α)(B,β ) =
1

|Ca||Cb| ∑
g∈H

agbg−1=gbg−1a

χα(gbg−1)∗χβ (g−1ag)∗ (3.1)

T(A,α)(B,β ) = δAB δαβ

χα(a)
χα(e)

, (3.2)

where χα and χβ are the irreducible characters associated with the irreps α and β of the groups Ca

and Cb. The neutral element is e.
Equivalently, let Ta = {ai} (resp. Tb = {b j}) be a system of coset representatives for the left

classes of H/Ca (resp. a system of coset representatives for the left classes of H/Cb), then,

S(A,α)(B,β ) =
1
|H|∑gi j

χα(gi jbg−1
i j )∗χβ (g−1

i j agi j)∗ (3.3)

where the sum runs over all gi j = aib−1
j , with ai ∈ Ta, b j ∈ Tb, that obey [b−1

j bb j,a−1
i aai] = 1;

here [ , ] is the commutator defined as [a,b] = a−1b−1ab.
2Two elements belonging to the same conjugacy class have conjugated (hence isomorphic) centralizers.
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4. Double of the binary tetrahedral group (example)

The tetrahedral group is defined in SO(3) as the finite subgroup of order 12 preserving a tetra-
hedron. Obviously it is isomorphic with A4, the alternating group on 4 objects (even permutations
of the 4 vertices of a tetrahedron). The binary tetrahedral group H, or order 24, is its two-fold cover
in SU(2). It is isomorphic with SL(2,F3), the group of 2× 2 matrices with entries in the field F3,
and determinant one. Here is the list of the 24 elements:(

0 1
2 0

)
,

(
0 1
2 1

)
,

(
0 1
2 2

)
,

(
0 2
1 0

)
,

(
0 2
1 1

)
,

(
0 2
1 2

)
,

(
1 0
0 1

)
,

(
1 1
2 0

)
,(

1 2
1 0

)
,

(
2 0
0 2

)
,

(
2 1
2 0

)
,

(
2 2
1 0

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
1 1
0 1

)
,

(
1 1
1 2

)
,(

1 2
0 1

)
,

(
1 2
2 2

)
,

(
2 0
1 2

)
,

(
2 0
2 2

)
,

(
2 1
0 2

)
,

(
2 1
1 1

)
,

(
2 2
0 2

)
,

(
2 2
2 1

)

The character table of H is given below:

Classes
(

1 0
0 1

) (
−1 0
0 −1

) (
0 1
−1 −1

) (
−1 −1
1 0

) (
0 1
−1 0

) (
0 1
−1 1

) (
1 −1
1 0

)
numbering 1 2 3 4 5 6 7

#(class) 1 1 4 4 6 4 4
order 1 2 3 3 4 6 6
irreps

numbering , names
1, α0 + 1 1 1 1 1 1 1
2, α1 0 1 1 −1− j j 1 j −1− j
3, α5 0 1 1 j −1− j 1 −1− j j
4, α6 − 2 −2 −1 −1 0 1 1
5, α2 0 2 −2 1+ j − j 0 j −1− j
6, α4 0 2 −2 − j 1+ j 0 −1− j j
7, α3 + 3 3 0 0 −1 0 0

Cg H H Z2×Z3 Z2×Z3 Z2×Z2 Z2×Z3 Z2×Z3

|Ĉg| 7 7 6 6 4 6 6

where j = exp(2iπ/3) and the types of irreps are denoted as follows: + real type, 0 complex
type, − quaternionic type. The fourth line of the table lists the order p of the elements (in the
sense gp = 1) in each conjugacy class. The penultimate line gives the centralizers of the conjugacy
classes, and the last line gives the class numbers of the centralizers (the number of their irreps).
All other entries should be clear. The irreps of H are named according to the components of the
highest root of E6 on the base of coroots, since the dimensions of the non trivial irreps of H are the
coroots labels of E6: {1,2,3,2,1,2}, i.e. θ = 1α1 +2α2 +3α3 +2α4 +1α5 +2α6. We call α0 the
trivial. The embedding of H into SU(2) is faithfully realized by the two dimensional representation
α6 (the restriction of the fundamental representation of SU(2)).

The character table for the tetrahedral group itself (not its binary), that we do not use here,
could be obtained from the above by restricting the table to lines (irreps) numbered 1,2,3,7 and to
columns (conjugacy classes) 1,5,6,7; its classes have respectively (1,3,4,4) elements, with orders
(1,2,3,3) and centralizers A4, Z2×Z2, Z3 and Z3.

In order to calculate the S and T matrices of the quantum double, we need the character tables
of the centralizers, for group representatives of all conjugacy classes. This is quite easy in the
present case since centralizers of the two classes 1 and −1 are given by the group H itself, whereas
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the centralizers of the five others are abelian groups. H possesses 7 inequivalent irreps, and abelian
groups have a number of irreps equal to their degree.

So we a priori know that the S and T matrices can be decomposed in 7 blocks of sizes
7,7,6,6,4,6,6, and that the total number of irreps of the Drinfeld double is 42. Calculating the
matrix elements of S and T is now a straightforward (but cumbersome) task. S being symmetric, it
is enough to display the blocks S[I,J] for J ≥ I. The results are given at the end of this section.

One recovers the (usual) character table of H from its modular data by first restricting the
matrix S to the lines of its first block (first 7 lines) and by selecting the first column of each con-
secutive block; the expected result (up to a global conjugation) is obtained by further dividing each
column (labelled by a conjugacy class) by the cardinal of its class (1,1,4,4,6,4,4), and by mul-
tiplying everything by |H|. Indeed, S(A=[e],α),(B,1) = 1/(|Ce|)1/(|CB|) ∑g χα(gbg−1)∗ simplifies to
(|B|/|H|)χα(b)∗ since χ is then central for H, and since 1/|CB|= |B|/|H|.

The quantum dimensions µ j of the irreps j defined as S1, j/S1,1, for the consecutive blocks, are
{1,1,1,2,2,2,3}, {1,1,1,2,2,2,3}, {4,4,4,4,4,4}, {4,4,4,4,4,4}, {6,6,6,6}, {4,4,4,4,4,4},
{4,4,4,4,4,4}; for Drinfeld doubles of finite groups, quantum dimensions are integers. The global
dimension ∑ j µ2

j , equal to 1/|S1,1|2 by unitarity, is 242. The global dimension of the Drinfeld
double of a finite group is actually always equal to the square of the order of the latter.

Fusion matrices N j can now be obtained from S by using the Verlinde formula. These matrices
have non-negative integer coefficients and can be considered as adjacency matrices of graphs (the
fusion graphs). We do not display the 42 fusion graphs but only the one associated with the funda-
mental irrep α6, which is N4, the fourth of the first block, as already mentioned. The fourth of the
second block gives a similar graph since this block is again associated with H itself, now viewed
as the centralizer of −1.

The fusion graph of the fundamental irrep (numbered 4), as displayed on figure 1, contains 7
connected components: two copies of the affine Ê6 Dynkin diagram, as expected from the McKay
correspondence, four hexagons, and one square.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18 19

20

21 22

23

24 25

26

27 28

2930

31 32

33

34 35

36

37 38

39

40 41

42

Figure 1: Fundamental fusion graph of the quantum double of the binary tetrahedral

The blocks of the symmetric and unitary matrix 24× S(I,J), for I = 1 . . .7, I ≤ J ≤ 7 are given
below (we set ϕ = 1+ i

√
3 and ψ = 1− i

√
3):
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I = 1 

1 1 1 2 2 2 3
1 1 1 2 2 2 3
1 1 1 2 2 2 3
2 2 2 4 4 4 6
2 2 2 4 4 4 6
2 2 2 4 4 4 6
3 3 3 6 6 6 9


,



1 1 1 2 2 2 3
1 1 1 2 2 2 3
1 1 1 2 2 2 3
−2 −2 −2 −4 −4 −4 −6
−2 −2 −2 −4 −4 −4 −6
−2 −2 −2 −4 −4 −4 −6
3 3 3 6 6 6 9


,



4 4 4 4 4 4
−2ψ −2ψ −2ψ −2ψ −2ψ −2ψ

−2ϕ −2ϕ −2ϕ −2ϕ −2ϕ −2ϕ

−4 −4 −4 −4 −4 −4
2ψ 2ψ 2ψ 2ψ 2ψ 2ψ

2ϕ 2ϕ 2ϕ 2ϕ 2ϕ 2ϕ

0 0 0 0 0 0




4 4 4 4 4 4
−2ϕ −2ϕ −2ϕ −2ϕ −2ϕ −2ϕ

−2ψ −2ψ −2ψ −2ψ −2ψ −2ψ

−4 −4 −4 −4 −4 −4
2ϕ 2ϕ 2ϕ 2ϕ 2ϕ 2ϕ

2ψ 2ψ 2ψ 2ψ 2ψ 2ψ

0 0 0 0 0 0


,



6 6 6 6
6 6 6 6
6 6 6 6
0 0 0 0
0 0 0 0
0 0 0 0
−6 −6 −6 −6


,



4 4 4 4 4 4
−2ϕ −2ϕ −2ϕ −2ϕ −2ϕ −2ϕ

−2ψ −2ψ −2ψ −2ψ −2ψ −2ψ

4 4 4 4 4 4
−2ϕ −2ϕ −2ϕ −2ϕ −2ϕ −2ϕ

−2ψ −2ψ −2ψ −2ψ −2ψ −2ψ

0 0 0 0 0 0




4 4 4 4 4 4
−2ψ −2ψ −2ψ −2ψ −2ψ −2ψ

−2ϕ −2ϕ −2ϕ −2ϕ −2ϕ −2ϕ

4 4 4 4 4 4
−2ψ −2ψ −2ψ −2ψ −2ψ −2ψ

−2ϕ −2ϕ −2ϕ −2ϕ −2ϕ −2ϕ

0 0 0 0 0 0


I = 2 

1 1 1 −2 −2 −2 3
1 1 1 −2 −2 −2 3
1 1 1 −2 −2 −2 3
−2 −2 −2 4 4 4 −6
−2 −2 −2 4 4 4 −6
−2 −2 −2 4 4 4 −6
3 3 3 −6 −6 −6 9


,



4 −4 4 −4 4 −4
−2ψ 2ψ −2ψ 2ψ −2ψ 2ψ

−2ϕ 2ϕ −2ϕ 2ϕ −2ϕ 2ϕ

−4 4 −4 4 −4 4
2ψ −2ψ 2ψ −2ψ 2ψ −2ψ

2ϕ −2ϕ 2ϕ −2ϕ 2ϕ −2ϕ

0 0 0 0 0 0


,



4 −4 4 −4 4 −4
−2ϕ 2ϕ −2ϕ 2ϕ −2ϕ 2ϕ

−2ψ 2ψ −2ψ 2ψ −2ψ 2ψ

−4 4 −4 4 −4 4
2ϕ −2ϕ 2ϕ −2ϕ 2ϕ −2ϕ

2ψ −2ψ 2ψ −2ψ 2ψ −2ψ

0 0 0 0 0 0




6 −6 6 −6
6 −6 6 −6
6 −6 6 −6
0 0 0 0
0 0 0 0
0 0 0 0
−6 6 −6 6


,



4 −4 4 −4 4 −4
−2ϕ 2ϕ −2ϕ 2ϕ −2ϕ 2ϕ

−2ψ 2ψ −2ψ 2ψ −2ψ 2ψ

4 −4 4 −4 4 −4
−2ϕ 2ϕ −2ϕ 2ϕ −2ϕ 2ϕ

−2ψ 2ψ −2ψ 2ψ −2ψ 2ψ

0 0 0 0 0 0


,



4 −4 4 −4 4 −4
−2ψ 2ψ −2ψ 2ψ −2ψ 2ψ

−2ϕ 2ϕ −2ϕ 2ϕ −2ϕ 2ϕ

4 −4 4 −4 4 −4
−2ψ 2ψ −2ψ 2ψ −2ψ 2ψ

−2ϕ 2ϕ −2ϕ 2ϕ −2ϕ 2ϕ

0 0 0 0 0 0


I = 3 

4 4 −2ϕ −2ϕ −2ψ −2ψ

4 4 −2ϕ −2ϕ −2ψ −2ψ

−2ϕ −2ϕ −2ψ −2ψ 4 4
−2ϕ −2ϕ −2ψ −2ψ 4 4
−2ψ −2ψ 4 4 −2ϕ −2ϕ

−2ψ −2ψ 4 4 −2ϕ −2ϕ

 ,



4 4 −2ϕ −2ϕ −2ψ −2ψ

4 4 −2ϕ −2ϕ −2ψ −2ψ

−2ψ −2ψ 4 4 −2ϕ −2ϕ

−2ψ −2ψ 4 4 −2ϕ −2ϕ

−2ϕ −2ϕ −2ψ −2ψ 4 4
−2ϕ −2ϕ −2ψ −2ψ 4 4

 ,



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




4 4 −2ϕ −2ϕ −2ψ −2ψ

−4 −4 2ϕ 2ϕ 2ψ 2ψ

−2ψ −2ψ 4 4 −2ϕ −2ϕ

2ψ 2ψ −4 −4 2ϕ 2ϕ

−2ϕ −2ϕ −2ψ −2ψ 4 4
2ϕ 2ϕ 2ψ 2ψ −4 −4

 ,



4 4 −2ϕ −2ϕ −2ψ −2ψ

−4 −4 2ϕ 2ϕ 2ψ 2ψ

−2ϕ −2ϕ −2ψ −2ψ 4 4
2ϕ 2ϕ 2ψ 2ψ −4 −4
−2ψ −2ψ 4 4 −2ϕ −2ϕ

2ψ 2ψ −4 −4 2ϕ 2ϕ


I = 4 

4 4 −2ψ −2ψ −2ϕ −2ϕ

4 4 −2ψ −2ψ −2ϕ −2ϕ

−2ψ −2ψ −2ϕ −2ϕ 4 4
−2ψ −2ψ −2ϕ −2ϕ 4 4
−2ϕ −2ϕ 4 4 −2ψ −2ψ

−2ϕ −2ϕ 4 4 −2ψ −2ψ

 ,



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,



4 4 −2ψ −2ψ −2ϕ −2ϕ

−4 −4 2ψ 2ψ 2ϕ 2ϕ

−2ψ −2ψ −2ϕ −2ϕ 4 4
2ψ 2ψ 2ϕ 2ϕ −4 −4
−2ϕ −2ϕ 4 4 −2ψ −2ψ

2ϕ 2ϕ −4 −4 2ψ 2ψ




4 4 −2ψ −2ψ −2ϕ −2ϕ

−4 −4 2ψ 2ψ 2ϕ 2ϕ

−2ϕ −2ϕ 4 4 −2ψ −2ψ

2ϕ 2ϕ −4 −4 2ψ 2ψ

−2ψ −2ψ −2ϕ −2ϕ 4 4
2ψ 2ψ 2ϕ 2ϕ −4 −4


I = 5 

12 0 −12 0
0 −12 0 12
−12 0 12 0

0 12 0 −12

 ,


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


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Modular data for Drinfeld doubles

I = 6 

4 −4 −2ψ 2ψ −2ϕ 2ϕ

−4 4 2ψ −2ψ 2ϕ −2ϕ

−2ψ 2ψ −2ϕ 2ϕ 4 −4
2ψ −2ψ 2ϕ −2ϕ −4 4
−2ϕ 2ϕ 4 −4 −2ψ 2ψ

2ϕ −2ϕ −4 4 2ψ −2ψ

 ,



4 −4 −2ψ 2ψ −2ϕ 2ϕ

−4 4 2ψ −2ψ 2ϕ −2ϕ

−2ϕ 2ϕ 4 −4 −2ψ 2ψ

2ϕ −2ϕ −4 4 2ψ −2ψ

−2ψ 2ψ −2ϕ 2ϕ 4 −4
2ψ −2ψ 2ϕ −2ϕ −4 4


I = 7 

4 −4 −2ϕ 2ϕ −2ψ 2ψ

−4 4 2ϕ −2ϕ 2ψ −2ψ

−2ϕ 2ϕ −2ψ 2ψ 4 −4
2ϕ −2ϕ 2ψ −2ψ −4 4
−2ψ 2ψ 4 −4 −2ϕ 2ϕ

2ψ −2ψ −4 4 2ϕ −2ϕ


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