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1. Introduction

Quantum sheaf cohomology is a generalization of quantum cohomology that appears in (0,2)
mirror symmetry. Ordinary mirror symmetry is a duality in which pairs of (typically topologically-
distinct) spacesX, Xo are described by the same superconformal field theory:

CFT(X) = CFT(Xo).

One of the original motivations for interest in mirror symmetry was that it could be used to make
predictions for Gromov-Witten invariants (counts of minimal-area curves) in the Calabi-Yau’s.
Physically, those minimal-area curves are instantons in the two-dimensional quantum field theory,
which make a nonperturbative contribution to operator products. As thereis a correspondence
between chiral primary fields in these superconformal field theories and cohomology of the target
spacesX, Xo, the effect of those instanton contributions is to give OPE’s which have thestructure
of a deformation of the cohomology rings, and for this reason the resulting OPE rings are known
as “quantum cohomology.”

(0,2) mirror symmetry is an analogous duality that arises in perturbative heterotic string com-
pactifications. To specify a heterotic superconformal field theory (whichwill have (0,2) supersym-
metry, hence the name), one specifies1 a complex Kähler Calabi-Yau manifoldX together with a
holomorphic vector bundleE → X, satisfying the “Green-Schwarz” anomaly cancellation condi-
tion

ch2(TX) = ch2(E ).

We say that two valid pairs(X,E ), (Xo,E o) are (0,2)-mirror-symmetric if they define the same
(0,2) superconformal field theory:

CFT(X,E ) = CFT(Xo,E o).

Just as nonperturbative effects deform OPE rings in (2,2) supersymmetric theories, so too in the
(0,2) case do OPE rings get nonperturbative corrections. In the (0,2)case, however, those rings
are classically computed by bundle-valued differential forms (“sheaf cohomology”), hence the
nonperturbatively-deformed version is known as quantum sheaf cohomology, which will be the
focus of much of this review.

(0,2) mirror symmetry was first studied in the mid-90s, see for example [3, 4, 5, 6, 7, 8, 9].
It was revived more recently in [10], who made a prediction for quantum sheaf cohomology for
certain bundles onP1×P

1. A suitable corresponding notion of quantum sheaf cohomology was
worked out in [11], and the example of [10] was verified. Since then, quantum sheaf cohomology
has been further explored in a number of papers, including [12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24] and reviewed ine.g. [25, 26, 27, 28, 29].

In this paper we will briefly review some aspects of quantum sheaf cohomology. A number
of reviews have previously appeared describing formal aspects of its computation (definition of
suitable induced bundles, formal aspects of computations), so instead this review will focus on
pedagogically outlining basics and computational details which have not appeared elsewhere.

1More general constructions exist, see for example [1, 2] for a pair ofexamples of different types of generalizations.
In this review article we will focus on the simpler case of Kähler Calabi-Yau manifolds and holomorphic vector bundles.
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We begin with a brief review of the A model topological field theory, and its (0,2) cousin,
the A/2 model. After briefly outlining how quantum sheaf cohomology is definedformally, we
work through the details of computing pertinent sheaf cohomology groups insimple examples
on P

1×P
1. We then state the general result for correlation functions of arbitrary tangent bundle

deformations onP1×P
1, and also outline some aspects of how quantum sheaf cohomology varies

globally over a (0,2) moduli space. We conclude with a discussion of open problems and future
directions.

2. Review of the A model topological field theory

The A model topological field theory is defined by ‘twists’ of the nonlinear sigma model, a
theory with Lagrangian

1
α ′

∫

Σ
d2z

(

(

gµν + iBµν
)

∂φ µ∂φ ν +
i
2

gµνψµ
+Dzψν

+ +
i
2

gµνψµ
−Dzψν

− + Rikl ψ
i
+ψ 

+ψk
−ψ l

−

)

,

whereφ : Σ → X is a map from the worldsheetΣ into the spaceX in which the string propagates,
and theψµ

± are fermionic superpartners of the coordinatesφ µ on X. This theory possesses four
supersymmetries, two right-moving, two left-moving, which act as follows:

δφ i = iα−ψ i
+ + iα+ψ i

−,

δφ ı = iα̃−ψ ı
+ + iα̃+ψ ı

−,

δψ i
+ = −α̃−∂φ i − iα+ψ j

−Γi
jmψm

+ ,

δψ ı
+ = −α−∂φ ı − iα̃+ψ 

−Γı
mψm

+ ,

δψ i
− = −α̃+∂φ i − iα−ψ j

+Γi
jmψm

− ,

δψ ı
− = −α+∂φ ı − iα̃−ψ 

+Γı
mψm

− .

The four supersymmetry transformation parameters areα±, α̃±. Since there is one pair of each
chirality, a theory with this set of supersymmetry transformations is said to possess “(2,2)” super-
symmetry.

The A model is obtained by a subtle change in the definition of the fermionsψ i,ı
± . Specifically,

in the A model, we take them to be worldsheet scalars and vectors, defined technically as follows
[30]:

ψ i
+ (≡ ψ i

z) ∈ ΓC∞
(

K⊗φ ∗T1,0X
)

, ψ i
− (≡ χ i) ∈ ΓC∞

((

φ ∗T0,1X
)∗)

,

ψ ı
+ (≡ χ ı) ∈ ΓC∞

((

φ ∗T1,0X
)∗)

, ψ ı
− (≡ ψ ı

z) ∈ ΓC∞
(

K⊗φ ∗T0,1X
)

.

This is a fancy way of saying thatψ i
+, ψ ı

− are worldsheet vectors, andψ ı
+, ψ i

− are worldsheet
scalars. The Lagrangian is unchanged (except that the worldsheet spin connection terms in the
covariant derivatives in the fermion kinetic terms are modified).

The supersymmetry transformation parameters also necessarily rotate into worldsheet scalars
and vectors at the same time. The supersymmetry parameters which become scalars areα− andα̃+,
which we shall renameα andα̃ for the rest of this section. If we restrict to those supersymmetry
transformations, we get

δφ i = iαχ i ,
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δφ ı = iα̃χ ı,

δ χ i = 0,

δ χ ı = 0,

δψ ı
z = −α∂φ ı − iα̃χ Γı

mψm
z ,

δψ i
z = −α̃∂φ i − iαχ jΓi

jmψm
z .

It is straightforward to check that these transformations are nilpotent.
Now, nilpotent scalar symmetries play an important role in quantum field theory.They arise

prototypically in gauge-fixing, and because of their application there, theyare known in general
as BRST transformations. The operator generating such transformations(in this case, defined by
α = α̃) is commonly denotedQ, and known as the BRST operator. In the context of gauge theories,
the physical states are taken to be states which are annihilated byQ, said to be “BRST closed” or
Q closed, modulo states in the image ofQ, said to be “BRST exact” or “Q exact”, and the ghost
and gauge-fixing terms one adds to the Lagrangian are BRST exact. As a result, if one deforms the
gauge-fixing condition, for example, the result is to deform the lagrangianby a BRST exact term,
which cannot modify correlation functions of physical states (which are annihilated byQ). In other
words, formally, if the operatorsO1 · · ·On are BRST closed, then

〈O1 · · ·Onexp(Q(−))〉 = 〈O1 · · ·On〉.

In the case of the A model topological field theory, it can be shown that the entire action is
BRST exact. Hence, changing the value ofα ′ is equivalent to adding or subtracting copies of the
(BRST exact) action, and so, from the same argument as above, correlation functions of BRST
closed states are necessarily unaffected. As a result, such correlationfunctions can be computed
at any convenient value ofα ′, and one typically choosesα ′ = 0, for which choice all Feynman
diagram contributions to correlation functions are turned off2.

Now, let us consider which states of this theory are BRST closed. Since theχ ’s are annihilated
by the BRST operator, such states should be of the form

bi1···in1···mχ i1 · · ·χ inχ 1 · · ·χ m.

Looking at the form of the BRST action above, we see that there is a simple dictionary we can apply
to understand how to count BRST closed states of the form above. Specifically, if we identify

χ i ∼ dzi , χ  ∼ dz

then sinceQφ ∝ χ, we see that we can usefully identifyQ with the exterior derivatived on dif-
ferential forms. Thus, BRST closed forms of the form above should be identified withd-closed
differential forms

bi1···in1···mdzi1 ∧· · ·∧dzin ∧dz1 ∧· · ·∧dzm

and so are counted by de Rham cohomology groups.
Since Feynman diagrams do not contribute to correlation functions of BRST-closed operators,

correlation functions reduce to zero mode computations.

2Except involving special cases in which the factors ofα ′ cancel out.

4



P
o
S
(
I
C
M
P
 
2
0
1
2
)
0
2
6

Quantum sheaf cohomology Eric Sharpe

Consider, for example, the special case that the target space isP
n. In this case, classical

contributions to correlation functions will have the form

〈O1 · · ·Om〉 =
∫

Pn
ω1∧· · ·∧ωm

whereωi is the differential form corresponding to the operatorOi , the integral overPn arises as the
integral over the space of bosonic zero modes inside the path integral, andthe ordinary Grassmann
integrals over fermi zero modes have soaked up all of theχ ’s in theO ’s. Thus, we see the classical
contribution will be nonzero if and only if the wedge product of the corresponding differential
forms is a top-form.

In an instanton sector of degreed, containing maps of degreed from the worldsheet toPn,
contributions will have an analogous form3:

〈O1 · · ·Om〉d =
∫

Md

ω̃1∧· · ·∧ ω̃m

whereMd is the moduli space of instantons of degreed, andω̃i is the differential form onM
corresponding to the operatorOi . (Note as a special case,M0 is the same as the target space, in
this casePn.) Each instanton sector is weighted byq = exp(−

∫

J+ i
∫

B), whereJ is the Kähler
form, so that the complete correlation function can be (schematically) written in the form

〈O1 · · ·Om〉 = ∑
d

qd〈O1 · · ·Om〉d.

Now, implicitly above we have assumed that the moduli spaceM is both smooth and compact,
but typically neither will be true. Nevertheless, there exist standard methodsfor compactifying
instanton moduli spaces, and in the present case, forP

n, one useful choice of compactification
yields

Md = P
(n+1)(d+1)−1.

We are now in a position to derive quantum cohomology forP
n. Let ω denote the generator of

the classical cohomology ring ofPn, a two-form, and letO denote the corresponding operator. Then
from the fact that the integrals above will be nonzero only when they are integrating a top-form,
we find that nonzero correlation functions are of the form

〈O)(n+1)(d+1)−1〉d ∝ qd

in instanton sectord, whereq= exp(−
∫

J+ i
∫

B), J the Kähler form,B the two-form gauge field.
Writing

O
(n+1)(d+1)−1 = O

n
O

d(n+1),

we see that the correlation functions are equivalently encoded by the OPErelation

O
n+1 = q

which looks like a deformation of the standard classical cohomology ring relation in P
n, namely

ωn+1 = 0. The OPE ring in the A model defines what is called the “quantum cohomology” ring.

3For reasons of brevity, we are ignoring the effects of the four-fermiterm, which generate a factor of the top Chern
class of an ‘obstruction’ bundle when there are fermion vector zero modes.
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3. The A/2 model

The A/2 model is a twist of the(0,2) nonlinear sigma model

1
α ′

∫

Σ
d2z

(

(

gµν + iBµν
)

∂φ µ∂φ ν +
i
2

gµνψµ
+Dzψν

+ +
i
2

hαβ λ α
−Dzλ β

− + Fiabψ i
+ψ 

+λ a
−λ b

−

)

,

The twist is defined by taking the fermions to couple to bundles as follows:

ψ i
+ ∈ ΓC∞

(

K⊗φ ∗T1,0X
)

, λ a
− ∈ ΓC∞

(

φ ∗E
∗
)

,

ψ ı
+ ∈ ΓC∞

((

φ ∗T1,0X
)∗)

, λ a
− ∈ ΓC∞

(

K⊗φ ∗E
)

.

This is a close analogue of the A model twist, and in fact, in the special case that E = TX, the
A/2 model becomes the A model. It is called (0,2) because it has only the right-moving half of the
supersymmetry of the (2,2) supersymmetric model of the previous section.

Because this is a chiral theory, there are potential anomalies. To cancel anomalies in the
original physical theory, one imposes the Green-Schwarz condition

ch2(E ) = ch2(TX).

In addition, in order for the A/2 model to be well-defined, one must impose the additional constraint
that

∧top
E

∗ ∼= KX.

(This is a consequence of the necessity to make the Grassmann-zero-modeintegrals inside the path
integral well-defined.) For example, whenE = TX, both of these constraints are satisfied trivially.

The A/2 model contains a BRST operator acting as

δφ i = 0, δφ ı ∝ ψ ı
+, δψ ı

+ = 0 = δλ a
−, δψ i

+ 6= 0, δλ a
− 6= 0.

The states of the A/2 model generalizing the A model states are of the form

bı1···ıqa1···apψ ı1
+ · · ·ψ ıq

+λ a1
− · · ·λ ap

− .

Proceeding in an analogous fashion, the BRST operatorQ is identified with∂ , and the states above
are identified with bundle-valued differential forms, counted by sheaf cohomologyHq(X,∧pE ∗).

Unlike the ordinary A model, here we do not have a true topological field theory, since the
BRST symmetry only acts on the right-movers. For this reason, this structure isoccasionally
termed a ‘holomorphic field theory.’

We can approximate correlation functions in the A/2 model by truncating to zeromode com-
putations. Then, correlation functions can be described in a fashion thatis formally very similar to
the A model. For example, classical contributions to correlation functions areof the form

〈O1 · · ·Om〉 =
∫

X
ω1∧· · ·∧ωm

whereX is the target space (= space of bosonic zero modes, classically), andωi is a bundle-valued
differential form (a representative of sheaf cohomology) corresponding to the operatorOi .

6
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If

ωi ∈ H p(X,∧q
E

∗)

then the integral above will be nonzero when the integrand is an element of

H top(X,∧top
E

∗).

(That much, at least, is guaranteed physically by selection rules on the right- and left-moving global
U(1) symmetries on the worldsheet.) To extract a number, we must use the additionalconstraint
that∧topE ∗ ∼= KX. Using that isomorphism, we can write the integrand as an element of

H top(X,KX)

which can be integrated to get a number.
In an instanton sector of degreed, for simplicity ignoring four-fermi terms, contributions to

correlation functions follow the same form as we have seen for the A model:

〈O1 · · ·Om〉d =
∫

Md

ω̃1 · · ·∧ ω̃m

whereMd is the instanton moduli space of degreed (= space of bosonic zero modes), andω̃i is the
element of sheaf cohomology onMd corresponding to the operatorOi .

Now, let us examine the expression above more closely. If

ωi ∈ H p(X,∧q
E

∗)

then

ω̃i ∈ H p(Md,∧
q
F

∗)

whereF is the (induced) sheaf of left-moving fermi zero modes overMd. (Mathematically, if
there is a universal instantonα , this isR0π∗α∗E .) The integrand of the expression for a correlation
function in a degreed sector is then an element of

H top(Md,∧
top

F
∗).

Formally (from index theory), if both∧topE ∗ ∼= KX and ch2(TX) = ch2(E ), then4 ∧topF ∗ ∼= KM ,
which can then be integrated to get a number.

It should now be clear that to actually perform these computations, to make sense of the A/2
theory, we not only need to compactify the moduli space, we must also make sense ofF , and
extend it over the compactification, in such a way that∧topF ∗ ∼= KM . Procedures for constructing
both moduli spaces and induced sheaves with all desired properties havebeen described in reviews
elsewhere, we shall not repeat them in detail here.

For toric varieties, ifE is a deformation of the tangent bundle, thenMd is a toric variety and
F is a deformation of its tangent bundle determined byE .

4In a sector with no contribution from four fermi terms. In more generalsectors, there are analogous though more
complicated expressions. For reasons of both brevity and simplicity, we have elected not to describe the most general
case in this short introduction.
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4. Sample computations in a simple example

Let us now outline how to perform these computations explicitly, in a simple example, follow-
ing the same procedure as in [11, 14] (albeit in an easier special case).The basic manipulations
can largely be reduced to linear algebra, once one understands the general procedure, and our goal
in this section will be to demonstrate that procedure.

Let us considerP1×P
1 with a gauge bundleE determined as the cokernel of

0 −→ O
2 E
−→ O(1,0)2⊕O(0,1)2 −→ E −→ 0

where

E =











x1 γx2

x2 0
0 x̃1

0 x̃2











wherexi , x̃ j are homogeneous coordinates on each of the twoP
1 factors. Ifγ = 0, this becomes a

standard description of the tangent bundle ofP
1×P

1, hence this is a simple one-parameter defor-
mation of the tangent bundle.

Let us describe the classical cup products, at the level of Cech cohomology. We will cover
P

1×P
1 by open sets

Ui j = {xi 6= 0, x̃ j 6= 0}.

First, we will need to find representatives of the sheaf cohomology groups H∗(E ∗), in terms
of Cech cohomology. Note that by dualizing the sequence above, we get

0 −→ E
∗ −→ O(−1,0)2⊕O(0,−1)2 E

−→ O
2 −→ 0

which implies

H0(O(−1,0)2⊕O(0,−1)2) −→ H0(O2) −→ H1(E ∗) −→ H1(O(−1,0)2⊕O(0,−1)2).

However,
H0(O(−1,0)2⊕O(0,−1)2) = 0 = H1(O(−1,0)2⊕O(0,−1)2),

hence we see that
H1(E ∗) ∼= H0(O2).

As a result, our strategy for computing representatives of generators of H1(E ∗) will be to explicitly
compute the coboundary map acting on elements of a basis forH0(O2).

Let Y, Ỹ denote the elements ofH1(E ∗) corresponding (via the coboundary isomorphism
above) to elements of the two standard basis elements ofH0(O2). We will let Yi, j;i′, j ′ , Ỹi, j;i′, j ′

denote the Cech representatives onUi, j ∩Ui′, j ′ , which can be computed as follows.
First, we will need to lift the basis elements ofH0(O2) to meromorphic sections of

O(−1,0)2⊕O(0,−1)2.

We will denote the lifts byLi, j , L̃i, j , and then use them to computeY, Ỹ.

8
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The lifts can be computed as follows. First, considerU1,1. Since we are working on the patch
in whichx1 6= 0 andx̃1 6= 0, that means that the lift should be of the form

L1,1 =
1

x1x̃1











ax̃1+bx̃2

cx̃1+dx̃2

ex1+ f x2

gx1+hx2











for some constantsa, b, c, d, e, f , g, h such that

ET ·L1,1 =

[

1
0

]

.

Plugging in, we find this is solved by

L1,1 =
1

x1x̃1











x̃1

0
−γx2

0











.

Similarly, it is straightforward to demonstrate that

L1,2 =
1

x1x̃2











x̃2

0
0

−γx2











, L2,1 =
1

x2x̃1











0
x̃1

0
0











, L2,2 =
1

x2x̃2











0
x̃2

0
0











,

and similarly, solving for̃Li j such that

ET · L̃i, j =

[

0
1

]

yields

L̃1,1 =
1

x1x̃1











0
0
x1

0











, L̃1,2 =
1

x1x̃2











0
0
0
x1











, L̃2,1 =
1

x2x̃1











0
0
x2

0











, L̃2,2 =
1

x2x̃2











0
0
0
x2











.

Now, the Cech representativesYi, j;i′, j ′ , Ỹi, j;i′, j ′ are determined from the lifts by

Yi, j;i′, j ′ = Li′, j ′ − Li, j , Ỹi, j;i′, j ′ = L̃i′, j ′ − L̃i, j .

So far, we have computed Cech representatives of the generators ofH1(E ∗).
Next, we need to compute cup products of these cohomology classes, to getCech representa-

tives ofH2(∧2E ∗).
The representatives of the cup product are formed from the ratio of theminors of a ma-

trix whose columns form the Cech representatives above, to the reducedmaximal minors of the

9
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nullspace ofE. For example, let us considerY∪Y. Its representative onU1,1∩U1,2∩U2,1 is given
by computing the minors of the matrix

[Y1,1;1,2,Y1,2;2,1] = [L1,2−L1,1,L2,1−L1,2] =











0 −x−1
1

0 x−1
2

γx2x−1
1 x̃−1

1 0
−γx2x−1

1 x̃−1
2 0











which are
0,

γx2

x2
1x̃1

,−
γx2

x2
1x̃2

,−
γ

x1x̃1
,

γ
x1x̃2

,0.

On the other hand, the maximal minors of the nullspace ofE are given by

0,−x2x̃2,x2x̃1,x1x̃2,−x1x̃1,−γx2
2,

normalized so that there are no homogeneous coordinates in denominators.(In general, we should
divide out common factors to form the ‘reduced’ maximal minors, but in the listof minors above,
there are no common factors.)

Taking a ratio of the first two nonzero corresponding terms, we find

(Y∪Y)1,1;1,2;2,1 = −
γ

x2
1x̃1x̃2

.

(Note that there is an ambiguity here due to coboundaries, so a any of any two corresponding
minors will give the result up to coboundaries.)

Continuing in this fashion, representatives can be computed on any triple overlap. Note that to
be consistent, the results must satisfy the cocycle condition

(δY∪Y)1,1;1,2;2,1;2,2 = (Y∪Y)1,2;2,1;2,2 − (Y∪Y)1,1;2,1;2,2 + (Y∪Y)1,1;1,2;2,2 − (Y∪Y)1,1;1,2;2,1 = 0.

Similarly, (Y∪Ỹ)1,1;1,2;2,1 is computed from the ratio of the minors of the matrix

[Y1,1;1,2,Ỹ1,2;2,1]

to the reduced maximal minors ofE, and(Ỹ∪Ỹ)1,1;1,2;2,1 is computed from the ratio of the minors
of the matrix

[Ỹ1,1;1,2,Ỹ1,2;2,1]

to the reduced maximal minors ofE.
Finally, to get the correlation functions, we must evaluate an integral:

〈YY〉 =
∫

P1×P1
Y∪Y.

This is partly defined by the choice of isomorphism∧topE ∗ ∼= KX, and so there is an overall phase
ambiguity, which becomes important when considering the behavior of correlation functions over
the moduli space. In the language of Cech cohomology, we need a trace which extracts pieces
proportional to

1
product of homogeneous coordinates

10
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or in other words, a trace that does not see any coboundary that doesnot touch every patch.
Schematically, if we pick an ordering on coordinate patches, then the trace formula should have the
form

(data onU1∩U2∩U3) − (data onU2∩U3∩U4) + (data onU3∩U4∩U5)

− (data onU4∩U5∩U6) + · · ·

and we should normalize by the product of the homogeneous coordinates.In the present case, that
means we want

〈YY〉 = (x1x2x̃1x̃2)((Y∪Y)1,1;1,2;2,1 − (Y∪Y)1,2;2,1;2,2) ,

〈YỸ〉 = (x1x2x̃1x̃2)
(

(Y∪Ỹ)1,1;1,2;2,1 − (Y∪Ỹ)1,2;2,1;2,2
)

,

〈ỸỸ〉 = (x1x2x̃1x̃2)
(

(Ỹ∪Ỹ)1,1;1,2;2,1 − (Ỹ∪Ỹ)1,2;2,1;2,2
)

.

The result may have irrelevant coboundary terms, which (because of our construction of the trace)
must be removed manually.

In the present case, the expressions above yield

〈YY〉 = −
γx2

x1
,

〈YỸ〉 = 1,

〈ỸỸ〉 = 0.

The term in〈YY〉, proportional tox2/x1, is an example of a coboundary term which must be re-
moved manually. After doing so, our final result for correlation functionsis given by

〈YY〉 = 0,

〈YỸ〉 = 1,

〈ỸỸ〉 = 0.

This is identical to the classical cohomology ring in the undeformed theory, thespecial case thatE
is the tangent bundle ofP1×P

1. We can identifyY with the volume form on oneP1, andỸ with
the volume form on the secondP1; the only way to get a nonzero wedge product is to wedgeY and
Ỹ together.

Let us outline how to perform analogous computations in instanton sectors. Consider the
sector of instantons of degree(1,0). Here, following earlier remarks, the instanton moduli space
will be P

3×P
1, the product of the degree 1 instanton moduli space on oneP

1 factor and the degree
0 instanton moduli space on the secondP

1 factor. The induced sheafF wil be described as the
cokernel

0 −→ O
2 E′

−→ O(1,0)4⊕O(0,1)2 −→ F −→ 0

where

E′ =



















x11 γx21

x12 γx22

x21 0
x22 0
0 x̃1

0 x̃2


















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wherex11,x12,x21,x22 are homogeneous coordinates onP
3, and x̃1, x̃2 are homogeneous coordi-

nates on theP1 factor. This expression was derived fromE in the classical case by expanding
homogeneous coordinates there in zero modes:

x1 = x11u + x12v,

x2 = x21u + x22v,

(whereu, v are homogeneous coordinates on the worldsheet, assumed to be aP
1), then reorganizing

by common worldsheet factors,i.e. the first and third lines ofE′ are the coefficients ofu, the second
and fourth lines are the coefficients ofv, and so forth.

Proceeding in the same fashion as before, one finds

〈YYYY〉1,0 = 0,

〈YYYỸ〉1,0 = 1,

〈YYỸỸ〉1,0 = 0,

〈YỸỸỸ〉1,0 = 0,

〈ỸỸỸỸ〉1,0 = 0.

When one repeats in the(0,1) instanton sector, one finds

〈YYYY〉0,1 = 0,

〈YYYỸ〉0,1 = 0,

〈YYỸỸ〉0,1 = 0,

〈YỸỸỸ〉0,1 = 1,

〈ỸỸỸỸ〉0,1 = 0.

These can be combined into four-point correlation functions as

〈O1O2O3O4〉 = q〈O1O2O3O4〉1,0 + q̃〈O1O2O3O4〉0,1.

If one repeats for a few more instanton sectors, one can quickly convince oneself that the
operator product relations are defined by

Y2 = q, Ỹ2 = q̃

the same as for the undeformed theory.

5. General correlation functions forP1×P
1

Although we will not work through all the details, let us now describe the result for correlation
functions for the most general possible tangent bundle deformation onP

1×P
1.

ConsiderP1×P
1 with bundleE defined by

0 −→ O
2 E
−→ O(1,0)2⊕O(0,1)2 −→ E −→ 0

12
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where

E =

[

Ax Bx
Cx̃ Dx̃

]

with A, B, C, D 2× 2 matrices, andx, x̃ 2-component vectors of homogeneous coordinates on
P

1×P
1.

Define

∆ = (detA)(detD) − (detB)(detC),

φ = (det(A+B))2(detC)(detD) + (det(C+D))2(detA)(detB)

− (det(A+B))(det(C+D)) [(detA)(detD) + (detB)(detC)]

+∆(det(A+B))(detD−detC) + ∆(det(C+D))(detA−detB).

Then, the it can be shown that the classical correlation functions are given by

〈YY〉 = φ−1 [∆ − (detD)(det(A+B)) + (detB)(det(C+D))] ,

〈YỸ〉 = φ−1∆,

〈ỸỸ〉 = φ−1 [∆ − (detA)(det(C+D)) + (detC)(det(A+B))] .

It is straightforward to show that these obey the classical relations

〈det(AY+BỸ)〉 = 0 = 〈det(CY+DỸ)〉,

and furthermore it was shown ine.g.[24] that the quantum sheaf cohomology relations in this case
are given by

〈det(AY+BỸ)〉 = q, 〈det(CY+DỸ)〉 = q̃.

6. Global issues

Let us make a few remarks in passing concerning global issues on the moduli space of (0,2)
theories. In ordinary quantum cohomology,q is a parameter, a coordinate. In (0,2) quantum
cohomology, however,q is more complicated, essentially because of theB field implicit in the
exponent. In a (2,2) theory, the holonomy of theB field is well-defined, but in a (0,2) theory,
because of the Green-Schwarz mechanism, thatB field changes across coordinate patches. As a
result,q picks up phases across coordinate patches, and is better interpreted asa section of a line
bundle.

We can see this structure in our example onP
1×P

1. The moduli space of bundles is (partially)
constructed from the dataA, B, C, D by taking aGL(2)2 quotient, which acts on this data as

[

A B
C D

]

7→

[

PA PB
QC QD

]

where(P,Q) ∈ GL(2)2, and which leavesY, Ỹ invariant. Under this action, note that

det(AY+BỸ) 7→ (detP)det(AY+BỸ), det(CY+DỸ) 7→ (detQ)det(CY+DỸ).

13
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For example, this implies that the correlation functions transform as sections of nontrivial bundles
over the (0,2) moduli space, which corresponds to worldsheet realizations [31] ofe.g. the Bagger-
Witten line bundle [32]. Furthermore, the quantum sheaf cohomology relations

〈det(AY+BỸ)〉 = q, 〈det(CY+DỸ)〉 = q̃

are only well-defined globally if under the sameGL(2)2 action,

q 7→ (detP)q, q̃ 7→ (detQ)q̃

which implies that over the moduli space of bundles,q, q̃ transform as sections of line bundles.
This reflects the fact that on the worldsheet, the globalGL(2)2 action above is anomalous, as it
only acts on left-moving fields.

7. Open problems and future directions

At the moment, techniques exist for computing quantum sheaf cohomology onlyfor toric
varieties (generalizations of projective spaces) and deformations of their tangent bundles. To be
genuinely useful for compact Calabi-Yau string compactifications, we need techniques for evaluat-
ing quantum sheaf cohomology for hypersurfaces in toric varieties, formore general bundles than
just deformations of tangent bundles.

In standard Gromov-Witten theory, there are many tricks and techniques fordoing more gen-
eral computations, but most boil down to utilizing the fact that the A model topological field theory
is independent of complex structures.A priori, it is not believed that the A/2 model is always in-
dependent of complex structures, hence those techniques from Gromov-Witten theory should not
be applicable here. Nevertheless, it was argued in [17] that at least in special cases, the A/2 model
is independent of complex moduli and certain bundle moduli, so that in those cases, computations
can be performed. A deeper understanding of the results of [17] wouldbe desirable, as well as
generalizations to more cases.
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