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1. Introduction

Quantum sheaf cohomology is a generalization of quantum cohomologypihedrs in (0,2)
mirror symmetry. Ordinary mirror symmetry is a duality in which pairs of (typicallyologically-
distinct) spaceX, X° are described by the same superconformal field theory:

CFT(X) = CFT(X°).

One of the original motivations for interest in mirror symmetry was that it coeldised to make
predictions for Gromov-Witten invariants (counts of minimal-area curves) énGhlabi-Yau’s.
Physically, those minimal-area curves are instantons in the two-dimensicaratugu field theory,
which make a nonperturbative contribution to operator products. As theaecorrespondence
between chiral primary fields in these superconformal field theories @moheology of the target
spacesX, X, the effect of those instanton contributions is to give OPE’s which havsttheture
of a deformation of the cohomology rings, and for this reason the resultitig iihgs are known
as “guantum cohomology.”

(0,2) mirror symmetry is an analogous duality that arises in perturbativeotietstring com-
pactifications. To specify a heterotic superconformal field theory (wivitthave (0,2) supersym-
metry, hence the name), one specffiasomplex Kahler Calabi-Yau manifold together with a
holomorphic vector bundl&’ — X, satisfying the “Green-Schwarz” anomaly cancellation condi-
tion

chp(TX) = chp(&).

We say that two valid pair§X, &), (X°,&°) are (0,2)-mirror-symmetric if they define the same
(0,2) superconformal field theory:

CFT(X,&) = CFT(X°,&°).

Just as nonperturbative effects deform OPE rings in (2,2) supersyrarteories, so too in the
(0,2) case do OPE rings get nonperturbative corrections. In the ¢@s®), however, those rings
are classically computed by bundle-valued differential forms (“shebbremlogy”), hence the
nonperturbatively-deformed version is known as quantum sheafnoalogy, which will be the
focus of much of this review.

(0,2) mirror symmetry was first studied in the mid-90s, see for example [3,8l, B 8, 9].

It was revived more recently in [10], who made a prediction for quantneacohomology for
certain bundles of?* x P1. A suitable corresponding notion of quantum sheaf cohomology was
worked out in [11], and the example of [10] was verified. Since theantqum sheaf cohomology
has been further explored in a number of papers, including [12, 135146, 17, 18, 19, 20, 21,
22,23, 24] and reviewed i@.g.[25, 26, 27, 28, 29].

In this paper we will briefly review some aspects of quantum sheaf cohgyok number
of reviews have previously appeared describing formal aspects obrtputation (definition of
suitable induced bundles, formal aspects of computations), so insteae@\tag will focus on
pedagogically outlining basics and computational details which have noasgupelsewhere.

IMore general constructions exist, see for example [1, 2] for a paixafples of different types of generalizations.
In this review article we will focus on the simpler case of Kéhler Calabi-Yanifolds and holomorphic vector bundles.
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We begin with a brief review of the A model topological field theory, and its)(@dusin,
the A/2 model. After briefly outlining how quantum sheaf cohomology is defioeahally, we
work through the details of computing pertinent sheaf cohomology groupsriple examples
on P! x P1. We then state the general result for correlation functions of arbitragetst bundle
deformations of?! x P, and also outline some aspects of how quantum sheaf cohomology varies
globally over a (0,2) moduli space. We conclude with a discussion of opmsigms and future
directions.

2. Review of the A model topological field theory

The A model topological field theory is defined by ‘twists’ of the nonlineamsignodel, a
theory with Lagrangian

1 . — i i P T
a’/zd22<(gw+lB“V) d(p“d(p" + équWﬁDwa + égpvwEDsz + RiJkMI/LWiWkWI) )

where@ : Z — X is a map from the worldshe&tinto the space in which the string propagates,
and they! are fermionic superpartners of the coordinagéson X. This theory possesses four
supersymmetries, two right-moving, two left-moving, which act as follows:

5¢' =ia ¢\ +ia g,
S¢' =ia_yl +ia y’,
Sy = —a 0¢ —ia glriLyl,
Sy = —a_d¢g' —ia. iyl
Sy = —a.0¢ —ia_ylri ym
Yl = —a 0 —ia_ygiriym

The four supersymmetry transformation parametersoared... Since there is one pair of each
chirality, a theory with this set of supersymmetry transformations is said t@pes€2,2)” super-
symmetry.

The A model is obtained by a subtle change in the definition of the fermﬁéhsﬁpecifically,
in the A model, we take them to be worldsheet scalars and vectors, defateictly as follows
[30]:

YL(=¢) € Fee (Koo THX), ¢l (=X) € e ((9T¥X)),

YL (=X") € Te ((@TYOX)Y), ¢ (=¢) € Tew (Ko ¢ TOIX).
This is a fancy way of saying thapﬂr, Y' are worldsheet vectors, ang,, ' are worldsheet
scalars. The Lagrangian is unchanged (except that the worldghieet@nection terms in the
covariant derivatives in the fermion kinetic terms are modified).

The supersymmetry transformation parameters also necessarily rotate rideheet scalars
and vectors at the same time. The supersymmetry parameters which beclarsessea  anda., ,
which we shall rename anda for the rest of this section. If we restrict to those supersymmetry
transformations, we get
|

5¢ =iay!,
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o¢' =iay',
5x' =0,
dx' =0,

oY, = —adq —iaxTmys,
Sy = —adg —iaxIr .

It is straightforward to check that these transformations are nilpotent.

Now, nilpotent scalar symmetries play an important role in quantum field th@bmy arise
prototypically in gauge-fixing, and because of their application there, dheknown in general
as BRST transformations. The operator generating such transformétiadhg case, defined by
a = a) is commonly denote®, and known as the BRST operator. In the context of gauge theories;
the physical states are taken to be states which are annihilai®ddaid to be “BRST closed” or
Q closed, modulo states in the image@fsaid to be “BRST exact” orQ exact”, and the ghost
and gauge-fixing terms one adds to the Lagrangian are BRST exacteAslf if one deforms the
gauge-fixing condition, for example, the result is to deform the lagrartyiamBRST exact term,
which cannot modify correlation functions of physical states (which anghdlated byQ). In other
words, formally, if the operatorg; - - - 0, are BRST closed, then

(O1--- Onexp(Q(—))) = (O1--- On).

In the case of the A model topological field theory, it can be shown thatrttieeeaction is
BRST exact. Hence, changing the valuendfis equivalent to adding or subtracting copies of the
(BRST exact) action, and so, from the same argument as above, torrdlanctions of BRST
closed states are necessarily unaffected. As a result, such corrélatations can be computed
at any convenient value af’, and one typically choose®’ = 0, for which choice all Feynman
diagram contributions to correlation functions are turned. off

Now, let us consider which states of this theory are BRST closed. Singgsthee annihilated
by the BRST operator, such states should be of the form

bi1~~in71~~jmxil . -Xianl .. .ij_

Looking at the form of the BRST action above, we see that there is a simpilendicy we can apply
to understand how to count BRST closed states of the form above. $pbyifif we identify

X' ~dZ, x ~dZ

then sinceQg [0 x, we see that we can usefully identi€y with the exterior derivativel on dif-
ferential forms. Thus, BRST closed forms of the form above should detified with d-closed
differential forms

bi ipgy 5 02 A - ADZNADZLA - A dZ

and so are counted by de Rham cohomology groups.
Since Feynman diagrams do not contribute to correlation functions of BRS&d operators,
correlation functions reduce to zero mode computations.

2Except involving special cases in which the factorstbtancel out.
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Consider, for example, the special case that the target spd@e in this case, classical
contributions to correlation functions will have the form

<ﬁ1...ﬁm> = /inl/\“'/\wm

whereq is the differential form corresponding to the operafprthe integral ovelP" arises as the
integral over the space of bosonic zero modes inside the path integraéiheaoinary Grassmann
integrals over fermi zero modes have soaked up all ofthén the &’s. Thus, we see the classical
contribution will be nonzero if and only if the wedge product of the cqroesling differential
forms is a top-form.

In an instanton sector of degree containing maps of degrekfrom the worldsheet t@",
contributions will have an analogous fotm

(01 Om)d =/ A A G

My

where.#y is the moduli space of instantons of degreeand @ is the differential form on#
corresponding to the operatdi. (Note as a special case?) is the same as the target space, in
this caseP".) Each instanton sector is weighted tpy= exp(— [J +i [ B), whereJ is the Ké&hler
form, so that the complete correlation function can be (schematically) writter ifothn

(O1--- Om) = qu<ﬁ’1~~-ﬁ’m>d.

Now, implicitly above we have assumed that the moduli sp#tis both smooth and compact,
but typically neither will be true. Nevertheless, there exist standard metbod®mpactifying
instanton moduli spaces, and in the present casePToone useful choice of compactification

yields
My = PDE+)-1

We are now in a position to derive guantum cohomologyFfarL et w denote the generator of
the classical cohomology ring 8f', a two-form, and le¢’ denote the corresponding operator. Then
from the fact that the integrals above will be nonzero only when they &egriating a top-form,
we find that nonzero correlation functions are of the form

<ﬁ)(n+l)(d+l)fl>d 0 qd

in instanton sectot, whereq = exp(— [ J+i [ B), J the K&hler formB the two-form gauge field.
Writing
ﬁ(n+l)(d+1)fl _ ﬁnﬁd(mrl)
we see that the correlation functions are equivalently encoded by thedldien
ﬁn+1 =q

which looks like a deformation of the standard classical cohomology ringjaela P", namely
w1 = 0. The OPE ring in the A model defines what is called the “quantum cohomiblimgy

3For reasons of brevity, we are ignoring the effects of the four-féenmh, which generate a factor of the top Chern
class of an ‘obstruction’ bundle when there are fermion vector zeeso
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3. The A/2 model

The A/2 model is a twist of th€0, 2) nonlinear sigma model
1 . = [ i - 5
a,/zd22<(guv+'BW) 0¢"0¢" + éguvwﬁwai + éhaﬁ)‘gDz)‘g + FiJaberwiAE)‘E> ;
The twist is defined by taking the fermions to couple to bundles as follows:

W, € e (K@@ TOX), A2 € e (98),
YL € Te= ((@°TEOX)Y), A% € Tee (K2 9 8).

This is a close analogue of the A model twist, and in fact, in the special casé thal X, the
A/2 model becomes the A model. It is called (0,2) because it has only the righxgnioalf of the
supersymmetry of the (2,2) supersymmetric model of the previous section.

Because this is a chiral theory, there are potential anomalies. To carmmelaies in the
original physical theory, one imposes the Green-Schwarz condition

chp(&) = chp(TX).

In addition, in order for the A/2 model to be well-defined, one must imposedtidi@anal constraint
that
NOPg* o Kx.

(This is a consequence of the necessity to make the Grassmann-zerdategdas inside the path
integral well-defined.) For example, whéh= T X, both of these constraints are satisfied trivially.
The A/2 model contains a BRST operator acting as

53¢ =0, 3¢ O Y., 3¢’ =0=05A% 3¢ #0, AT £ 0.

The states of the A/2 model generalizing the A model states are of the form

b|1~~~1qa1~~ap4fiul .. E)\i‘l AP
Proceeding in an analogous fashion, the BRST opefaisiidentified withd, and the states above
are identified with bundle-valued differential forms, counted by shelademlogyH (X, AP&™).
Unlike the ordinary A model, here we do not have a true topological fieldryheoce the
BRST symmetry only acts on the right-movers. For this reason, this structuecésionally
termed a ‘holomorphic field theory.
We can approximate correlation functions in the A/2 model by truncating tormed® com-
putations. Then, correlation functions can be described in a fashiois tteatmally very similar to
the A model. For example, classical contributions to correlation functionsfahe form

(O1-+-Om) = /le/\'“/\wm

whereX is the target space (= space of bosonic zero modes, classically)y &d bundle-valued
differential form (a representative of sheaf cohomology) cornedjmy to the operatof;.
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w € HP(X,N9€7)

then the integral above will be nonzero when the integrand is an element of
HP(X, \P£™).

(That much, at least, is guaranteed physically by selection rules on theaighleft-moving global
U(1) symmetries on the worldsheet.) To extract a number, we must use the additos&daint
that A'°P&* = Ky. Using that isomorphism, we can write the integrand as an element of

H top(X’ KX)

which can be integrated to get a number.
In an instanton sector of degrele for simplicity ignoring four-fermi terms, contributions to
correlation functions follow the same form as we have seen for the A model:

(O1-On)g = G- A G
My
where.#4 is the instanton moduli space of degrké= space of bosonic zero modes), ands the
element of sheaf cohomology o#y corresponding to the operaték.
Now, let us examine the expression above more closely. If

w € HP(X,A96™)

then
@& € HP (g, \NA.F7)

where.# is the (induced) sheaf of left-moving fermi zero modes ov&j. (Mathematically, if
there is a universal instanten this isROr.a*&.) The integrand of the expression for a correlation
function in a degred sector is then an element of

HYP (g, NPF*).

Formally (from index theory), if boti\'°P&* = Ky and ch(T X) = chp(&), therf APF* =K,
which can then be integrated to get a number.

It should now be clear that to actually perform these computations, to make séthe A/2
theory, we not only need to compactify the moduli space, we must also make s€%#, and
extend it over the compactification, in such a way th88.%7* =2 K . Procedures for constructing
both moduli spaces and induced sheaves with all desired propertiebd@velescribed in reviews
elsewhere, we shall not repeat them in detail here.

For toric varieties, it€ is a deformation of the tangent bundle, thefy is a toric variety and
% is a deformation of its tangent bundle determinedsby

4In a sector with no contribution from four fermi terms. In more genseattors, there are analogous though more
complicated expressions. For reasons of both brevity and simplicityawe élected not to describe the most general
case in this short introduction.
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4. Sample computations in a simple example

Let us now outline how to perform these computations explicitly, in a simple exafoptav-
ing the same procedure as in [11, 14] (albeit in an easier special CHse)asic manipulations
can largely be reduced to linear algebra, once one understands #ralgeocedure, and our goal
in this section will be to demonstrate that procedure.

Let us consideP! x P! with a gauge bundlé® determined as the cokernel of

0— 62 -5 (1,020 6(0,1)2 — & — 0

where
X1 YX2
X2 0
0 %X
0 %
wherex;, X are homogeneous coordinates on each of thelthviactors. Ify = 0, this becomes a
standard description of the tangent bundlé@b# P, hence this is a simple one-parameter defor-
mation of the tangent bundle.

Let us describe the classical cup products, at the level of Cech cabgyndNe will cover
P! x P! by open sets

Uij = {x #0,%; # 0}.

First, we will need to find representatives of the sheaf cohnomology grdups™), in terms
of Cech cohomology. Note that by dualizing the sequence above, we get

0— & — 0(-1,0200(0,~1)2 55 62 — 0
which implies
HO(0(-1,0)20 0(0,-1)?) — HO(0?) — HY(&*) — HY(O(-1,002@ 6(0,-1)?).

However,
HO(0(-1,0)2® 0(0,-1)?) = 0 = HY(6(-1,0)>3 0(0,—1)?),

hence we see that
HY(E") = HO(0).

As a result, our strategy for computing representatives of generdtbiry 6*) will be to explicitly
compute the coboundary map acting on elements of a badit’far?).

Let Y, Y denote the elements ¢f1(&*) corresponding (via the coboundary isomorphism
above) to elements of the two standard basis elements®6?). We will let Y v jr, Y jir jr
denote the Cech representativedhnnUy -, which can be computed as follows.

First, we will need to lift the basis elementstaf(&?) to meromorphic sections of

0(-1,02® 0(0,-1)%

We will denote the lifts byt j, Lj j, and then use them to compueY.
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The lifts can be computed as follows. First, consideg. Since we are working on the patch

in whichx; # 0 andxj # 0, that means that the lift should be of the form

aXy + b%
1 cXy +d%
Lii = —
XX | ex+ fxo
gx1 + hx

for some constants, b, c, d, e, f, g, h such that

|

1
ET-Li1= [O
Plugging in, we find this is solved by
X1
0
Similarly, it is straightforward to demonstrate that
Ko 0 0
|-1,2=Xll)~(2 8 ,|-2,1=X21)~(l )E)l ,L22=X21X~2 ):)2 ;
—yX2 0 0
and similarly, solving folj; such that
ET.[LJ- — [2]
yields
0 0 0 0
Lia = X11>71 >?1 b= X1%Xo 8 Lor = X21>~<1 >?2 Lea= XoXo 8
0 X1 0 Xo
Now, the Cech representativés.i j, ¥ ji j are determined from the lifts by
Yy = Ly — L, Yiginy = Loy — L.

So far, we have computed Cech representatives of the generatetéf).
Next, we need to compute cup products of these cohomology classesQedafetepresenta-

tives of H2(A%6).
The representatives of the cup product are formed from the ratio ofmthers of a ma-
trix whose columns form the Cech representatives above, to the redwrdthal minors of the
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nullspace oE. For example, let us consid¥rJY. Its representative od; 1 NU1 2 MUz 1 is given
by computing the minors of the matrix

0 —x
0 Xyt
yox 1%t 0
—yxox %1 0

Y11:12,Y1221] = [L12—L11,La1—L1o] =

which are

Yo VX2 y Y
07 25 ' 25 0 S s
X1X1 X{X2 X1X1 X1X2
On the other hand, the maximal minors of the nullspade afe given by

G o oy o 2
0, —XoXa2, XoX1, X1X2, —X1X1, —YX5,

normalized so that there are no homogeneous coordinates in denomiflatgeneral, we should
divide out common factors to form the ‘reduced’ maximal minors, but in thefistinors above,
there are no common factors.)

Taking a ratio of the first two nonzero corresponding terms, we find

4
(Y UY)171;1,2;2,1 = T 25 o
X1X1X2
(Note that there is an ambiguity here due to coboundaries, so a any of angotwesponding
minors will give the result up to coboundaries.)

Continuing in this fashion, representatives can be computed on any triglapyvNote that to

be consistent, the results must satisfy the cocycle condition
(OYUY)11122122 = (YUY)12:2100 — (YUY)112100 + (YUY)11;12:22 — (YUY)11;12:21 = 0.
Similarly, (Y U\?)1,1;1,2;271 is computed from the ratio of the minors of the matrix

Yi1:12,Y12:21]

to the reduced maximal minors Bf and(\?u\?)m;m;gl is computed from the ratio of the minors
of the matrix

Y1112, Y12:21]

to the reduced maximal minors Bt
Finally, to get the correlation functions, we must evaluate an integral:

YY) = YUY.
P1x Pl
This is partly defined by the choice of isomorphigifis* = Ky, and so there is an overall phase
ambiguity, which becomes important when considering the behavior oflatorefunctions over
the moduli space. In the language of Cech cohomology, we need a tracle extracts pieces

proportional to
1

product of homogeneous coordinates

10
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or in other words, a trace that does not see any coboundary thatndbésuch every patch.
Schematically, if we pick an ordering on coordinate patches, then the tianala should have the
form
(data onJ; NU2NU3) — (data ond,NUzNUys) + (data ondzNUsNUs)
— (data orlUsNUsNUg) + - -+
and we should normalize by the product of the homogeneous coordifrates.present case, that
means we want

(YY) = (xax%a%e) (YUY)11,12:21 — (YUY)12221:22)
(YY) = (xaxo%i%2) (YUY) 110221 — (YUY)12:21:02)
(YY) = (xoxfa%e) (YUY)111221 — (YUY)1221:22) -

The result may have irrelevant coboundary terms, which (because abastruction of the trace)
must be removed manually.
In the present case, the expressions above yield

vy = -2
X1

(Yv) =1,

YY) =o.

The term in(YY), proportional toxz/x1, is an example of a coboundary term which must be re-
moved manually. After doing so, our final result for correlation functisrgiven by

(YY) =0,
(Yv) =1,
YY) =o.

This is identical to the classical cohomology ring in the undeformed theorgpibeial case thaf
is the tangent bundle @ x P1. We can identify¥ with the volume form on on&?, andY with
the volume form on the secoritt; the only way to get a nonzero wedge product is to wedged
Y together.

Let us outline how to perform analogous computations in instanton sectassider the
sector of instantons of degré#&, 0). Here, following earlier remarks, the instanton moduli space
will be P2 x P1, the product of the degree 1 instanton moduli space orPéfigctor and the degree
0 instanton moduli space on the secdidfactor. The induced sheaF wil be described as the
cokernel

0— 625 001,000 6(0,1)2 — F — 0
where
[ X11 X1 |
X12 YX22
X21 0
X22 0
0 xp
0 X

11
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wherexy1, X12, X1, Xo2 are homogeneous coordinates Bh andxi, % are homogeneous coordi-
nates on thé! factor. This expression was derived frdinin the classical case by expanding
homogeneous coordinates there in zero modes:

X1 = X11U + X12V,

Xo = Xo1U + X22V,

(whereu, vare homogeneous coordinates on the worldsheet, assumeddYpéen reorganizing
by common worldsheet factorisg. the first and third lines dE’ are the coefficients af, the second
and fourth lines are the coefficientswfand so forth.

Proceeding in the same fashion as before, one finds

YYYY¥10 =0,
YYY)10 = 1,

These can be combined into four-point correlation functions as
(01020304) = (01020304)10 + G(01020304)0.1.

If one repeats for a few more instanton sectors, one can quickly cananeself that the
operator product relations are defined by

Y2=gq Y=

the same as for the undeformed theory.

5. General correlation functions for P! x P!

Although we will not work through all the details, let us now describe theltésr correlation
functions for the most general possible tangent bundle deformati@ arP?.
ConsiderP! x P! with bundle& defined by

0— 025 0(1,0200(0,1)2 — & — 0

12
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where
AX Bx

CX DX

with A, B, C, D 2 x 2 matrices, an&, X 2-component vectors of homogeneous coordinates on
P! x P,
Define
A = (detA)(detD) — (detB)(detC),
@ = (det/A+B))?(detC)(detD) + (detC+ D))?(detA)(detB)
— (defA+B))(deC+D)) [(detA)(detD) + (detB)(detC)]
+A(deA+B))(detD —detC) + A(deC+ D)) (detA— detB).

Then, the it can be shown that the classical correlation functions aga biv

(YY) = ¢ [A — (detD)(defA+ B)) + (detB)(de(C +D))],
(YY) = o7'n,
(Y9) = ¢ A — (detA)(detC+D)) + (detC)(detA+B))].

It is straightforward to show that these obey the classical relations
(deAY +BY)) = 0 = (detCY + DY)),

and furthermore it was shown &g.[24] that the quantum sheaf cohomology relations in this case
are given by
(detAY +BY)) = g, (detfCY+DY)) = §.

6. Global issues

Let us make a few remarks in passing concerning global issues on thdi syalte of (0,2)
theories. In ordinary quantum cohomology,s a parameter, a coordinate. In (0,2) quantum
cohomology, howevery is more complicated, essentially because of Bhield implicit in the
exponent. In a (2,2) theory, the holonomy of tBdield is well-defined, but in a (0,2) theory,
because of the Green-Schwarz mechanism, Bhiégld changes across coordinate patches. As a
result,q picks up phases across coordinate patches, and is better interpratsdamn of a line
bundle.

We can see this structure in our exampléPorx PL. The moduli space of bundles is (partially)
constructed from the da#g B, C, D by taking aGL(2)2 quotient, which acts on this data as

AB
CD

PA PB
QC QD

}_>

where(P,Q) € GL(2)?, and which leave¥, Y invariant. Under this action, note that

detfAY +BY) — (detP)deAY +BY), defCY+DVY) — (detQ)de{CY +DY).

13
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For example, this implies that the correlation functions transform as secfioswivial bundles
over the (0,2) moduli space, which corresponds to worldsheet reatizgdB8a] ofe.g.the Bagger-
Witten line bundle [32]. Furthermore, the quantum sheaf cohomology regation

(defAY +BY)) = g, (defCY+DY)) = §
are only well-defined globally if under the saiG&(2)? action,
q — (detP)q, G — (detQ)q

which implies that over the moduli space of bundlgs§ transform as sections of line bundles.
This reflects the fact that on the worldsheet, the gIcliB)laﬂZ)2 action above is anomalous, as it
only acts on left-moving fields.

7. Open problems and future directions

At the moment, techniques exist for computing quantum sheaf cohomologyfamtgric
varieties (generalizations of projective spaces) and deformations iotdhgent bundles. To be
genuinely useful for compact Calabi-Yau string compactifications, we tesdniques for evaluat-
ing quantum sheaf cohomology for hypersurfaces in toric varietiesnfwe general bundles than
just deformations of tangent bundles.

In standard Gromov-Witten theory, there are many tricks and techniqudsifuy more gen-
eral computations, but most boil down to utilizing the fact that the A model tgpcdbfield theory
is independent of complex structures priori, it is not believed that the A/2 model is always in-
dependent of complex structures, hence those techniques from Giwdittew theory should not
be applicable here. Nevertheless, it was argued in [17] that at legstd@ias cases, the A/2 model
is independent of complex moduli and certain bundle moduli, so that in thess,aceomputations
can be performed. A deeper understanding of the results of [17] wmuldesirable, as well as
generalizations to more cases.
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