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1. Introduction

Physicists are presently seeking and trying to understand the connections between complex

systems, nonlocal field theories and other areas of Physics. Today, this is an important subject of

studies in different physical and mathematical areas, but the understanding of non-linear processes

connected to these topics has had a considerable boost over the past 40 years. This deeper com-

prehension has been inspired by the discovery and the insight of a new phenomenon, known as

dynamical chaos. The main motivation is that the use of these theories may yield a much more

elegant and effective treatment of problems in particle and high energy physics, as it has hitherto

been carried out with the help of the local field theories. A particular subclass of nonlocal field

theories is described with the operators of a fractional nature and is specified in the framework of

fractional calculus (FC). The latter provides us with a set of mathematical tools to generalize the

concept of derivative and integral operators with integer order to their respective extensions of an

arbitrary real order. FC has raised up a great deal of interest over recent years and has been used as

an applied tool to study of fractional dynamics in many fields of physics, mechanics, engineering

and other areas to approach problems connected with complex systems [1]. Today, there is a rich

stream of works linking such areas throughout different paths, [2]. Nonlocal theories and memory

effects can also be connected to complexity and admit a treatment in terms of FC. In this context,

the nondifferentiable nature of the microscopic dynamics may be connected with time scales so as

to approach questions in the realm of complex systems [3].

Various important characteristics of a quantum system may not be well determined if the rel-

ativistic effects are not completely taken into account in the calculations, as it can be seen in the

context of several areas of research in Physics. Including relativistic effects may lead to signifi-

cant differences in the results. Without taking into account these effects, serious inaccuracies may

shows up. For example, it is important in the context of the atomic and molecular structure to de-

scribe energy levels of excited states and the fine structure of hydrogen-like atoms. Clarifying, in

the calculation of hydrogen atom, sufficient experimental accuracy requires that relativistic effects

must be taken into account [4]. These relativistic effects can be quite significant to the correct

computation of the atomic spectrum and in the study of heavy-ion collisions, where relativistic

contributions are typically much larger especially for atoms with large nuclear charges Ze. The

inclusion of relativistic effects into the Schrödinger equation has been considered in the studies of

the electron motion in the operation of free-electron lasers [5]. This approach is also important for

the interpretation of highly accurate experiments in spectroscopy. For heavy atoms and their com-

pounds, relativistic effects do an important role. This is related to the fact that these effects on the

energies and other physical quantities increase with the fourth power of the nuclear charge Ze [6].

On the other hand, there are cases in which estimates of a good accuracy may not need the inclusion

of relativistic corrections. Some criteria for judging the importance of including relativistic effects

should be determined to to compute the influence of relativity on the structure and on the strength

of the effects of the systems under study. This is because a fully relativistic model may lead to
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more extensive calculations than the non-relativistic counterpart, as for instance atomic structures

indicate [4].

The Klein-Gordon (KG) and the Dirac equations were proposed as relativistic versions of the

linear Schrödinger equation. After a few decades of their introduction in Particle Physics, they

have been reconsidered to study relativistic quark-anti-quark bound states [7] and the gravitational

collapse of boson stars [8].

In the present contribution, we pursue an investigation of the coarse-grained fractional

Schrödinger equation, corrected by a fourth spatial derivative term which accounts for lowest power

in momentum (relativistic) correction to the kinetic energy term. To do that, we should mention

some considerations of a more formal nature.

Recently, an alternative definition to the Riemann-Liouville fractional derivative, called the

modified Riemann-Liouville fractional derivative (MRL) [9], has been proposed with the advan-

tages of both the standard Riemann-Liouville and Caputo fractional derivatives: it is defined for

arbitrary continuous (nondifferentiable) functions and the fractional derivative of a constant being

zero. The MRL approach seems to give a mathematical framework for dealing with dynamical

systems defined on coarse-grained spaces and/or with coarse-grained time, since the use of frac-

tional calculus appears to be intimately related to fractal and self-similar functions. The well-tested

definitions for fractional derivatives, namely, Riemann-Liouville and Caputo have been frequently

used for several applications. In spite of their adequacy, they present some dangerous pitfalls. Ba-

sic definitions [3, 9, 10, 11, 12, 13] and details on the formalism may be found in the quoted papers

and references therein.

We would like to emphasize that the choice of the MRL approach, besides the points already

mentioned, is justified by the fact that the chain and Leibniz rules acquires a simpler form, which

helps a great deal if changes of coordinates are performed. Moreover, causality seems to be more

easily obeyed in a field-theoretical construction if we adopt this approach. For theses reasons, we

adopt here the MRL approach for fractional derivatives.

Here, we claim that the use of an approach based on a sequential form of MRL [9] is more

appropriate to describe the dynamics associated with field theory and particle physics in the space of

nondifferentiable solution functions, or in the coarse-grained space-time. Based on this approach,

we have worked out a suggested version of a fractional Schrödinger equation, with a lowest-order

relativistic correction, obtained from a fractional wave equation [3] to which a mass term has

been adjoined, to give us a fractional Klein-Gordon equation (FKGE). With the definition of some

fractional operators, the McLaurin expansion and an ansatz for the plane wave solutions, we have

obtained fractional versions of Bohmian equations to describe the particle dynamics associated

with Bohmian mechanics, in the space of non-integer differentiable functions. We had also done

a formulation for an anomalous dispersion relation and to a refraction index, related to massless

particle in a coarse-grained media and a vacuum refractive index for a coarse-grained non-trivial

optical medium.

In a previous work [3], we have argued that the modeling of Te V-physics may demand an
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approach based on fractal operators and FC and we claimed that, in the realm of complexity, non-

local theories and memory effects were connected to complexity and also that the FC and the

nondifferentiable nature of the microscopic dynamics may be connected with time scales. Using

the MRL definition of fractional derivatives, we have worked out explicit solutions to a fractional

wave equation with suitable initial conditions to carefully understand the time evolution of classical

fields with fractional dynamics. First, by considering space-time partial fractional derivatives of the

same order in time and space, a generalized fractional D’Alembertian is introduced. By means of a

transformation of variables to light-cone coordinates, an explicit analytical solution was obtained.

Also, aspects connected with Lorentz symmetry were analyzed with two different approaches.

It seems that a reasonable way to probe the classical framework of physics is to remark that,

in the space of our real world, the generic point is not infinitely small (or thin), it rather has a

thickness. In a coarse-grained space, a point is not infinitely thin, and here, this feature is modeled

by means of a space in which the generic differential is not dx, but rather (dx)α , and likewise

for the time variable t. It is noteworthy to highlight the ideas in the interesting work by Nottale

[14], where the notion of fractal space-time is first introduced. Non-integer differentiability and

randomness are mutually related in their nature, in such a way that studies on fractals on the one

hand, and fractional Brownian motion on the other hand, are often parallel in the ref. [14]. A

function continuous everywhere, but nowhere integer-differentiable, necessarily exhibits random-

like or pseudo-random features, in that various samplings of these functions, on the same given

interval, will be different. This may explain the huge amount of literature extending the theory

of stochastic differential equations to describe stochastic dynamics driven by fractional Brownian

motion [9, 10, 13].

Our paper is outlined as follows: In Section 2, we review the development of the low-relativistic

correction to the integer order Schrödinger equation and discuss the FKGE. In Section 3, we work

out the low-relativistic fractional Schrödinger equation. The fractional continuity equation is the

subject of the section 4. Section 5 is devoted to the development of the fractional Bohmian equa-

tions with low-relativist limit. Section 6 is devoted to applications. Finally, in Section 7, we cast

our Concluding Comments and prospects for further investigation.

2. Lowest-Order Relativistic Corrections to the Integer Schrödinger Equation and
the Fractional Klein Gordon Equation

We start off from the well-known relativistic relation,

E =
√
~p2c2 +m2c4, (2.1)
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where,

E = m0c2γ;
−→p = m0~vγ

γ =
1√

1− v2

c2

. (2.2)

We readily get that ~pc
E = ~v

c . So, in the non-relativistic regime (~|v| � c), ~|p|c� E, and so the

following approximation can be adopted:

E−mc2 ≡ εnr ∼=
p2

2m
− p4

8m3c2 =

=
(pc)2

2mc2

[
1−
( pc

2mc2

)2
]
, (2.3)

where εnr stands for the non-relativistic kinetic energy. Here, it is worthy noting that the

lowest-order relativistic limit corresponds to momenta such that ~|p|c� 2mc2, that is the threshold

energy for a pair creation. The fractional approach may be justified if we argue that the particle

described by this formalism is actually a pseudo-particle that carries information of the medium and

particular interaction implicit in the equation that describes its evolution. This pseudo-particle is

then ”dressed” with information about medium and interactions, and the solutions to the fractional

equation, like the Green functions in condensed matter physics, carry additional information about

interactions and media. Then, even if the medium is not fractal, the fractional approach still makes

sense to describe the evolutions of a pseudo-particle.

Now, by adopting the correspondence principleÊ = ih̄ ∂

∂ t

p̂ =−ih̄ ∂

∂x

; (2.4)

we obtain the Schrödinger with a lowest-order relativistic correction in momentum; it reads

ih̄
∂

∂ t
ψ (x, t) =−

(
h̄2

2m

)
∂ 2

∂x2 ψ (x, t)−
(

h̄4

8m3c2

)
∂ 4

∂x4 ψ (x, t)+V ψ (x, t) . (2.5)

With this extra term in Schrödinger equation, we then construct, in the sequel, the FKGE with

a mass term. In the following subsection we shall be doing that with the aim of extracting the

non-relativistic regime of the KG equation, from which the fourth power correction in momentum

naturally follow.

The Fractional Klein Gordon Equation

In a recent paper [3], we have obtained in a natural way the fractional wave equation. Now,

we shall write down a fractional version of the KG equation by the addition of the mass term to

5
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the fractional wave equation, considering adequate dimension scale factors, in order to gain some

insight to about the fractional quantum operator to be used.

The usual KG equation reads

1
c2

∂ 2

∂ t2 ψ (x, t)− ∂ 2

∂x2 ψ (x, t)+
m2c2

h̄2 ψ (x, t) = 0. (2.6)

Fractional Klein-Gordon equation [15] and fractional Dirac equation have been studied by

several authors over the past decade [16, 17, 18]. Some articles have been dealing with fractional

power of D´Alembertian operator used in the non local kinetic terms Lagrangian field theory in

the (2+1)-dimensional bosonization and also to study the effective field theory, which has some

degrees of freedom integrated out from the underlying local theory [19, 20, 21]. The canonical

quantization of fractional massless and massive fields has been studied by some authors [2, 22, 23]

and quantization of fractional KG field and fractional gauge field based on Nelson’s stochastic

mechanics and Parisi-Wu stochastic quantization procedure at zero and positive temperature have

been considered [24, 25]. An axiomatic approach to fractional KG field, where properties of the n-

point Schwinger or Euclidean Green functions and their analytic continuation to the corresponding

n-point Wightman functions were studied by [26, 27].

The fractional KG equation can be written here, in an similar manner as in ref. [28], but with

different fractional orders in space and time, as below:

1
c2β

∂ 2β

∂ t2β
ψ (x, t)−M2

x,α
∂ 2α

∂x2α
ψ (x, t)+

m2β c2β

h̄2β
ψ (x, t) = 0. (2.7)

The diffusion factor, Mx,α , is here introduced for dimensional consistency reasons. This equa-

tion has also to be consistent with an fractional relativistic energy-momentum equation, given by

Eβ =

√
p2αc2α +m2β c4β . (2.8)

Now, with these considerations, we shall expand the momentum energy of eq.(2.8)in terms of

an integer McLaurin’s series and, after the substitution of fractional quantum operators, obtain the

fractional Schrödinger equation with lowest-order relativistic correction term.

3. Fractional Schrödinger Equation with Lowest-Order Relativistic Correction

A method first used for the attainment of a fractional Schrödinger equation was formalism of

the path integral over the Lèvy paths [29, 30], where a fractional generalization of the Schrödinger

equation in terms of the quantum Riesz fractional derivative was obtained to study the energy spec-

tra of hydrogen-like atoms, a fractional oscillator in the semi-classical approximation and the valid-

ity of the parity conservation law. The argument to write down the fractional Schrödinger equation

[31] was that the path integral over Brownian trajectories leads to the ordinary Schrödinger equa-

tion, while the path integral over Lèvy trajectories should lead to the space fractional Schrödinger

6
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equation. Other versions of Schrödinger equation were obtained [32] considering only a time frac-

tional Schrödinger equation in the sense of a Caputo fractional time derivative formalism. A version

of the generalized fractional Schrödinger, with space-time fractional derivatives in the sense of Ca-

puto and Riesz fractional derivatives, was studied in ref. [33] and solved for free particle and square

well potential with integral transform methods. The fractional Schrödinger equation can also be

obtained by methods like a fractional variational method in the context of a Lagrangian formulation

or by a FKGE[28].

Here, we adopt the MRL approach for fractional derivatives, which is less restrictive than other

definitions, to obtain the lowest-order relativistic correction to a fractional Schrödinger equation,

with different orders for the fractional derivatives in time and space.This is carried out with the use

of a FKGE.

The main rules used here, with the MRL approach, are summarized as:

DαK = 0, K is constant, Dαxγ = Γ(γ+1)
Γ(γ+1−α)x

γ−α , γ > 0, derivative of power function,(u(x)v(x))(α) =

u(α)(x)v(x) + u(x)v(α)(x) is the Leibniz rule. The chain rule for non differentiable functions is

written as
dα

dxα
f [u(x)] =

dα f
duα

(
d
dx

u
)α

, (3.1)

where f is α-differentiable and u is differentiable with respect to x and, for coarse-grained space-

time as

dα

dxα
f [u(x)] =

d f
du

dα

dxα
u, (3.2)

where f (u(x))is not differentiable w.r.t x but it is differentiable w.r.t u, and uis not differentiable

w.r.t x.

For further details, the readers can follow the refs. [11, 12] which contain all the basic for the

formulation of a fractional differential geometry in coarse-grained space, and refers to an extensive

use of coarse-grained phenomenon.

Its is worthy to point out that the Leibniz rule used here is a good approximation that comes

from the first two terms of the fractional Taylor series development, that holds only for nondif-

ferentiable functions [12] and are as good and approximated as the classical integer one. Here,

a comment is pertinent: the fractional MRL approach for nondifferentiable functions has similar

rules and has definition with a mathematical limit operation comparable to certain definitions of

local fractional derivatives, as that introduced by Kolwankar and Gandal [34, 35, 36] with some

studies in the literature. For example, the works of Refs. [37, 38, 39] or the approaches with Haus-

dorff derivative, also called fractal derivative [40, 41], that can be applied to power-law phenomena

and the recently developed α−derivative [42]. The MRL approach seems to us to be an integral

version of the calculus mentioned above and all of them deserve to be more deeply investigated,

under a mathematical point of view, in order to give exact differences and similarities respect to

the traditional fractional calculus with Riemann-Liouville or Caputo definition and with local frac-
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tional calculus and even fractional q-calculus [1, 43, 44, 47], as well as in the comparative point of

view of physics[41, 44, 47, 48, 49], for the scope of applicability.

We think that the referred alternative formalisms can be used to the attainment of results similar

or with similarities to some of those here obtained [50] and this is a good indication that our

results are more general and not only dependent and provided by an specific formalism. With these

considerations we proceed now to construct the fractional Schrödinger equation with lowest-order

relativistic correction.

We develop eq.(2.8) in McLaurin’s series by taking f (x) = (1+ xα,β )
1/2 and assuming that

f (αk)(x) has a sequential character like

f (2α)(x) =
∂ 2α

∂x2α
=

∂ α

∂xα

∂ α

∂xα
, (3.3)

f (x) = (1+ xα,β )
1/2 ∼= 1+

1
2

xα,β −
1
8

x2
α,β +O(x3

α,β ). (3.4)

Since the semi group properties for fractional derivatives do not hold in general , we use the

Miller-Ross sequential derivative [51] in the MRL sense. Incidentally, the Miller-Ross sequential

derivative is a systematic procedure that carries out a fractional higher-order derivative while avoid-

ing the recursive application of many single derivatives taken after each other. Moreover, we took

the option to carry out the sequence of derivatives in the cascade form, in MRL sense, as done in

the work of ref. [12, 13].

Here, we propose the operators:

Êβ = i(h̄)β ∂ β

∂ tβ

p̂α =−i(h̄)α Mx,α
∂ α

∂xα

; (3.5)

it can be verified that the fractional quantum operator proposed above, when substituted into the

equation eq.(2.8), will give the KG equation eq.(2.7). Note that Mx,α factor becomes dimensionless

when α equal to 1 and its mass dimension is in general α−dependent.

Now, factoring out the term mβ c2β in the eq.(2.8) and expanding in therms of McLaurin’s series

in xα,β = p2α c2α

m2β c4β
, by substitution of the fractional operators in eq. (3.5), we are lead to one possible

representation of the fractional Schrödinger equation given by

i(h̄)β ∂ β ψ (x, t)
∂ tβ

=−M2
x,α

h̄2α

2mβ

c2α

c2β

∂ 2αψ (x, t)
∂x2α

+Vα,β ψ (x, t)+

− 1
8

M4
x,α

h̄4α

m3β

c4α

c6β

∂ 4αψ (x, t)
∂x4α

(3.6)

where the notation is assumed ∂ 4α

∂x4α = ∂ α

∂xα

∂ α

∂xα

∂ α

∂xα

∂ α

∂xα ,
∂ 2α

∂x2α = ∂ α

∂xα

∂ α

∂xα , since the semi-group proper-

ties for additive in the orders of the derivatives may not hold, as previously commented.

8
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4. Fractional Continuity Equation

It is well-known that, in ordinary quantum mechanics, the continuity equation has a very

important role, it describes probability conservation law. But, in the context of a fractional quantum

mechanics, the meaning of a fractional continuity equation is not quite clear and requires some

analysis. Since we are in the interaction picture and dealing with pseudo-particles or ”dressed”

particles, the fractional continuity equation could reveal that there exists an implicit dissipation

implicit in the fractional evolution equations. Specially, if the orders of derivatives in space and

time are different from each other. This could mean that the fractional equations can be thought as

related to some effective theories. The known and unknown information about interactions and the

media could be accounted for in the fractionality. Whenever the integer order limit for derivatives

is reached, the conservation law emerges, dissipation is no more present in the theory and certain

symmetries could be restored. We expect that future scientific investigations may clarify more the

real meaning of the fractional continuity equation.

To obtain our fractional continuity equation, we now proceed as follows: the conjugate of

fractional Schrödinger equation is taken:

−i(h̄)β ∂ β ψ (x, t)
∂ tβ

=−M2
x,α

h̄2α

2mβ

c2α

c2β

∂ 2αψ (x, t)
∂x2α

+Vα,β ψ (x, t)+

− 1
8

M4
x,α

h̄4α

m3β

c4α

c6β

∂ 4αψ (x, t)
∂x4α

.

(4.1)

Probability is defined as usually: P = ψ∗ (x, t)ψ (x, t) .

Multiplying (3.6) by ψ∗ (x, t) and equation (4.1) by −ψ (x, t), after adding both equations, we

obtain

i(h̄)β ∂ β

∂ tβ
(ψ∗ (x, t)ψ (x, t)) =

−M2
x,α

h̄2α

2mβ

c2α

c2β

[
ψ
∗ (x, t)

∂ 2αψ (x, t)
∂x2α

−ψ (x, t)
∂ 2αψ∗ (x, t)

∂x2α

]
+

−1
8

M4
x,α

h̄4α

m3β

c4α

c6β

[
ψ
∗ (x, t)

∂ 4αψ (x, t)
∂x4α

−ψ (x, t)
∂ 4αψ∗ (x, t)

∂x4α

]
.

(4.2)

After some algebra, the latter equation can be written as

∂ β ρ (x, t)
∂ tβ

+
∂ αJ(x, t)

∂xα
= 0,

(4.3)

where ρ (x, t)≡ ψ∗ (x, t)ψ (x, t) and

9
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J =M2
x,α

h̄2α

2mβ ih̄β

c2α

c2β
J′+

+
1
8

M4
x,α

h̄4α

m3β ih̄β

c4α

c6β

∂ α

∂xα

{[
J′−2

(
∂ αψ∗ (x, t)

∂xα

∂ αψ (x, t)
∂xα

)]
+4
(

∂ αψ (x, t)
∂xα

∂ 2αψ∗ (x, t)
∂x2α

)}
,

(4.4)

with J′ ≡
[
ψ∗ (x, t) ∂ α ψ(x,t)

∂xα −ψ (x, t) ∂ α ψ∗(x,t)
∂xα

]
.

Equation (4.3) shows that the probability is conserved in the fractional sense.

Taking α = β = 1, we obtain the integer continuity equation with the lowest-order relativistic

correction.

5. Fractional Quantum Potential with Lowest-Order Relativistic Correction terms

Now, we shall build up the fractional Bohmian equations, by parameterizing the solution of

eq.(3.6) as below:

Ψ(r, t) = R(r, t)eiS(r,t)/h̄, (5.1)

where R and S are the amplitude of probability density and phase of Ψ, respectively, both being

real-valued functions. Substituting this relation into the fractionalSchrödinger’s equation and mul-

tiplying by e−iS(r,t)/h̄, after some algebra and taking real and imaginary parts, we get two equations

that lead to a fractional version of Bohmian Mechanics, including the its lowest-order relativistic

correction limit.

Now, proceeding as described above, two equations are obtained:

a) for the real part:

−M2
x,α

h̄2α

2mβ

c2α

c2β

1
R(x, t)

∂ α

∂xα

∂ αR
∂xα

+M2
x,α

h̄2α

2mβ

c2α

c2β

1
h̄2

(
∂ αS
∂xα

)2

+ h̄β−1 ∂ β S
∂ tβ

+V+

−1
8

M4
x,α

h̄4α

m3β

c4α

c6β

1
R

[
1
h̄4 R(S(α))4 +R(4α)− 4

h̄2 RS(α)S(3α) +

−12
h̄2 R(α)S(α)S(2α)− 3

h̄2 R2(S(2α))2− 6
h̄2 R(2α)(S(α))2

]
= 0 (5.2)

10
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b) for the imaginary part:

∂ β R2

∂ tβ
+2M2

x,α
1

2mβ

c2α

c2β
h̄2α−β−1 ∂ α

∂xα

(
R2 ∂ αS

∂xα

)
+

−1
8

M4
x,α

h̄4α

m3β

c4α

c6β

i
h̄4

(
−2R

h̄β

)[
Rh̄3S(4α)−4h̄R(α)(S(α))3 +4h̄3R(α)S(3α)+6h̄3R(2α)S(2α)

]
= 0.

(5.3)

The first term in the left-hand side of eq.(5.2) can be called fractional quantum potential due

to the presence of Planck constant and fractional derivatives:

Qα(x, t)≡−M2
x,α

h̄2α

2mβ

c2α

c2β

1
R

∂ α

∂xα

∂ αR
∂xα

+

− 1
8

M4
x,α

h̄4α

m3β

c4α

c6β

1
R

[
R(4α)− 4

h̄2 RS(α)S(3α)− 12
h̄2 R(α)S(α)S(2α)− 3

h̄2 R2(S2α))2− 6
h̄2 R(2α)(S(α))2

]
(5.4)

With this definition, the eq. (5.2)can be rewritten as

Qα(x, t)+V +M2
x,α

1
2

h̄2α

mβ

c2α

c2β

1
h̄2

(
∂ αS
∂xα

)2

− 1
8

M4
x,α

h̄4α

m3β

c4α

c6β

1
h̄4 (S

(α))4 =−h̄β−1 ∂ β S
∂ tβ

, (5.5)

deriving this equation with respect to xα , interchanging spatial and time ordering of derivatives and

considering both fractional derivative orders equals, that is, a = b, we obtain

− ∂ α

∂xα
(Qα(x, t)+V )=

∂ α

∂xα

[
M2

x,α
h̄2α

2mα

1
h̄2

(
∂ αS
∂xα

)2

− 1
8

M4
x,α

h̄4α

m3α

1
c2α

1
h̄4 (S

(α))4

]
+ h̄α−1 ∂ α

∂ tα

∂ αS
∂xα

.

(5.6)

Defining the fractional moment as

pα = Mx,α h̄α−1 ∂ αS
∂xα

, (5.7)

and noting that in the lowest order in α

dαpα

dtα
=

∂ αpα

∂xα

(
dx
dt

)α

+
∂ αpα

∂ tα
, (5.8)

with a similar the definition of the fractional velocity [10], that relates it to a fractional linear

momentum,

11
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vα =

(
dx
dt

)α

= λα,β pα , (5.9)

with λα,β =
(

Mx,α
cα

cβ

)−1
, we shall have that

− ∂ α

∂xα
(Qα(x, t)+V )≡ Fα , (5.10)

where Fα is defined as the fractional force. The equation above gives us a Newtonian-like fractional

dynamical equation, that coincides with dα pα

dtα if α = 1 and we do not consider the higher order term.

We define the fractional mechanical energy and the kinetic energy, respectively, as

Eα(x, t) =−h̄α−1 ∂ αS (x, t)
∂ tα

, (5.11)

and

Kα(x, t) = M2
x,α

h̄2α

2mα

1
h̄2

(
∂ αS
∂xα

)2

− 1
8

M4
x,α

h̄4α

m3α

1
c2α

1
h̄4 (S

(α))4. (5.12)

In terms of these and the quantum potential, we can rewrite eq. (5.2) as

Eα(x, t) = Kα(x, t)+Qα(x, t)+V. (5.13)

It is important to notice that, if we make a = 1, all the results are in complete agreement with

standard Bohmian mechanics with the inclusion of lower relativistic correction terms.

The expressions for the fractional moment (5.7) and the fractional energy (5.11) open up the

possibility for the attainment of anomalous dispersion relations that shall be discussed as an appli-

cation later on this paper.

Another point to highlight concerns energy conservation. If we assume for the phase S a

dependence like a power of time,

S (x, t) = h̄( f −ω
αtα), (5.14)

where ωα is a multiplicative constant and f is some functions depending explicitly only on x, then

we obtain for the fractional energy

Eα(x, t) =−h̄α−1 ∂ αS (x, t)
∂ tα

= h̄α
Γ(α +1)ωα , (5.15)

that is a constant. The the fractional energy can be conserved by an appropriate choice of phase.

De Broglie relations

In what follows, we argue that fractional De Broglie relations in the coarse-grained context

naturally emerge from the energy-phase and momentum-phase relationship .
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If we write for the phase S a dependence like a power of time,

S (x, t) = h̄ [kαxα ±ω
αtα ] , (5.16)

we have eq. (5.15) for the energy, which is a fractional Planck-type energy relation. Its concept

has already been proposed in the literature, in the context of soft matter [45]. The expression above

indicates that the Planck quantum energy relation may describe a fractional package of energy,

changed from the usual one by the imposed fractionality of interactions and the medium.

Notice that whenever α = 1, the usual quantum energy E = h̄ω is recovered.

Inserting the phase S into eq. (5.12) leads to

Kα(x, t) = M2
x,α

h̄2α

2mα

1
h̄2 (Γ(α +1)kα)2− 1

8
M4

x,α
h̄4α

m3α

1
c2α

1
h̄4 (Γ(α +1)kα)4 =

= M2
x,α

1
2mα

1
h̄2 [Γ(α +1)h̄αkα ]2 +O

(
p4
)
. (5.17)

This suggests a definition of the momentum as below:

pα = Mx,αΓ(α +1)h̄αkα , (5.18)

which reduces to De Broglie relations of ordinary quantum mechanics for α = 1.

Anomalous Dispersion Relation for massless Particles

Based on eq. (2.8), with mα = 0, the dispersion relation for a massless particle can be written

as

Eα =
√

p2αc2α ; (5.19)

it is a non-linear relation.

As an example, with the help of eqs. (5.15) and (5.18) one can write eq.5.19 as

[h̄α
Γ(α +1)]2ω

2α = p2αc2α = M2
x,αΓ

2(α +1)h̄2αk2αc2α , (5.20)

or simplifying, the dispersion relation can be cast in terms in terms of ωαand kα as

ω
α = Mx,αkαcα . (5.21)

6. Application: Group and Phase Velocities, The Dynamical Evolution Equation for
the Phase and the Medium Refractive Index

As a general application, we develop expressions for group and phase velocities. Also, a
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simple dynamical evolution equation for the phase S is obtained and a connection with refractive

index of the medium is suggested.

The fractional group velocity can be written as

vγ
g =

dγEα

(d pα)γ
=

Γ(α +1)
Γ(α− γ +1)

pα−γcα , (6.1)

and the phase velocity can be expressed as the ratio between fractional energy and momentum is

vph =
Eα

pα
= cα . (6.2)

Comparing both expressions, we can see that the phase velocity and the group velocity are

equal only in the integer limit where α = γ = 1. Also, the group velocity has an non-linear behavior

for non-integer fractionality. The expressions above indicate that the propagation of energetic

particles in a coarse-grained medium might travel with a velocity cα , less than the speed of light c

in the trivial vacuum. We remark here that this was achieved without the necessity to modification

of Maxwell’s equations.

To the calculation of the group velocity is carried out with a different fractional order derivative

parameter γ (instead of α). We argue that we may be eventually trying to describe the dynamics

of a system with some slightly different fractional parameter. The fractionality of the medium may

have changed slightly in some way, due to perturbation interactions. The changes, even if small,

may give rise to the non-linear behavior described by the fractional expression obtained above.

With the help of the dispersion relation for a massless particle given by eq. (5.19), we can

write an equation for the dynamical evolution of the phase S. For this, we use also equations (5.7)

and (5.11). Then, we write

∂ α

∂ tα
S (x, t)+Mx,α

∂ αS
∂xα

cα = 0. (6.3)

The canonical momentum-energy relation may be connected with the refractive index and can

be written as a reference equation, relating the photon propagation velocity in the coarse-grained

medium and the standard velocity of light in the trivial vacuum. This indicates an energy-dependent

vacuum refractive index,

pα

Eα
=

nα

c
, (6.4)

with nα being the refractive index [46] for a coarse-grained non-trivial optical medium.

If the kinetic moments are considered, then

pα

Eα
=

1
nαc

. (6.5)

The expressions above, with the help of eqs. (5.7), (5.11) and (6.3) may provide a mechanism

to attain a refraction index for the medium in a coarse-grained scenario and indicate there may
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be a close connection between fractionality and anomalous dispersion relations for photons, in a

coarse-grained medium. This agrees with the reported literature concerning anomalous dispersion

relations for UHECR photons [52], specially with some experimental data, like the once coming

from cosmic gamma ray burst measurements. It can also be compared with results from non-

commutative theories [53].We suggest that UHECR sources [54], the distant astrophysical sources

such as Gamma-Ray Bursts (GRBs) and active galactic nuclei (AGNs) or pulsars [55] may be the

best framework to test the model presented here, including vacuum refractive index relation.

7. Concluding Comments

There has been considerable interest over the past recent years in the so-called theory of

"weak" quantum measurements, whose aim is to measure the average value of a quantum observ-

able while negligibly disturbing the measured system [56, 57, 58, 59, 60]. Very recently, experi-

mental observation of trajectories of a photon in a double-slit interferometer was reported, which

displayed the qualitative features predicted in the De Broglie-Bohm interpretation [61, 62].

Possibilities like connections with a quantum gravity theory emerge from the fact that modified

fractional Newtonian equation could be connected with a fractional Newtonian dynamics similar

to MOND [63]. The natural emergence of a fractional Newtonian equation implicitly involves a

nonlocal theory leading to a Newtonian law with memory, a characteristic of fractional deriva-

tives. Also, the fractional energy reinforces the expectation of the presence of quantum effects.

Those effects can be also associated with collective behavior in a fractal space-time tissue, where

fluctuations can give rise to excitations like fractons in the net fractals [64].

Also, a version of fractional De Broglie relations naturally comes out from our equations and

we recover the integer relations in the convenient limit. In connection with the probability conser-

vation, in the fractional case, we have worked out, to the lowest order in the relativistic correction,

the fractional probability current. The probability can be conserved in this nondifferentiable space-

time if we consider a fractional version of continuity equation that reduces to the standard one in

the integer limit or, in other words, integer dimensions. As an outlook for a forthcoming work,

solutions with the Mittag-Lefller instead of exponential solutions, shall be analyzed in two pos-

sibilities: nondifferentiable space of solutions and coarse-grained space-time in the argument of

refereed special solution function.

We have also proposed a formulation for an anomalous dispersion relation and a refraction

index, related to massless particles in a coarse-grained medium and a vacuum refractive index for

a coarse-grained non-trivial optical medium, that may indicates that energetic particles in a coarse-

grained medium might travel with a velocity cα less than the corresponding one in a non-interacting

vacuum with speed of light c. In the context of other approaches, some similar space-time ”foam

effect” were already reported in the scientific literature [65].

A possible connection with reported literature of non-commutative theories was suggested

[53].
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We indicate that a possible test framework for the model presented here may be UHECR

sources [54], GRBs and AGNs or pulsars [55].
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