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Based on multiyear INTEGRAL observations of SS433, a composite IBIS/ISGRI 18-60 keV

orbital light curve is constructed around zero precessional phaseψpr = 0, which corresponds to

a maximum separation of the moving emission lines originated in sub-relativistic jets from the

source. It shows a peculiar shape characterized by a significant excess near the orbital phase

φorb = 0.25, which is not seen in the softer 2-10 keV energy band. Such ashape is likely to be

due to a complex asymmetric structure of the funnel in a supercritical accretion disk in SS433.

The orbital light curve at 40-60 keV demonstrates two almostequal bumps at phases∼ 0.25

and∼ 0.75, most likely due to nutation effects of the accretion disk. The change of the off-

eclipse 18-60 keV X-ray flux with the precessional phase shows a double-wave form with strong

primary maximum atψpr = 0 and weak but significant secondary maximum atψpr = 0.6. A

weak variability of the 18-60 keV flux in the middle of the orbital eclipse correlated with the

disk precessional phase is also observed. The joint analysis of the broadband (18-60 keV) orbital

and precessional light curves obtained by INTEGRAL confirmsthe presence of a hot extended

corona in the central parts of the supercritical accretion disk and constrain the binary mass ratio in

SS433 in the range 0.5& q& 0.3, confirming the black hole nature of the compact object. Orbital

and precessional light curves in the hardest X-ray band 40-60 keV, which is free from emission

from thermal X-ray jets, are also best fitted by the same geometrical model with hot extended

corona atq∼ 0.3, stressing the conclusions of the modeling of the broad-band X-ray orbital and

precessional light curves.
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1. Introduction

SS433 is a unique galactic steadily superaccreting microquasar with mildly relativistic (v =

0.26c), precessing jets located at a distance of 5.5 kpc [14, 2, 3, 7, 8]. The system exhibits three pho-
tometric and spectral periodicities related to precession(Pprec= 162d.5), orbital (Porb = 13d.082)
and nutation (Pnut = 6d.28) periods [11]. Despite of wealth of observations, the nature of the com-
pact star in SS433 remains inconclusive. The presence of absorption lines in the optical spectrum of
the companion [10, 12] suggests its spectral classificationas∼ A7Ib supergiant. Assuming these
lines to be produced in the optical star photosphere, their observed orbital Doppler shifts would
correspond to the mass ratio of compact (Mx) and optical (Mv) starq = Mx/Mv ∼ 0.3±0.11 and
massesMx = (4.3±0.8)M⊙, Mv = (12.3±3.3)M⊙, respectively, pointing to the black hole nature
of the compact star.

Modeling of all INTEGRAL eclipses of the source available before 2010 [6] using a purely
geometrical model yeilded independent constraints on the binary mass ratioq= 0.25−0.5 with the
most probable valueq= 0.3, suggesting the mass of the compact companionMx ≃ 5.3M⊙ and the
optical starMv ≃ 17.7M⊙ for the observed optical star mass functionfv = 0.268M⊙. This places
SS433 among black-hole high-mass X-ray binaries. Thus SS433 can be the only known example of
galactic massive X-ray binary at an advanced evolutionary stage [2, 3] with supercritical accretion
[16] onto a black hole [6]. Its study in different spectral bands provides invaluable information for
theory of evolution of binary star and the formation of relativistic jets.

The basic picture of hard X-ray emitting regions, as emergedfrom analysis of X-ray data
[8, 9, 5, 6, 13], includes hot X-ray jet propagating through afunnel in the supercritical accretion
disk, filled with hot scattering medium (a corona). The X-rayspectrum of SS433 in the 3-100 keV
range can be fitted by two-component model (thermal X-ray emission from the jet and thermal
comptonization spectrum from corona) elaborated in [13]. The scattering corona parameters are:
Tcor ≃ 20 keV, Thomson optical depthτT ≃ 0.2 and mass outflow rate in the jetṀ j = 3×1019 g/s.
This parameters suggest the coronal electron number density around 5×1012 cm−3, which is typ-
ical in the wind outflowing with a velocity ofv ∼ 3000 km/s from a supercritical accretion disk
with mass accretion rate onto the compact starṀ ∼ 10−4 M⊙/yr at distances∼ 1012 cm from the
center, where a Compton-thick photosphere is formed [8]. The size of the disk photosphere was
independently estimated from measurements of fast opticalaperiodic variability [1].

Here we analyze hard X-ray eclipses of SS433 near the T3 moment in combination with the
precessional variability as observed by INTEGRAL, and interpret them in terms of our multicom-
ponent geometrical model (see [6] for more detail).

2. Composite X-ray light curve and jet nutation effect

Previous dedicated INTEGRAL observations of hard X-ray eclipse are summarized in Table
1. They were all concentrated around precessional phase zero (’the T3 moment’ in terms of the
kinematic model of SS433 [14]), where the accretion disk is maximum opened to the observer and
the X-ray flux from the source is the highest.

The composite IBIS/ISGRI 18-60 keV light curve of the primary X-ray eclipse at precessional
phase zero is shown in Fig. 1 (panel 1). Data were analyzed using the IKI INTEGRAL data
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Table 1: Dedicated observations of SS433 by INTEGRAL
Set INTEGRAL orbits Dates Precessional phaseψpr

I 67-70 May 2003 0.001-0.06
II 555-556 May 2007 0.98-0.014
III 608-609 October 2007 0.956-0.99
IV 612-613 October 2007 0.030-0.064
V 722-723 September 2008 0.057-0.091
VI 984 November 2010 0.87-0.89

987 November 2010 0.93-0.94
VII 1040-1041 April 2011 0.91-0.95

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

20 100

Figure 1: From left to right: 1) Composite IBIS/ISGRI 18-60 keV X-ray eclipse light curve around zero
precessional phaseψ = 0. 2) Binned X-ray light curve (∆φ = 0.02) with phase intervals for spectral analysis.
3) Phase-resolved IBIS/ISGRI spectra of SS433 within chosen orbital phase intervals. 1-σ errors are shown.

processing code described in [15]. The eclipse light curve averaged within orbital phase bins
∆φ = 0.02 is shown in Fig. 1 (panel 2). 3σ -flux errors are indicated. The 18-40 and 40-60 keV
orbital and precessional light curves with the corresponding hardness ratios are shown in Fig. 2
and Fig. 3, respectively.

A very significant flux excess at the orbital phaseφ ∼ 0.25 is observed in the composite 18-60
light curve (Fig. 1, panel 2; Fig. 2, upper light curve) afterthe eclipse relative to the phase 0.75
before the eclipse. However, on the 40-60 keV light curve twomaxima with similar amplitude
are clearly seen at both orbital phases 0.25 and 0.75. These∼ 10% sine-like variability at twice
the orbital period superimposed on the orbital light curve is mostly likely to be due to the jet
nutation. The tidal nutation occurs twice the synodic period (6.28 d in the case of SS433). The
effect must be maximal at the zero precessional phase when the binary system is observed in
quadratures (i.e. at the binary phases 0.25 and 0.75). Due tonutation the jet changes its inclination
to the line of sight by 6 degrees, suggesting the change in theprojection area of the jet funnel
∆S/S∼ ∆i j/i j = 0.1 (herei j ≈ 59o is the jet inclinatin angle at the T3 precessional phase). Thus,
the composite INTEGRAL light curve allowed us to see for the first time the jet nutation in the
40-60 keV band.

2. Orbital phase-resolved spectroscopy. The accumulated data allowed us to make for the first
time the orbital phase-resolved X-ray spectroscopy. Five orbital phase intervals chosen for spectral
analysis are shown by the vertical dashed lines in Fig. 1 (middle panel). The obtained X-ray
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Figure 2: IBIS/ISGRI 18-40 and 40-60 keV or-
bital light curves with hardness ratio (bottom plot).

Figure 3: Precessional 18-40/40-60 keV light
curves and hardness ratio.

spectra are shown in Fig. 1 (right panel). It is seen that within errors they have an identical power-
law shape with photon spectral indexΓph ≃ 3.8. Nevertheless, a tendency of the spectrum to get
harder atφ ∼ 0.25 (phase interval V in Fig. 1, middle panel) than atφorb ∼ 0.75 (phase interval I
in Fig. 1, middle panel) is clearly seen. Note also that at themiddle eclipse (phase interval III in
Fig. 1, middle panel) the spectrum gets softer. This is exactly what is expected in the jet nutation
picture: during the disk-jet nutation the angle between theline of sight and the jet axis changes
by ∼ 6 degrees, so the observer looks into the funnel less (atφorb = 0.5) or more (atφorb = 0.75)
deeper, thus observing cooler or hotter parts of the jet base.
3. Precessional variability. At a distance of 5.5 kpc to SS433, reliably derived from the kinematic
properties of moving emission lines [8], the observed X-rayflux 18-60 keV corresponds to a max-
imum uneclipsed hard X-ray luminosity of 3× 1035 erg/s. The precessional change of the X-ray
flux is shown in Fig. 3. To plot this Figure, all available observations of SS433 by INTEGRAL
with a total exposure time of about 8 Ms were used. This confirms the presence of a fairly broad
region emitting in hard X-rays with size comparable to that of the accretion disk (∼ 1012 cm), since
(excluding orbital eclipses) the observed flux varies due toprecession of the disk. The both preces-
sional light curves show precessional variability and wereused to constrain parameters of the hot
corona ([6] and below).

3. Results

The INTEGRAL observations of SS433 provide three differentlight curves, which can be
used to constrain the parameters of the system: 1) the orbital light curve, 2) the precessional light
curve out of eclipses, and 3) precessional light curve in themiddle of the eclipses (see Fig. 4,
upper panels, and lower panels, blue and red crosses, respectively). We use a geometrical model
described in detail in [6]. Briefly, the model includes an optical star with massMv filling its Roche
lobe, a compact star with massMx surrounded by an optically thick accretion disk with radiusad,
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Figure 4: Joint analysis of orbital (upper plots) and precessional (lower plots) 18-60 keV light curves of
SS433. On the bottom panels, precessional variability in the middle of eclipse (0.95< φorb < 1.05) are
shown by red crosses. 1).q= 0.1, ’short jet’ corona (a j = 0.25,b j = 0.1, ω = 40o). 2) q= 0.3, ’short jet’
corona (a j = 0.35,b j = 0.13,ω = 80o). 3) q= 0.3, ’short jet’ corona (a j = 0.35,b j = 0.13, ω = 80o). 4)
χ2 for the orbital light curve for different mass ratios.

and a hot corona which is modeled as a broad ’jet’ parametrized by the part of ellipse with semi-
axesa j andb j normalized to the binary orbital separationa. The elliptical corona is restricted by
the cone with half-angleω . The shape and amplitude of the precessional light curve constrain the
height of the hot X-ray corona, while the orbital light curverestricts the accretion disk radius. At
a given binary mass ratio, after finding the best parameters for the precessional variability, we can
calculate the deviations of the model orbital light curve from the observed one. The results of the
joint analysis of the orbital and precessional 18-60 keV light curves of SS433 are shown in Fig. 4.

To avoid contamination from thermal X-ray emission from relativistic jets, we repeated the
analysis using only hard X-ray 40-60 keV light curves shown in Fig. 2 and Fig. 3. The result
for different mass ratiosq = Mx/Mv is presented in Fig. 5. It is seen that the hard X-ray orbital
and precessional light curves can be simultaneously reproduced by the geometrical model for the
binary mass ratioq& 0.3 (at smaller mass ratios a plateau corresponding to the total eclipse of the
hot corona by the optical star appears in the orbital light curve, which is not observed), in agreement
with the analysis of the broadband 18-60 keV orbital and precessional light curves shown in Fig.
4.

4. Conclusions

1) INTEGRAL observations of SS433 in hard X-rays 18-60 keV allowed us for the first time
to make orbital-resolved spectroscopy of the X-ray eclipsein the precessional phase corresponding
to the maximum opening angle of the disk. The hard X-ray continuum is fitted with a power-law
with photon indexΓ ≈ 3.8 which does not significantly change across the eclipse, suggesting the
origin of this emission as being due to scattering in hot corona surrounding the funel around the
jets in a supercritical accretion disk in SS433.

2) For the first time, joint analysis of hard X-ray (40-60 keV)orbital and precessional light
curves has been performed. This analysis independently confirms our previous result [6] that the
low value of the mass ratioq= Mx/Mv in SS433 cannot reproduce the observed orbital and preces-
sional light curves. With the existing estimates of the massfunction of the compact star, the most
likely valueq∼ 0.3 points to the black hole nature of the compact star in SS433.
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Figure 5: Joint analysis of orbital (upper plots) and precessional (lower plots) 40-60 keV light curves of
SS433. Left panel:q= 0.1, ’long jet’ corona (a j = 0.25,b j = 0.55,ω = 80o); only orbital light curve can
be reproduced. Middle panel:q= 0.1, ’short jet’ corona (a j = 0.25, b j = 0.1, ω = 80o). Both orbital and
precessional light curvs can be fitted, but the total eclipse(plateau at zero flux) appears (unobserved). Right
panel:q= 3, ’short jet’ corona (a j = 0.35, b j = 0.13,ω = 80o); both orbital and precessional light curves
are well reproduced.

3) The shape of the hard X-ray orbital light curve 40-60 keV demonstrates two humps at
around orbital phases 0.25 and 0.75, likely due to the nutation effects in SS433.

New INTEGRAL observations of SS433 at different precessional phases will be used to further
constrain physical parameters of this unique galactic microquasar.
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