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The INTEGRAL/SPI, X/γ-ray spectrometer (20 keV - 8 MeV), is an instrument for whichthe

determination of source intensity variation is largely based on a-priori information. We propose

two techniques that help to overcome the difficulty and allowto construct source "synthetic" light-

curves in a more rational way. The first method takes advantage of already existing light-curves

in form of time series, that can be obtained from other instruments (for example, IBIS onboard

the INTEGRALobservatory, but also SWIFT). The second method does not longer need external

light-curves, but relies directly on SPI raw data. For that,we have developed a specific algorithm

that involves the SPI transfer function.
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1. Introduction

Sky imaging, with SPI [1, 2], is not direct and rely on a coded-mask aperture associated to
a specific observation strategy based on a dithering procedure [3].Thedithering is needed since a
single exposure does not always provide enough information or data to reconstruct the sky region
viewed through the instrument∼30◦ field-of-View (FoV). The grouping of these exposures allow
to increase the amount of available information on a given sky target through a growing set of
independent data. However, sources intensity varies between exposures. Thus, a modeling of
sources variability, of at least of the most intense ones, is needed to obtaina reliable modeling of
the data and accurate measurement of the sources intensity.
Ideally, the system of equations connecting the data and the sky model should be solved for both
intensity variations of sources and background. We try to fulfill these two requirements.

2. Taking into account sources intensity variations

The variation in intensity of a source (and background) is modeled as a succession of piecewise
segments of time. In each of the segments (also called “time-bins”), the intensity of the source
is supposed stable. First, to allow all sources to vary on the time scale of exposure is not the
appropriate strategy, because the problems to solve, for crowded regions of the sky, are in most
cases undetermined. Generally, to deduce coarsely the sources variability time-scale, a crude and
straightforward technique consists in testing several mean time-scale valuesuntil the reduced chi-
square, of the associated least-square problem, is around 1 or stops to decrease. When defining
manually the “time-bins” one might be rapidly overwhelmed with the many time-scales totest
and the number of sources. Furthermore, modeling the sources intensity variations turns out to
be rather subjective and irksome, and it relies most of the time on some a-priori hypotheses and
simplification. To make this step more rational, we propose algorithms, based on apartition of the
data, to model sources intensity variation.

3. Methods

The objective is to find the “time-bins” or segments sizes and locations corresponding to some
set of data. It is related to the partition of an interval of time into segments; finding separation
points for time series. The ideal would have been to have the light curves (timeseries) of all
the sources on the timescale of the exposure from the SPI instrument itself, but it is not always
possible. However, some instruments can provide a very similar information onsources intensity
variations. The first method, called "image-space" method, relies on already externally available
light-curves (or equivalently on time series) from another instrument; in ourapplication mainly
INTEGRAL/IBIS[4], but also SWIFT/BAT [5]. The purpose is to simplify an original light-curve
in order to maximize the source signal-to-noise ratio, hence to reduce the number of “time-bins”
through the minimization of the number of intervals of time. Those “time-bins” will be used to set
up the SPI system equation. This partitioning is done for all the sources in theFoV. The second
algorithm, called "data-space" method, starts from the raw data and uses theinstrument transfer
function. While being more complex, it has the great advantage to be based solely on SPI data.
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3.1 Partition of a time series basics

The partition of an interval into segments is closely related to the topic of changepoints, widely
discussed in the literature. There is a variety of efficient ways to analyze atime series if the
parameters associated with each segment are independent. Applications to astronomical time series
(BATSE bursts characterization) can be found in [6].
The problem consists in detecting and characterizing local variability in a time series. We consider
the time seriesx≡ x1:L = (x1, . . . ,xL), comprising L sequential elements, following the model

xi ≡ f (ti)+ εi i = 1,2, . . . ,L (3.1)

xi are the measured data andεi their measurement errors. The data are assumed to be ordered in
time (may be evenly spaced), meaning that eachxi is associated with a timeti , and contained in a
time intervalT = (t1, . . . , tL). f (ti) is the model to be determined. We choose to model a source
light-curve as a combination of constant piecewise time segments or blocks.

f =
m+1

∑
k=1

skIk with Ik = 1 if t ∈ [τk−1,τk[, Ik = 0 otherwise (3.2)

Hereτ0 = min(T) andτm+1 = max(T) or, equivalently, in point number units,τ0 = 1 andτm+1 =

L+1 (τ0 < τ1 < .. . < τm+1).
This set of non-overlapping blocks that add up together to form the wholeinterval forms a

partition of the interval, T. Hence, there is m + 1 (≡ nseg) segments, such that the functionf (t) is
constant between two successive changepoints. Yao [7] and Jackson [8] have proposed a dynamic
programming algorithm to explore all these partitions.

4. Training dataset

We construct few training datasets. A SPI dataset consists of all the exposures whose angular
distance, between the telescope pointing axis and the source of interest direction (central source)
is less than 15◦. This procedure gathers the maximum number of exposures containing the signal
from the source of interest, but at the same the datasets span a sky region, of∼ 30◦, containing
numerous sources.

5. “Image-space” method

Step 1: Segmentation of an existing time series: The basic process to setup “time-bins”
characteristics (start, end) is the time series segmentation. For this study, we rely mainly on IBIS
existing light curves in form of time series (“quick look analysis”). To haveroughly similar signal-
to-noise ratio (SNR) per sources between IBIS and SPI we performed aSNR scaling (See [10]).
Figure 1 shows the application to GX 339-4.
Step 2: Application to SPI using pre-defined “time-bins” : We apply the “image-space” algo-

rithm to the datasets related to GX339-4, 4U 1700-377 and GX 1+4 sourcescontaining 1183, 4112
and 4246 exposures respectively. The number of sources included inthe sky model are respec-
tively, 124, 142 and 140 for the GX 339-4, 4U 1700-377 and GX 1+4 datasets. Each available IBIS
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Figure 1: The 26-40 keV IBIS time-series (gray) which contains 1183 data points (one
measurement per exposure) is segmented into 17 constant segments or “time-bins” (green). The

χ2(i)
r between the time series and its segmented version is 1.0006 for 1166 degrees of freedom

(dof). These curves are plotted in function of the time (Top)and the exposure number (Bottom).
The raw time series (without SNR scaling) is directly segmented into 46 segments (Blue curve).

GX 339−4

0 200 400 600 800 1000 1200
Exposure number

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

R
at

e

IBIS time−series
IBIS segments based
SPI intensity variations

Figure 2: The intensity variations of GX
339-4 and GX 1+4 in the 27-36 keV band
as a function of the exposure number. The
SPI segments are in red and IBIS raw light-
curves (26-40 keV) are in gray. The seg-
mented IBIS time-series (scaled SNR) is
shown in green. The counts rate normal-
ization between IBIS and SPI is arbitrary.
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individual light-curve is segmented to define the “time-bins”. These “time-bins” characteristics are
incorporated in the SPI related system equations, which is then solved. Figure 5 shows the intensity
variations of GX 339-4 and GX 1+4 obtained with SPI.
These results are summarized in Table 1. Hence, these pre-defined “time-bins” permit a clear
improvement of the reduced chi-square between the data and its modelχ2

r .

6. ”Data-space” method

We developed an algorithm that extracts information on variations in intensity and fluxes of
sources directly from the data. It is possible with some assumptions to produce an algorithm that
works as the dynamic algorithm described in sec.3. Suppose that only a source contributes to the
data. The system of equation relying the data to the source is (very schematically),

D =

{

H0x+Σ if the source does not vary with time

Hs+Σ if the source varies (eq. 3.2)
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WhereH0, D andΣ are vectors of lengthM representing respectively the transfer function, the
data points and the data measurement errors. Schematically,H can be derived by splitting the
vectorH0 into a matrix ofnsegcolumns. Roughly, ones try to find the optimal number of columns
nseg of H. In reality there is many sources (including the background) which contribute to the
data. The contribution, through a transfer function, of each of the sources to the data is to be
retrieved. For each of the sources, the number and position of segments are parameters to estimate,
but the estimates are interdependent because the nature of the instrument coding. The details and
optimizations done to make it tractable can be found in [10]. In addition, to reduce the computation
time the code has been parallelized.

6.1 Application to SPI

The characteristics of a few datasets used to test the “data-space” algorithm are displayed in
Table 2. For dataset relative to V0332+53, the “data-space” algorithm givesχ2

r of 1.06 for 6595 dof
and a total of 97 “time-bins”. The resulting V0332+53 intensity evolution( 9 segments) is displayed
on left panel of Fig. 3 as a function of the exposure number.
We apply the algorithm to the highly variable source Cyg X-1. The datasetχ2

r is 1.44 for 40 068 dof,
and a total of 676 “time-bins”. The number of segments needed to describe the intensity variations
of Cyg X-1 is 281. The relatively high value of the chi-square may be due tothe strong intensity
and hence to the high SNR of the source. A lower value can be obtained by reducing the width
of the energy band and changing some inputs parameters to the algorithm (See [10]). However,
the systematic errors due to the finite precision of the transfer function startto be important for
this strong source and this may be in part responsible of the high chi-square value. For the dataset
related to GRS 1915+105, a moderately strong and variable source, theχ2

r is 1.24 for 51 573 dof
and a total of 440 “time-bins”. GRS 1915+105) intensity variation is displayedon right panel of
Fig. 3 and consists of 103 segments. The results of the “image-space” and“data-space” algorithm
are compared using GX 339-4 dataset (Fig. 4).

Table 1: “image-space” method final chi-square.
Dataset 4U 1700-377 GX 339-41 GX 1+41 4U 1700-3771

Exposures 4112 1183 4246 4112
Sources 142 120 140 142

All sources assumed to have constant intensity
χ2

r (dof) 6.15(71594) 2.46(19308) 1.81(69361) 2.01(67483)
nseg

2 1 1 1 4112

“time-bins” from IBIS light curves after SNR scaling
χ2

r (dof) 1.28(68455) 1.186(18880) 1.193(68557) 1.186(66588)
nseg

2 2245 17 122 4112

“time-bins” from IBIS light curves directly
χ2

r (dof) 1.132(65768) 1.106(18317) 1.143(66939) 1.124(64841)
nseg

2 3185 46 675 4112

aThe source 4U 1700-377 is also contained in
the FoV and is set variable on the exposure duration
timescale (∼ 1 hour).

bNumber of segment to model the source intensity
variations.

Table 2: Characteristics of the datasets.
Dataset Number of Energy Number of

exposures range (keV) sources
V 0332+53 391 25- 50 17
GX 339-41 1183 27- 36 120
GRS 1915+105 2980 27- 36 61
Cyg X-1 2351 27- 36 32
IGR J17464-3213 7147 27-36 132

aThe dataset is restricted to common IBIS and SPI
exposures.
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Figure 3: (Left): “data-space” method applied to V 0332+53. The source intensity variations (25-50 keV)
is modeled into 9 segments (Red) and is compared to IBIS time-series (26-51 keV, gray). The green curve
corresponds to IBIS flux averaged on SPI computed segments. The insert is a zoom between exposure
number 81 and 179.(Top) SPI intensity variations model (black) is compared to SWIFT/BAT time-series
(24-50 keV, Purple line). The scale between the different instruments is arbitrary and is chosen such that their
measured total fluxes are equal. It should be noted that the SWIFT/BAT and IBIS data are not necessarily
recorded at the same time as SPI data, nor exactly in the same energy band. (Right): Same caption, but for
GRS 1915+105 in the 27-36 keV band. The intensity linear correlation coefficients are respectively 0.98
between IBIS (26-40 keV) and SPI and 0.97 between SWIFT/BAT (24-35 keV) and SPI.
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Figure 4: Comparison of GX 339-4 (27-36 keV)
intensity variations obtained with the “image-
space” and the “data-space” algorithms. The
common SPI/IBIS database contains 1183 ex-
posures. The “image-space” method describes
GX 339-4 intensity variations with 17 segments
(Red) for aχ2

r of 1.19. The “data-space” method
uses 15 segments (Blue) and achievesχ2

r of 1.20.
The GX 339-4 segmented version of the IBIS
(26-40 keV) time-series is shown in green.

6.2 Instrumental background

The background is the dominant contributor to the observed detector counts or data. Its spa-
tial structure on the detector plane (relative counts rate of the detectors) isassumed to be known
thanks to "empty-field” observations, but its intensity is variable. By default,its intensity variabil-
ity timescale is fixed to∼ 6 hours, shown to be relevant for SPI [11]. Its intensity variation can
also be computed, as a source, with the “data-space” algorithm.
With “data-space” if we let the algorithm determines the background intensity variation, it is mod-
eled with fewer number of segments compared to the case where the background variation is fixed
for a quantitatively comparable chi-square. This is due to a better localizationof the changepoints.
The other parameters such as the number and location of sources “time-bins”, stay essentially the
same [10].

7. Summary

With only 19 pixels, the SPI detector does not provide enough data to correctly construct and
sample the sky image viewed through the aperture of∼ 30◦ FoV. The dithering technique solves
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this critical imaging problem, by permitting the accumulation of independent data ona given sky
region, but at the same time, raises important issues of data reduction and image/data combination
through variability of sources. We propose two algorithms to model the intensityvariation of
sources in form of combination of piecewise segments of time during which a given source
exhibits a constant intensity.
A first method (“image-space”) uses existing time series to build segments of time during which a
given source exhibits a constant intensity. This auxiliary information is incorporated into the SPI
system of equations to be solved. It is relatively easy to implement because IBIS instrument
aboardINTEGRALobserves simultaneously the same region of the sky as SPI and provides
external information.
A second, called “data-space” method, determines these segments from SPI data directly and does
not suffer from dependence on external data. The use of the instrument transfer function and the
many sources in the FoV greatly increase the complexity of the problem. We have developed an
novel algorithm to handle this problem and made optimizations that accelerate thecomputations.
The “image-space” depends on external data and hence on instrument characteristics (FoV,
sensitivity, ...), but also on the level of processing performed and availability of these external
data. This method, using IBIS and SPI instruments differs from the direct ”cross-analysis” since it
avoids the many difficulties linked to the possible difference in the absolute calibration of the
instruments; we can even use "quick-look" data analysis from IBIS as external information. The
“data-space” is more suitable to explore interdependence of the sourcescontribution to the data; it
better takes into accounts the co-variance of the parameter during the reduction process. We
choose to use piecewise constant representation of the intensity variationssince it is the most
simple one, but more detailed/accurate model of variations can be used instead. To conclude, the
two proposed algorithms allow to introduce more objective parameters, here the “time-bins” in the
problem to be solved. They permits to construct an improved sky model whichbetter fits the data.
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