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1. The ATLAS experiment

The ATLAS experiment [1] is a multipurpose particle physics detector with forward-backward
symmetric cylindrical geometry, see Fig. 1. The inner tracking detector consists of a silicon pixel
detector, a silicon microstrip detector, and a straw-tube transition radiation tracker. The inner de-
tector is surrounded by a thin superconducting solenoid which provides a 2 T magnetic field, and
by high-granularity liquid-argon (LAr) sampling electromagnetic calorimetry. The electromagnetic
calorimeter is divided into a central barrel (pseudorapidity1 |η | < 1.475) and end-cap regions on
either end of the detector (1.375 < |η |< 2.5 for the outer wheel and 2.5 < |η |< 3.2 for the inner
wheel). In the region matched to the inner detector (|η | < 2.5), it is radially segmented into three
layers. The first layer has a fine segmentation in η to facilitate e/γ separation from π0 and to im-
prove the resolution of the shower position and direction measurements. In the region |η |< 1.8, the
electromagnetic calorimeter is preceded by a presampler detector to correct for upstream energy
losses. An iron-scintillator/tile calorimeter gives hadronic coverage in the central rapidity range
(|η | < 1.7), while a LAr hadronic end-cap calorimeter provides coverage over 1.5 < |η | < 3.2.
The forward regions (3.2 < |η | < 4.9) are instrumented with LAr calorimeters for both electro-
magnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters and
consists of three large air-core superconducting magnets providing a toroidal field, each with eight
coils, a system of precision tracking chambers, and fast detectors for triggering. The combination

Figure 1: A cut-away view of the ATLAS detector.

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the
detector, and the z-axis along the beam line. The x-axis points from the origin to the centre of the LHC ring, and the y-
axis points upwards. Cylindrical coordinates (r,φ) are used in the transverse plane, φ being the azimuthal angle around
the beam line. Observables labelled “transverse” are projected into the x− y plane. The pseudorapidity is defined in
terms of the polar angle θ as η =− ln tan(θ/2).
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Figure 2: A Z→ µ+µ− event with 25 reconstructed vertices, from 15 April 2012.

of all these systems provides charged particle measurements together with efficient and precise lep-
ton and photon measurements in the pseudorapidity range |η | < 2.5. Jets and missing transverse
energy, Emiss

T , are reconstructed using energy deposits over the full coverage of the calorimeters,
|η |< 4.9.

The Large Hadron Collider (LHC) delivered 5 fb−1 of proton-proton collisions at 7 TeV centre-
of-mass energy in 2011, and by the time of the Corfu Summer Institute in 2012, a further 14 fb−1 at
8 TeV. The peak luminosity gradually increased over the two years. The machine is running with a
higher than design number of protons per bunch, but twice the nominal bunch spacing of 50 ns. As
a result, there are typically up to 40 pp interactions per bunch crossing. Algorithms to reconstruct
interesting events have to be adapted to take into account this pile-up. In Fig. 2, 25 primary vertices
have been successfully reconstructed along the few cm length of the luminous region at the centre
of the beam pipe.

The experiment records data 24 hours a day, 7 days a week, and large teams of on-call experts
are available to support the shift crews, resulting in a data taking efficiency of 94%. More than 90%
of the recorded data passes the quality criteria to be used for physics analysis, and a large fraction
of the detector channels are operational (≈99%). Thousands of jobs run on the Worldwide LHC
Computing Grid, in a first pass to calibrate the detectors and then to fully process the data. This
huge effort, occupying hundreds of physicists, engineers and technicians is behind every analysis
result.
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Hard Interactions of Quarks and Gluons: a Primer for LHC Physics 7
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Figure 2. Standard Model cross sections at the Tevatron and LHC colliders.

deep inelastic and other hard-scattering data. This will be discussed in more detail in

Section 4. Note that for consistency, the order of the expansion of the splitting functions

should be the same as that of the subprocess cross section, see (3). Thus, for example,

a full NLO calculation will include both the σ̂1 term in (3) and the P
(1)
ab terms in the

determination of the pdfs via (4) and (5).

Figure 2 shows the predictions for some important Standard Model cross sections

at pp̄ and pp colliders, calculated using the above formalism (at next-to-leading order

in perturbation theory, i.e. including also the σ̂1 term in (3)).

We have already mentioned that the Drell–Yan process is the paradigm hadron–

collider hard scattering process, and so we will discuss this in some detail in what

Figure 3: Production cross sections in proton-antiproton (for Tevatron) and proton-proton (for LHC) colli-
sions as a function of centre-of-mass energy.

The total cross section is orders of magnitude larger than that of more interesting processes
producing for example hard jets, W and Z bosons, tt pairs or even Higgs bosons, as shown in Fig. 3
A multi-level trigger system is used to decide in real time which events to record, reducing the
bunch crossing rate of 40 MHz to about 400 events per second. The trigger menus are complex,
and set the minimum thresholds for objects used in the analysis.

2. Standard Model measurements

To model a proton-proton interaction at the LHC, parton density functions, F(x,Q2), describe
the initial proton constituents, i.e. valence quarks, sea quarks and anti-quarks, and gluons. The hard
scatter is calculated at NLO, NNLO or higher. The proton remnants not involved in the hard scatter
create the underlying event. Final state partons fragment into hadrons, whose distribution can be
described by fragmentation functions D(z), defining the fraction of the parton momentum taken by
the hadron. The final state is simulated by parton shower and hadronisation models. Theoretical
calculations of the hard scatter can be compared with data either at the detector level from Monte
Carlo simulations, or after unfolding. There are also many studies of the phenomenology of soft
QCD.
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Figure 4: The charged particle density for differing pT thresholds, as a function of centre-of-mass energy
(left). The pT distribution of charged particles in 7 TeV collisions (right).
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Figure 5: The definition of the transverse region in order to measure the underlying event (left), and the
average number of stable particles per event per unit interval in η−φ in the transverse region, as a function
of the pT of the leading particle.
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The first collisions at the LHC were at 900 GeV centre-of-mass energy in 2009, followed
by 7 TeV in 2010. The first published measurements [2] were of charged particle production in
minimum bias events, which already required a solid understanding of the detector performance
and details of the detector geometry. Detailed measurements of the properties of minimum bias
events have been made with low integrated luminosity and low pile-up, see for example Fig. 4 [3].
These measurements can then be used to improve the Monte Carlo description of the data.

The properties of the underlying event can be probed by looking in the region away from the
direction of the leading track in the event [4]. An example of the quality of the description of the
underlying event is shown in Fig. 5.

Jets are identified using the anti-kt algorithm, controlled by a distance parameter R in the (φ ,y)
plane. The pair of particles with minimum di j are merged, unless di,beam is smallest, in which case
the ith object becomes a jet:

di j = min

(
1
k2

ti
,

1
k2

t j

)
∆φ 2 +∆y2

R2 ; di,beam =
1
k2

ti
.

Jets are reconstructed from three-dimensional clusters of energy deposits in the calorimeter, ini-
tially at the electromagnetic scale, which is calibrated using Z→ ee events. Corrections are made
for the contributions from pile-up events and instrumental defects. The energy is then adjusted to
the hadronic scale using η and energy dependent factors from simulation, but verified by in-situ
measurements in data. The jet energy scale uncertainty is between 2.5 and 4.6% for the central
rapidity region (in 2010). Inclusive jet production has been measured with individual jet pT up to
more than 1 TeV, and rapidity in the range |y|< 4.4, for distance parameters R = 0.4 and 0.6. These
are compared to NLO calculations with non-perturbative corrections, and very good agreement is
seen within the systematic uncertainties, as shown in Fig. 6

Figure 6: (left) Inclusive jet double-differential cross section as a function of jet pT in different regions of
|y| for jets with R = 0.4. The cross sections are multiplied by the factors indicated in the legend. (right)
Ratios of inclusive jet double-differential cross section to the theoretical prediction.
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Figure 7: (left) The reconstructed dijet mass distribution with statistical uncertainties (filled points with error
bars) fitted with a smooth functional form (solid line). The bin-by-bin significance of the data-fit difference
is shown in the lower panel, using positive values for excesses and negative values for deficits. (right) The
11-bin angular distributions for all dijet mass bins. The QCD predictions are shown with theoretical and
total systematic uncertainties (bands), as well as the data with statistical uncertainties. The dashed line is the
prediction for an example quantum black hole signal in the highest mass bin. The distributions have been
offset by the amount shown in the legend.

The dijet mass spectrum extends to about 4 TeV, and has been measured as a function of
rapidity. The rate and distribution of multijet events has also been studied [6]. The dijet mass
spectrum is smoothly falling, as seen in Fig. 7 (left). A search for significant bumps has been
performed using 8 TeV data. An excited quark with mass less than 3.66 TeV is excluded at 95%
confidence level (CL) [7]. Including information from angular variables, more physics models
beyond the Standard Model (SM) can be tested. Contact interactions are excluded up to 7.8 TeV.
In Fig. 7 (right), the modification to the angular variable χ = exp(|y1− y2|) due to a hypothetical
quantum black hole is illustrated.

Electron identification in ATLAS starts with energy clusters in the calorimeter, which are re-
quired to satisfy shower shape and isolation criteria. There must be an inner detector track matched
to the cluster, with the ratio of cluster energy to track momentum close to unity. There must also
be a large fraction of high threshold transition radiation tracker hits, consistent with transition radi-
ation. The electron reconstruction is improved by accounting for Bremsstrahlung photons. During
2011, the algorithms were refined to be robust against pile-up.

Muons are identified by matching track segments in the inner detector and muon spectrometer.
The muon spectrometer information also improves the momentum reslution for high pT muons.
Muons with low momentum, or in regions of the detector with no muon chambers, can be recovered
by matching an inner detector track with minimal energy loss in the calorimeter.

Dedicated algorithms identify hadronic decays of tau-leptons, which produce very narrow jets
with low track multiplicity from the 1- and 3-prong decays. The electron or muon from leptonic
tau decays can also be detected.
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Even in a small data set, the dilepton mass spectrum shows the well known resonances, up to
and including the Z boson, which can be used to verify the energy or momentum calibration. An
example is shown in Fig. 8 for muon pairs in the 2010 data set. The upper end of the spectrum is
used to search for new states such as a Z′ boson.
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Figure 8: Dimuon invariant mass spectrum for the full 2010 data set.

Undetectable particles, such as neutrinos, are inferred by measuring the transverse energy
balance of the event. The missing transverse energy, Emiss

T , is the magnitude of the vector some of
the transverse momentum vectors of particles in the event. The ATLAS Emiss

T resolution is 0.5 ·ΣET,
and this has been verified up to ΣET of 14 TeV using lead-lead collision data. The Emiss

T resolution
is improved by using the correct energy scale for identified objects (leptons, jets, etc.). Tracks are
used to make the algorithms more robust against pileup, by working out which energy deposites
are associated with the primary vertex of the hard ineraction.

W and Z boson leptonic decays have been measured [9]. The W decay to a charged lepton
and neutrino is reconstructed from the measured lepton and Emiss

T . A transverse mass variable is
calculated, since the longitudinal component of the neutrino momentum is unknown. The Z boson
mass can be measured directly from a pair of same flavour, oppositely charged leptons. Decays
with tau-leptons in the final state have also been measured. In contrast, hadronic W and Z decays
are swamped by background from QCD processes. Examples of the clean signal and measured
cross sections are shown in Fig. 9.

The transverse momentum spectrum of W and Z bosons, and production in association with
jets have also been studied [10, 11] and are reasonably well described. In addition, the data samples
are large enough to measure diboson production, including Wγ , Zγ , WW , WZ and ZZ [12]. The
leptonic final states WW → `ν`ν , WZ→ `ν`` and ZZ→ ```` have been observed, while it is much
more difficult to distinguish final states with jets, `ν j j or `` j j, from jet production in association
with a single boson. These measurements can constrain possible anomalous triple gauge couplings.
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The charged TGCs, WWγ and WWZ, are non-zero in the Standard Model, while the neutral TGCs,
ZZγ and Zγγ are strictly zero. No deviations from the expectation are observed, and the ATLAS
constraints are already more powerful than those from the Tevatron.

Top quark pairs tt̄ are characterised by the the decay of each top ≈100% of the time to Wb,
with the W decay to `ν or jets, leading to combinations of leptons, Emiss

T and/or jets from the W
decays, together with two b-jets. The b-jets can be tagged by the resolvable lifetime of the b-hadron,
resulting in tracks with significant impact parameter, and possibly a reconstructed secondary vertex
with characteristic mass. Soft muons in the b-jet from weak decays may also be identified. It was
already possible to observe tt̄ production in the 2010 data sample, and the present status of tt̄
cross-section measurements is shown in Fig. 10, achieving a 6% relative precision [13]. Sufficient
statistics are available to make relative differential cross-section measurements [14], an example
of which is also shown in Fig. 10. The most precise measurement of the top quark mass to date
by ATLAS [15] is made using a template method in the lepton+jets final state: mtop = 174.5±
0.6(stat)± 2.3(syst) GeV. The dominant uncertainty is the jet energy scale, in particular the b-jet
energy scale
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The forward-backward charge asymmetry for tt̄ events which has been of particular interest
in pp events at the Tevatron becomes an asymmetry in the (pseudo)-rapidity difference in pp col-
lisions. The top quark tends to have larger |η | or |y| than the antiquark. An asymmetry is defined
as:

AC =
N(∆|y|> 0)−N(∆|y|< 0)
N(∆|y|> 0)+N(∆|y|< 0)

where ∆|y| = |y(t)| − |y(t)|. The theoretical expection is AC = 0.006± 0.002, compared to the
present measurement after unfolding of AC = 0.019±0.028(stat)±0.024(syst) [16].

To complete the picture, single top production has been studied in the t-channel, Wt-channel
and s-channel modes. A summary of all the Standard Model cross-section measurements is shown
in Fig. 11, with good agreement between measurement and predictcion for processes spanning
several orders of magnitude. The Standard Model continues to describe measurements at the LHC,
as it has to per mille precision at LEP and the Tevatron, which requires at least one Higgs boson,
or something else to play its role.
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3. Search for the Higgs boson and observation of a new particle

The search for the Higgs boson is one of the main goals of the LHC programme. The choice
to extend Run 1 to the end of 2012 was with the aim of observing or excluding a Higgs boson
across the whole allowed mass range. Higgs production and decay has been calculated to the
best available precision by a joint working group of experimentalists and theorists [17]. Higgs
production is dominated by gluon fusion via a fermion loop. Vector boson fusion is typically an
order of magnitude lower, but characterised by additional jets in the final state, and depending
directly on the Higgs coupling to bosons. Associated production of a Higgs boson with a W , Z or tt̄
allows access to final states which are experimentally more difficult to pick out from backgrounds,
such as bb̄. The production rates must then be combined with the Higgs branching ratios to find the
channels with the best signal to background. The Higgs boson tends to decay to the highest mass
final state particles available. The WW ∗ and ZZ∗ final states give the best sensitivity at high mass,
while H→ γγ (via a loop) gives a clean signal in the low mass region, despite the small branching
ratio, because of the good mass resolution.

The ATLAS Higgs boson search in 2012 [18] focussed first on the high-sensitivity channels for
the lower mass range, where a hint of a signal had been observed in the 2011 data. To identify H→
γγ requires rejection factors of 104 against γ-jet events, and 107 against jet-jet events. The main
background is from jets with a leading π0. The fine segmentation of the ATLAS electromagnetic
calorimeter is important in rejecting these, and in addition gives pointing information to associate
the photon with the primary vertex. The rate of non-photon backgrounds can be established by
fitting the data directly. The diphoton mass resolution depends on the photon energy resolution and
the resolution on the opening angle between them. Tracking information from converted photons
can be combined with pointing information from the calorimeter. The typical mass resolution is
1.5 to 2.0 GeV, depending on the region of the detector and whether the photon has converted. The
data are further subdivided according to the pT of the diphoton system relative to its thrust, and the
presence of additional jets, and the analysis is performed in 10 different channels.

The inclusive diphoton mass spectrum is shown in Fig. 12. The distribution is about 70% pure
in genuine γγ events, and both the reducible and irreducible backgrounds to the Higgs boson signal
are smoothly falling. There is a visible excess of events around 125 GeV [18].

Integrated luminosity 7 TeV 8 TeV
and mass range [fb−1] [fb−1] mH [GeV]
H→ γγ 4.8 5.9 110–150
W,Z +H→ bb 4.7 – 110–130
H→ ττ 4.7 – 110–150
H→WW → `ν`ν 4.7 5.8 (eµ only) 110–600 (110–200)
H→WW → `νqq 4.7 – 300–600
H→ ZZ→ ```` 4.8 5.8 110–600
H→ ZZ→ ``qq 4.7 – 200–600
H→ ZZ→ ``νν 4.7 – 200–600

Table 1: The channels included in the combined Higgs search results from 7 and 8 TeV data
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The decay H → ZZ→ ```` is considered the gold-standard search channel, with a very clean
signature of two pairs of isolated, same-flavour, opposite-charge leptons. The four-lepton system
also has very good mass resolution. In this case the expected background, also shown in Fig. 12,
is not simply a smoothly falling spectrum, but it is very well described by Monte Carlo simulation.
An excess of events is visible at about the same mass as the excess in the diphoton sample.

The third channel offering high sensitivity is H→WW → `ν`ν , but the two neutrinos are only
inferred from the Emiss

T in the event. A transverse mass variable can be reconstructed, which has
a broad predicted contribution from Higgs boson decays. The analysis is restricted to eνµν final
states at this stage, to suppress the Z decay background. A small opening angle is required between
the leptons to improve the signal-to-background. More events are observed in data than expected
from other processes, as shown in Fig. 12.

The three new analysis using 2012 data are combined with the results in the full set of final
states from 7 TeV running in 2011. The channels, integrated luminosities and the Higgs mass
range for which they are used are listed in Table 1. Each of these channels is further divided into
numerous sub-channels for optimal sensitivity. All the searches are combined together. The signal
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(top), and the consistency with a background fluctuation (bottom). Further explanation is given in the text.
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cross section excluded at 95% confidence level is shown in Fig. 13 as a function of the Higgs boson
mass, with the signal strengh expressed as the ratio µ to the Standard Model prediction. A Standard
Model Higgs boson is excluded at 95% confidence level in the range 111–122 GeV (i.e. meeting
the range below 114 GeV already excluded by the LEP experiments), and from 131–559 GeV. The
exclusion is greater than 99% over a large part of this range.

The probability that the observation is consistent with background processes is also shown
in Fig. 13. The observed local p-value for each mass hypothesis is shown as the solid line. The
dotted line shows the expected p-value in the case of Standard Model Higgs production at each
Higgs mass. The minimum p-value is 1.7×10−9, corresponding to a significance of 5.9 standard
deviations [18].

The 68 and 95% confidence intervals from a fit where both the signal strength and the mass
are free are shown in Fig. 14. Combining the precise mass measurements from the diphoton and
ZZ→ 4` channels, without constraining the signal strength, the best fit mass is 126.0±0.4(stat)±
0.4(syst) GeV. The best fit signal strength in each channel, this time constraining the Higgs boson
mass to be 126.0 GeV, is shown in Fig 14. The overall combined signal strength is µ = 1.4±0.3,
consistent with the Standard Model rate.
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the measured signal strength parameters in all channel, scaled to the Standard Model prediction for a Higgs
boson mass of 126.0 GeV.

Searches for non-Standard Higgs bosons also continue. The Standard Model with a single
Higgs boson is the minimal solution, but two Higgs-doublet models are also consistent, as for
example the type-II model needed for supersymmetry. These require three neutral bosons, the light
h (which can have properties very similar to the Standard Model Higgs boson), a heavy H which
is also CP even, and a CP odd A. There are also two charged Higgs bosons, H+ and H−. No hints
of additional Higgs bosons have been found so far. Further measurements of the properties of the
newly discovered boson will also be made to see if it remains consistent with the minimal Standard
Model prediction.
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4. Physics beyond the Standard Model

Although the Standard Model has been phenomenally successful in predicting how particles
interact, it must be extended by a more complete theory at high energies. This should extend
the theory to include gravity, and address the issues of the as-yet unexplained dark matter and
dark energy needed to explain the cosmos at many scales, from galaxy rotation curves to large
scale structures. The theory does not explain the matter to anti-matter imbalance in the universe. In
addition, it has unsatisfactory features of hierarchy, lack of naturalness and the need for fine tuning.

Supersymmetry (SUSY) is an attractive extension of the Standard Model, where all the stan-
dard particles have supersymmetric partners with half-unit different spin. No SUSY particles have
been observed, so this must be a broken symmetry where the partners have higher mass. It is often
assumed that there is a new conserved quantum number, R, with R = +1 for standard particles
and R = −1 for SUSY partners, which preserves baryon and lepton number conservation. If R is
conserved, SUSY particles must be produced in pairs, and if the lightest SUSY partner (LSP) is
charge and colour neutral it becomes a natural dark matter candidate.

The minimal supersymmetric standard model, MSSM, requires two Higgs doublets and all the
superpartners, leading to 124 independent free parameters. The constrained minimal extension of
the Standard Model (CMSSM) has only five parameters at the high energy Grand Unification scale:
a universal scalar mass m0; a universal gaugino mass m1/2; a universal trilinear soft SUSY breaking
parameter A0; the ratio of the vacuum expectation values of two Higgs doublets, tanβ ; and the sign
of the Higgs mixing parameter, sign(µ). The CMSSM may be convenient for interpreting the
results of searches for SUSY particles, but it is more generally useful to provide results in the form
of simplified models which can then be interpreted in other scenarios. In this case cross-section
limits or excluded mass regions are provided as a function of for example a squark and gluino
mass. In general the SUSY phenomenology depends on mass splittings between squark or gluino,
the LSP and standard particles

SUSY production cross sections have a logarithmic dependence on the particle mass, which
leads to a gain in sensitivity with increasing luminosity. At the sensitivity limit of around a TeV,
there is a further effective gain in parton luminosity of around a factor 2 to 5 by increasing the
proton-proton centre-of-mass energy from 7 to 8 TeV.

There is a very rich phenomenology of SUSY final states, spanning short or long decay chains,
often containing jets and large Emiss

T , but also leptons, b-jets, photons or even long-lived hadrons.
The analyses are divided according to the observable topologies and then interpreted in specific
SUSY models.

A few new SUSY search results using 8 TeV are already available, including a search with
jets and Emiss

T in the final state [19]. The analysis is optimised for discovery in a simplified model
with a low mass LSP, observable (first and second generation) squarks and gluinos, and with all
other SUSY particles pushed to high mass. This results in short decay chains, q̃→ qχ̃0 or g̃→
q̃q→ qqχ̃0. Events are selected with a jet or Emiss

T trigger, and a veto on events with leptons.
Tight, medium and loose signal regions are defined according to the number of jets and the value
of meff = ∑i

∣∣∣~pT
jet,i
∣∣∣+ Emiss

T , as specified in Table 2. Four control regions are defined for each
signal region, to control the rates of Z→ νν+jets, W+jets, tt̄ and multijet background. Transfer
functions are used to infer the background in the signal region, and combined likelihood fits to
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Requirement 2-jets 3-jets 4-jets 5-jets 6-jets
Emiss

T [GeV] > 160
pT jet 1 [GeV] > 130
pT jet 2 [GeV] > 60
pT jet 3 [GeV] > – 60 60 60 60
pT jet 4 [GeV] > – – 60 60 60
pT jet 5 [GeV] > – – – 60 60
pT jet 6 [GeV] > – – – – 60
∆φ( j,Emiss

T ) [rad] 0.4 (j ≤ 3) 0.4 (j ≤ 3), 0.2 (pT > 40GeV jets)
Emiss

T /mNjet
eff > 0.3 / 0.4 / 0.4 0.25/0.3/– 0.25/0.3/0.3 0.15 0.15/0.25/0.3

mincl.
eff [GeV] > 1900/1300/1000 1900/1300/– 1900/1300/1000 1700/–/– 1400/1300/1000

Backgr. (tight) 14±5 8.7±3.4 2.8±1.2 6.3±2.1 10±4
Data (tight) 10 7 1 5 9

Table 2: Summary of the signal regions categorised by numbers of jets and tight/medium/loose cuts for the
search for quarks and gluinos with jets and Emiss

T .

signal and control regions are performed to normalise the backgrounds directly from data. The cuts
are optimised for 8 TeV centre-of-mass energy. The ∆φ cut to remove jets that are aligned with
the Emiss

T direction and the Emiss
T /meff cut are effective in rejecting multijet background. The tight

cuts give the maximum reach for high mass squarks and gluinos, while the medium and loose cuts
add sensitivity for compressed spectra. No significant excess of events is observed in any channel.
Example control and signal region distributions for the tight cuts are shown in Fig. 15. The resulting
exclusions in the squark-gluino mass plane of the simplified model are shown in Fig. 16. The limits
are stable up to an LSP mass of about 200 GeV.
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Figure 15: Two example control regions with tight selection cuts: γ+ jets to control the modelling of
Z→ νν+ jets (left) and `+Emiss

T + jets with no b-tag to control W+ jets (centre). The corresponding signal
region is shown on the right.

This search is complemented by a multijet analysis [20], optimised for long decay chains and
requiring six or more jets. The ratio Emiss

T /
√

HT is examined, where HT = ∑i

∣∣∣~pT
jet,i
∣∣∣. This gives

a measure of the significance of the Emiss
T in the event. The distribution of the number of jets in

events with large Emiss
T /
√

HT is shown in Fig. 17, together with the excluded region in a simplified
model. The limit on the gluino mass is above 1 TeV for an LSP mass below 300 GeV.
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SUSY decay chains may also result in a lepton and Emiss
T in the final state from the decay of

a chargino or slepton, for example q̃→ qχ̃
−
1 with χ̃

−
1 → `−νχ̃0

1 . In this case the events can be
selected with a lepton trigger, and the reduced multijet background allows more relaxed cuts to be
applied. In the CMSSM interpretation, the 1-lepton search is competitive with the 0-lepton search
for high m0 [21]. A cascade decay including charginos and sleptons can result in dilepton final
states. These may also arise directly from weak pair-production. The different configurations of
same and opposite-sign, same and “opposite” (e vs. µ) flavour, are exploited to exclude or enhance
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different processes. Results using 8 TeV data and same-sign leptons accompanied by jets and Emiss
T

are used to put limits on gluino decays via a top squark into tt̄ χ̃0
1 [22].

A novel alternative approach is to perform a generalised search [23]. The data are divided by
event topology, according to the number of electrons, photons, muons, jets, b-jets and the value
of Emiss

T , resulting in 655 exclusive channels. An effective mass meff distribution is formed in
each category, and compared with the distribution expected from Standard Model processes. No
excess of events is found, and limits can be placed on particular SUSY models. The constraints are
less sensitive for a specific model than those from dedicated searches, but this approach is more
comprehensive.

Mixing in the third generation can lead to light SUSY partners, t̃1, b̃1 or τ̃1. Such models are
appealing, in that they can lead to similar top and stop masses, favoured by naturalness arguments.
The stop and sbottom may be prodcued in pairs, or via gluino decay. Searches for third generation
squarks take advantage of the presence of b-jets in the final state, possibly from top-quark decay.
The interpretation depends on the mass hierarchy and the decay modes. The results for stop pair
production are summarised in Fig. 18 [24, 25, 26, 27, 28]. These are interpretations of searches
with 0, 1 or 2 leptons and b-jets in the final state.

Figure 18: Summary of exclusion limits for stop-pair production as a function of the LSP and stop masses.
The exclusions depend on the mass hierarchy. On the left side of the plot are the limits if m(t̃) < 200 GeV,
either assuming m(χ̃±) = 106 GeV, or m(χ̃±) = 2m(χ̃0), with the decay t̃→ bχ̃±, χ̃±→W χ̃0. On the right
hand side, the stop is heavier, m(t̃)> 200 GeV, and t̃→ t χ̃0.

In summary, despite a wide ranging search for hints of supersymmetry, no signals have emerged
from the data analysed so far. In Fig. 19, the number of searches and interpretations is indicated
with a typical exclusion limit for each [2]. Dedicated searches, for example for long-lived particles
are included.

Further searches have been performed for many “exotic” phenomena, this being a generic
term used to group non-SUSY and non-Higgs searches. These can be characterised by searches for
new resonances, or “bump-hunting”, in mass distributions including jets, leptons, photons and tt̄.
Further sensitivity to new phenomena comes from looking for deviations from the Standard Model
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expectation in angular distributions of final state objects. In addition, spectacular signatures, for
example from the decay of mini-black holes can be sought. In general, the topologies of Higgs and
SUSY final states can also be relevant for other models.

For example, the high mass end of the diphoton mass spectrum [29] can be used to search for
extra dimensions, where the Arkani-Hamed, Dimopoulos and Dvali model predicts closely spaced
resonances which look like a continuum distribution with an effective cut off scale, Ms. Limits on
Ms in the range 2.62 – 3.92 TeV have been derived. Randall-Sundrum gravitons would be manifest
as narrower resonances, a few TeV apart. Limits on the mass of the lightest graviton have been set
of 1.00 (2.06) TeV for values of the coupling parameter k/MPl 0.01 (0.1).

A search for high-mass tt̄ resonances using final states with a lepton+jets has also been per-
formed. Boosted top quarks can be reconstructed as fat jets. Kaluza-Klein gluons are excluded
with a mass below 1.5 TeV [30].

A summary of searches for exotic phenomena is given in Fig. 20. Limits range up to 10 TeV
in the case of contact interactions, which can have an influence below the centre-of-mass energy.

5. Conclusions and outlook

The LHC machine and ATLAS experiment have performed fantastically well at 7 and 8 TeV
centre-of-mass energy. The Standard Model stands firm, with good agreement between almost all
measurements and the predictions. Further improvements in the description are expected with the
increasing sophistication of calculations, including new Monte Carlo tunes and improved fits for
parton distribution functions.

A new boson has been observed, with a mass of 126 GeV and properties so far consistent with
the Standard Model Higgs boson. Although no discoveries have been made so far in direct searches
for SUSY particles or ohter physics beyond the Standard Model, the LHC has a long future, in-
cluding a near doubling of the centre-of-mass energy, and much larger integrated luminosities. We
are looking forward to the challenges and excitement of the coming years.
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Figure 19: A summary of exclusion limits for SUSY signals. Strongly produced SUSY particles are typi-
cally excluded up to about 1 TeV with the present data. The limits are lower for direct production of third
generation squarks, or weakly produced particles.
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Figure 20: A summary of constraints from searches for exotic phenomena.
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