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1. Motivation

Einstein’s theory of General Relativity (GR) is a very successful example of contemporary theoret-
ical physics. It explains, and predicts, with remarkable accuracy, observables such as the perihelion
shift of Mercury or the angle at which light is bent when passing by a very massive object; and in
the low energy regime it perfectly agrees with classical Newtonian dynamics.

However, despite these successes there are problems at bothends of the energy scale. In
the infrared regime we have difficulties matching observed galaxy rotation curves to theoretical
models, forcing us to introduce the concept of dark matter. Furthermore, there is the infamous
cosmological constant problem: the measured value of the cosmological constant is many orders
of magnitude smaller than what we would naively expect from theoretical considerations. In the
ultraviolet regime we would like to understand the singularities that plague our classical equations,
by quantum effects of a putative quantum theory of gravity. Yet, there is no unique candidate for
a quantum theory of gravity, one that would explain for example, microscopically, the entropy of
black holes or the information loss paradox.1

These considerations motivate us to search for modifications of Einstein’s theory of General
Relativity. An overview of the vast variety of modificationsto gravity that have been considered
so far can be found in [1]. One idea, which could improve on both problems mentioned in the
previous paragraph, and which will be the focus of our attention in this note, is to give a mass to the
graviton. Long range interactions would be damped exponentially and this could narrow the gap
between the expected and the observed value of the cosmological constant. Giving a mass to the
graviton could also be relevant to the quantum aspects of thetheory since, if the mass is introduced
by higher-derivative terms in the action, it affects the (perturbative) renormalizability of the theory.

Thus, we will investigate how we can add a mass to the graviton, see also [2] for a review
on massive gravity in particular. For concreteness, and notlast for simplicity, we will focus on
gravity in three space-time dimensions. In section 2 we start with a discussion of the linearized
theory for a massive graviton, which was introduced by Fierzand Pauli. Then, in sections 3 and 4
respectively, we discuss two models of gravity that at the linearized level reduce to the Fierz–Pauli
(FP) theory. Section 5 presents extensions and generalizations of the models described in sections
3 and 4. Finally, we conclude in section 6 and give an outlook on possible new roads to massive
gravity and its extensions.

2. Linearized massive gravity: Fierz–Pauli theory

The question whether the graviton can have a (small) mass rather than being massless, as classical
GR predicts, has been addressed already in 1939. Fierz and Pauli first proposed to modify GR at
the linearized level by adding an explicit mass term to the Einstein–Hilbert action.

To describe the graviton, a spin-2 particle, one can use the standard representation of a rank-2
tensorhµν , symmetric in its indices. Ind space-time dimensions it hasd(d + 1)/2 independent
components but not all of them describe spin-2 helicities. Some of these components describe
spin-1 and spin-0 helicities. In order not to have any ghost degrees of freedom (DoF) the equation

1Though the gauge/gravity or AdS/CFT correspondence has enabled us to understand these phenomena much better.
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of motion of the massive fieldhµν should describe(d − 2)(d + 1)/2 DoF. A massive graviton
excitation in 3 dimensions has 2 DoF.

The starting point for the Fierz–Pauli (FP) equations is theKlein–Gordon equation for a mas-
sive spin-2 fieldhµν . In order to describe the correct number of DoF we have to impose some
constraints that will excise the unwanted DoF. To keep the total energy of the field positive and to
avoid the helicities that do not correspond to spin-2 modes Fierz and Pauli additionally imposed
a divergenceless condition,∂ µhµν = 0, and a tracelessness condition,η µνhµν = 0, on the field
hµν . Hence, the FP equations consist of a Klein–Gordon equationfor a symmetric tensor fieldhµν ,
together with a differential and an algebraic subsidiary constraint:

(�−m2)hµν = 0,

∂ µhµν = 0,

h ≡ η µνhµν = 0.

(2.1)

This set of equations can be integrated to the FP Lagrangian

LFP=
1
2

{

hµνG(h)lin
µν −m2(hµνhµν −h2)

}

, (2.2)

whereG(h)lin
µν denotes the linearized Einstein tensor which has the following form in three dimen-

sions:

G(h)lin
µν = εµ

αβ εν
γδ ∂α∂γ hβδ . (2.3)

Note that the trace of the fieldhµν is included into the action although we require it to vanish on-
shell. In order to derive that all rank-1 (∂ µhµν ) modes vanish, it is necessary to show first that all
rank-0 (∂ µ∂ νhµν ) modes vanish. One cannot obtain the latter constraint without introducing an
additional scalar fieldh.

It is not possible to use a symmetric traceless tensor,Hµν , in order to construct an action that
yields the FP equations. The reason for this is that one cannot construct equations of motion that
have the same symmetry properties as the field itself. Consider for instance the equations

(�−m2)Hµν = 0, ∂ µHµν = 0 (2.4)

and rewrite them as

∂ α(∂αHµν −∂µHαν
)

−m2Hµν = 0. (2.5)

These equations are not symmetric and traceless, likeHµν , and therefore can not serve as the
equations of motion forHµν . If we were to start from the most general second-order derivative
equations that are symmetric and traceless we find that we would always have to solve the constraint
∂ µ∂ ν Hµν = 0 first, in order to derive the subsidiary constraint∂ µHµν = 0. Therefore, we would
have to introduce an auxiliary field that will impose∂ µ∂ νHµν = 0. For the FP theory, see eqs. (2.1)
and (2.2), this additional field is the scalarh.

The special tuning of the mass term in the FP action is essential in order not to have any ghost-
like DoF. Following [2] it is easy to show that the action (2.2) propagates only a massive spin-2

3
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mode, i.e. that there are not more than two DoF. For this purpose, we Legendre-transform the action
(2.2) with respect to the spatial components. This leads to the following expressions for the spatial
momenta2

πi j =
∂LFP

∂ ḣi j
= ḣi j − ḣkkδi j −2∂(ih j)0+2∂kh0kδi j (2.6)

and inverting for the velocitieṡhi j we obtain

SFP=
∫

d3x
{

πi jḣi j −H +2h0i∂kπki +m2h2
0k +h00

(

∇2hkk −∂i∂ jhi j −m2hkk
)

}

. (2.7)

The terms inH do not containh0i or h00, nor any time derivatives. Thus, we note from (2.7)
that h00 appears as a Lagrange multiplier, independently of the value of m2. This is due to the
special tuning of the mass term in the FP Lagrangian (2.2). Ifthe relative coefficient of the two
contributions to the mass term was not exactly−1, h00 would appear quadratically in (2.7). For
a genericm we have three DoF for the symmetric tensorhi j, minus one constraint coming from
h00, giving two DoF for a massive spin-2 in three dimensions. Ifm = 0, then theh0i become also
Lagrange multipliers, and we have to subtract another two DoF leaving no DoF for the massless
spin-2.

The kinetic term of the FP action stems from the Einstein termand thus, being invariant under
diffeomorphisms, has the gauge symmetry

δhµν = ∂µζν +∂νζµ . (2.8)

Certainly, the mass term in (2.2) breaks the diffeomorphisminvariance of the theory. Using Stück-
elberg fields one could by hand reintroduce such an invariance at the cost of introducing additional
gauge fields.

It is known that the FP theory suffers from the van Dam–Veltman–Zakharov (vDVZ) discontinuity
[3]. Namely, the massless limit of the FP theory does not givejust linearized General Relativiy.
This is due to the fact that the scalar mode does not decouple.This can be verified using the
Stückelberg fields mentioned above and coupling the massivefield hµν to matter via a conserved
energy-momentum tensorTµν . Then, in the massless limit one observes a non-vanishing coupling
of the traceh to the trace ofTµν . We will shortly outline this procedure.

Consider the FP theory of a massive spin 2 fieldhµν coupled to the energy-momentum tensor
Tµν

LFP=
1
2

{

hµνG(h)lin
µν −m2(hµνhµν −h2)

}

+hµνT µν . (2.9)

Stückelberg fieldsVµ andφ are introduced by the following field redefinition

hµν = h′µν +
1
m

(

∂µVν +∂νVµ
)

+
2

m2 ∂µ∂ν φ . (2.10)

2Latin indices denote spatial components of the tensors only. We have explicitly written out the time components.
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For genericm the Stückelberg fields are pure gauge as can be seen for example by the gauge-
transformations

δVµ = ∂µΞ , δφ =−mΞ , (2.11)

and a similar one forh′µν andVµ with a vector gauge-parameter. These gauge transformations leave
the action (2.9) invariant provided that we require that theenergy-momentum tensor is conserved,
i.e. ∂ µTµν = 0.

Inserting (2.10) into (2.9), together with the requirement∂ µTµν = 0, we can take the limit
m → 0 and obtain an action where the vectorVµ decouples, but we get off-diagonal terms mixing
φ andh′µν . This action, however, can be diagonalized by shiftingh′µν with ηµνφ , at the cost of
introducing the infamous coupling ofφ to the trace of the energy-momentum tensorη µνTµν .

However, it has been argued by Vainshtein that the linear theory is inaccurate if we take the
mass to zero [4] (see also [5] and the recent review [6]). He showed that the solutions of the
linearized FP theory are only valid far outside a characteristic distance scale, the Vainshtein radius

RV = [M/(m4M2
P)]

1/5 . (2.12)

Here,MP is the Planck mass andM the mass of a (heavy) central object, e.g. the sun, that determines
the metric that our ’test’ massm probes. The Vainshtein radius goes to infinity when the mass of
the gravitonm is sent to zero. At distances smaller thanRV non-linearities begin to dominate and
the linear approximation cannot describe the massless limit.

For distancesr ≫ RV the Stückelberg scalar fieldφ behaves with the usual 1/r Coulomb form
causing an extra attractive scalar force. However, for distancesr ≪ RV there is an extra repulsive
force that cancels the scalar force responsible for the vDVZdiscontinuity, and GR is restored inside
the Vainshtein radius.

To find a non-linear generalization of the FP action, that does not lead to ghosts and yields General
Relativity in the limitm → 0, is a highly non-trivial task. In the following section we introduce two
recently proposed actions whose linearized versions reduce to (2.2).

3. New Massive Gravity

One possibility to acquire a theory with massive spin-2 modes, apart from explicit mass terms, is
to introduce higher-derivative terms in the action. Such higher-order derivative modifications of
gravity where considered in [7] in an effort to improve the renormalizability properties of general
relativity.

The main drawback of higher-derivative theories is that these models in general suffer from
ghost instabilities, because of the higher-order time derivatives in their actions. One way to cir-
cumvent this conclusion is to confine oneself to gravity in three space-time dimensions. In three
dimensions the ’massless’ Einstein modes do not propagate.Thus, any potentially ghost-like fea-
ture connected to them would be harmless, since it does not constitute any physical degree of
freedom.

5
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Using this idea we can write down a higher-derivative actionwith a ’healthy’ massive spin-2
mode and a massless spin-2 ghost mode, which is pure gauge. This can be seen by writing the
linearized action with the help of an auxiliary field, see eqs. (3.6) below.

To be specific, we consider the three-dimensional higher-derivative action of New Massive Gravity
(NMG) [8]

SNMG =
1

κ2

∫

d3x
√
−g

{

R+
1

m2

(

RµνRµν −
3
8

R2
)}

. (3.1)

The linearized field equations around a Minkowski vacuum arefound to be

(

�−m2)Glin
µν = 0, Rlin = 0, (3.2)

whereGlin
µν andRlin are the linearized Einstein tensor and Ricci scalar, respectively. Writing the

linearized Einstein tensor in the form of eq. (2.3) we note that the equations (3.2) can be interpreted
as a “boosted-up” version of the following FP equations for asymmetric perturbationHµν :

(

�−m2)Hµν = 0, ∂ µHµν = H = 0. (3.3)

By identifying Hµν = Glin
µν(h) we solve for the differential subsidiary constraint, whilethe trace-

lessness ofHµν is encoded in the vanishing ofRlin . Thus, we get the FP equations for a massive
spin-2 field from NMG.

It is instructive to see how, using auxiliary fields, we can make manifest the connection of
NMG to the FP theory, at the level of the Lagrangian. Using a symmetric auxiliary fieldfµν we
can rewrite the action (3.1) as

Saux−NMG =
1

κ2

∫

d3x
√
−g

{

R+ f µνGµν −
m2

4

(

f µν fµν − f 2
)}

. (3.4)

The linearized Lagrangian will take the form

Llin−aux−NMG =
(

f̂ µν − 1
2

hµν)Glin
µν(h)−

m2

4

(

f̂ µν f̂µν − f̂ 2
)

, (3.5)

where f̂µν denotes the perturbation offµν . Next, we can recombine the terms of (3.5) to obtain

LFP−NMG =−1
2

h̃µνGlin
µν(h̃)+

1
2

[

f̂ µνGlin
µν( f̂ )− m2

2

(

f̂ µν f̂µν − f̂ 2)
]

, (3.6)

where we have defined̃hµν = hµν − f̂µν . In this form we can clearly identify the non-propagating
Einstein mode,̃hµν , as well as its ghost-like nature, and the decoupled, ghost-free, massive spin-2
mode, f̂µν , given by a FP Lagrangian.

The possibility of having massive spin-2 excitations in three dimensions was realized earlier in [9].
This theory does not reduce to the FP theory at the linearizedlevel. This is due to the fact that it
is not parity invariant and propagates only one of the two helicity states of the massive graviton in
NMG. To be more specific, the combination of two topological terms, the Einstein–Hilbert action

6
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plus a Chern–Simons term, leads to so-called topologicallymassive gravity (TMG). This is a ghost-
free and parity-odd theory that propagates one massive modeof helicity either+2 or−2, depending
on the sign of the mass parameterµ . The action with cosmological constantΛ is given by

STMG =

∫

d3x
√
−g

{

R−2Λ+
1

2µ
ελ µν Γρ

λσ

(

∂µΓσ
ρν +

2
3

Γσ
µτΓτ

νρ

)}

. (3.7)

TMG is in some sense the ’square-root’ of NMG because it contains half as many degrees of
freedom. Also its field equations can be understood as the square-root of the FP equations. We will
not consider this model further in this note.

It is known that higher-derivative theories allow for cosmological solutions even without including
a cosmological constant term in the action [10]. We can nevertheless define a ’cosmological’
version of NMG, i.e. the action (3.1) supplemented by a cosmological parameter. The cosmological
constant is then a function of this parameter and other (mass) parameters in the action. The mass
M2 of the propagating mode in cosmological NMG is given by a combination of the parameter
m2 that multiplies the fourth order term and the cosmological parameter. In the limitM2 → 0 the
massive mode becomes massless and degenerates with the Einstein mode. Such a degeneration of
solutions leads to so-called logarithmic or critical gravities [11], which are holographically dual to
logarithmic conformal field theories, see e.g. [12].

In conclusion, NMG is an interesting way to describe massivegravity in three dimensions. The
two massive graviton modes of helicity+2 and−2 are the only modes that propagate in the bulk.
The massless excitations are pure gauge. This, however, is not so in higher dimensions. Therefore,
the main drawback of NMG is that it serves as a unitary model ofmassive gravity only in three
dimensions. In the following we will discuss a different model that describes massive gravity also
in higher dimensions.

4. Massive Gravity

To construct non-linear generalizations of the FP mass termwithout higher-derivative ’interaction’
terms an additional non-dynamical reference metricfµν is required. Recently, a class of ghost-free
theories have been proposed by de Rham, Gabadadze and Tolley(dRGT) [13].3 The interaction
is given by a matrix of the form

√

g−1 f , where the square root of the matrix is defined such that
√

g−1 f
√

g−1 f = gµλ fλν . Their original analysis was done for a flat backgroundfµν = ηµν . In d
dimensions the dRGT action can be written in the following form

SdRGT=
MP

d−2

2

∫

ddx
√
−g

{

R− m2

4

d

∑
n=0

βnSn

(

√

g−1η
)}

. (4.1)

The first term inside the brackets is the Einstein–Hilbert kinetic term for the metricgµν , the sec-
ond one corresponds to a potential term containing no derivatives of the dynamical metricgµν but
depending explicitly onηµν . The Einstein–Hilbert part of this action is invariant under diffeo-
morphisms but the mass term breaks this symmetry due to the appearance of the fixed background

3Earlier work on massive gravity and bi-metric gravity goes back to [14, 15, 16, 17].
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metricηµν . The coefficientsβn are free parameters and then-th elementary symmetric polynomial
of the eigenvalues of the matrix square root ofgµρηρν is represented bySn.

This potential term hasd +1 parameters, but one can discard two of them taking into account
that the first and thed-th symmetric polynomials are just cosmological constantsfor gµν (andηµν ,
for non-flatηµν). Another coefficient can be eliminated by takingm to be the mass of the massive
spin-2 mode and set

−d!
d

∑
k=0

βk

k!(d − k)!
+(d −2)!

d

∑
k=2

βk

(k−2)!(d − k)!
=−8. (4.2)

Therefore, in addition to the mass and the cosmological constants, the theory hasd−2 free param-
eters.

It has been shown [18] that the dRGT massive gravity model ind dimensions has a dynamically
equivalent Vielbein formulation, by introducing the Vielbein fieldsEA

µ (x)

gµν = Eµ
AEν

BηAB . (4.3)

The action now reads

SdRGT=
MP

d−2

2

(

∫

ddx det(E)R[E]

−m2

4

∫ d

∑
n=0

βn

n!(d −n)!
ε̃A1A2...Ad 1A1 ∧ . . .∧1An ∧EAn+1 ∧ . . .∧EAd

)

,

(4.4)

where the first term is the Einstein–Hilbert action in Vielbein form, and the potential terms are
written using wedge products of the Vielbein one-formsEA = Eµ

Adxµ and unit one-forms which
can be thought of as Vielbeins for the flat background metric1A = δµ

Adxµ .
The advantage of using this Vielbein formulation is that instead of working with the symmetric

polynomials and matrix square roots, it contains wedge products of the possible combinations of
the Vielbeins which is much simpler. In this form, it is also easier to show that the Boulware–Deser
ghost is absent to all orders in the fields and beyond any decoupling limits.

It is worth pointing out that the massless limit of dRGT gravity must yield Einstein gravity. Unlike
the higher-derivative theories discussed earlier, dRGT models, in any dimension, propagate only
the massive spin-2 mode. Taking the mass to zero must lead to atheory with only a massless spin-2
mode, inevitably Einstein gravity. The usual coupling of the scalar to the trace of the energy-
momentum tensor that plagues the linearized theory vanishes if the value of the graviton mass goes
to zero.4

Despite successful applications of the dRGT model in cosmological setups much still has to be
better understood about these kinds of massive gravity models. For example, for particular po-
tentials the massive gravity model allows for closed timelike curves and therefore is acausal [19].
Additionally, a study of perturbations on top of black hole solutions [20] in the dRGT model and
its bi-gravity extension (see section 5) reveals that at thelinear level the bi-Schwarzschild black
hole solutions are unstable. These results may indicate that static black holes in massive gravity do
not exist.

4See, e.g., [5] for a general discussion.
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5. Generalizations

In this section we would like to discuss generalizations andfurther developments connected to the
two theories of massive gravity introduced in sections 3 and4.In this section we restrict to three
spacetime dimensions.

5.1 Bi-metric gravity

We first consider a particular class of bi-metric theories—thus, two dynamical spin-2 fields—and
show how, by taking special limits, it leads to the three theories discussed so far: FP, NMG and
three-dimensional dRGT massive gravity [21]. In particular, we consider the bi-metric theory of
[22].

We start by discussing the model. It will be convenient to write the actions in first-order
formalism. Using the Vielbein formulation of [18] the Lagrangian takes the form5

Lbi−grav=−σM1e1a
(

dωa
1 +

1
2

εa
bcωb

1ωc
1

)

−M2e2a
(

dωa
2 +

1
2

εa
bcωb

2ωc
2

)

− 1
4

M12m2εabc(e1+ e2)
a(e1− e2)

b(e1− e2)
c (5.1)

+αM12m2εabc(e1− e2)
a(e1− e2)

b(e1− e2)
c .

There are two DreibeinseI µ
a and corresponding spin-connectionsωI µ

a, with I = 1,2. Products
of the one-formseI µ

a andωI µ
a are understood as exterior products. The three mass parameters

M1, M2, m and the two dimensionless parametersσ and α , whereσ takes only the values±1,
determineM12 = σM1M2/(σM1+M2) and complete the action.

In the following we describe the linearized theory and show how to obtain NMG and dRGT
gravity, in Dreibein formalism, from the action (5.1) in certain parameter limits.

The Fierz–Pauli model

We first show how we can obtain the FP theory by linearizing themodel above. We linearize around
a flat background and, for simplicitly, takeσ = 1 and setM1 = M2 = M. The fluctuations arehI µ

a

andvI µ
a, i.e.

eI µ
a = δµ

a +
1√
M

hI µ
a , ωI µ

a = δµ
a +

1√
M

vI µ
a , (5.2)

with δµ
aδν

bηab = ηµν . With these simplifications the Lagrangian (5.1), after taking the limit
M →∞, can be diagonalized in terms of new variablesh±µ

a = h1µ
a±h2µ

a andv±µ
a = v1µ

a±v2µ
a:

Llin =− 1
2

(

h+adva
++

1
2

εabcδ avb
+vc

+

)

− 1
2

(

h−adva
−+

1
2

εabcδ avb
−vc

−+
1
2

m2εabcδ ahb
−hc

−
)

.

(5.3)

The first line is linearized Einstein gravity and the second line is the FP Lagrangian (2.2), both in
first-order form.

5This formula and the discussion below was obtained from discussions with Sjoerd de Haan, Wout Merbis and Jan
Rosseel.
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The NMG limit

The NMG model has only one dynamical metric, hence we have to fix one Dreibein and spin-
connection in terms of the other ones. This can be achieved bysettingσ =−1, substituting

e2µ
a = e1µ

a +
λ
m2 fµ

a , ω2µ
a = ω1µ

a −λ hµ
a , (5.4)

and taking the following limit [23]:

λ → 0, M1 ,M2 → ∞ , with M1−M2 = λM2 = constant= MP . (5.5)

This leads to the Lagrangian

LNMG = MP

{

eaRa +haT a − 1
m2

(

faRa +
1
2

εabcea f b f c
)}

. (5.6)

The curvature and torsion two-formsRa and T a are determined by the dreibeineµ
a. The La-

grangian (5.6) is identified with NMG in the Chern–Simons-like formulation of [24]. By solving
the equations for the auxiliary fieldfµ

a, substituting this solution back into the action and going to
second-order formalism we can go from (5.6) to the Lagrangian given in (3.1).

The dRGT limit

The three-dimensional dRGT model can be obtained from the Lagrangian (5.1) by choosingσ =

+1 and setting

e2µ
a = δµ

a +M−1/2
2 δe2µ

a . (5.7)

If we now take the limitM2 → ∞ the fluctuationsδe2µ
a decouple from the massive modee1µ

a and
the second metric is fixed to its background value, which we choose to be the flat metric. In this
limit M12 = M1 = MP, and the Lagrangian (5.1) becomes

LdRGT= MP

{

− eaRa − m2

4
εabc(e+δ )a(e−δ )b(e−δ )c

+αm2εabc(e−δ )a(e−δ )b(e−δ )c
}

.

(5.8)

This is the first-order formulation of dRGT gravity in three dimensions.

We end this section with a short note on the main differences between higher-derivative and dRGT
massive gravities. Surprisingly, in three dimensions the apriori very different Lagrangians (5.6)
and (5.8) effectively describe the same bulk degrees of freedom: two degrees of freedom which
are the two helicity states of a massive graviton in three-dimensional space-time. It is only when
one goes to higher dimensions that these two Lagrangians describe rather different theories. A
higher-derivative theory analogue to NMG will describe a massless spin-2 plus a massive spin-2,
one of them necessarily being a ghost. For a recent effort to create “healthy” higher-dimensional
analogues of NMG, see [25]. On the other hand, the dRGT model in higher dimensions still
propagates only the massive spin-2 mode. Interestingly, ithas been claimed that the acausalities
that could be present in dRGT massive gravity are not existent in bi-gravity, but rather are an
artefact of freezing out the degrees of freedom of one of the metrics [26].
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5.2 Supersymmetry

One can also consider a supersymmetric generalization of the theories discussed so far. For NMG
this has been done in [27]. This was done using only the metricand higher-derivative action. Al-
ternatively, one may consider the auxiliary field version ofNMG. For simplicity, we only consider
the linearized theory.

For a supersymmetric extension, one needs to obtain the linearized massive spin-2 multiplet
in three dimensions. This multiplet can be obtained by a Kaluza–Klein reduction of the massless
multiplet in four dimensions and a truncation to the first massive mode sector. This truncation is
consistent only at the linearized level, therefore we obtain only the linearized multiplet in three
dimensions. We will give a brief outline on how this is done. We refer to [28] for more details.

We start from the off-shell, four-dimensional,N = 1 massless spin-2 multiplet which consists
of a symmetric tensor̂hµ̂ ν̂ , a gravitinoψ̂µ̂ , an auxiliary vector̂Aµ̂ and two auxiliary scalarŝM and
N̂ (all hatted fields are four-dimensional and unhatted fields are three-dimensional fields). The
supersymmetry rules, with constant spinor parameterε , and gauge transformations of these fields,
with local vector parameter̂Λµ̂ and local spinor parameterη̂ , are given by [29, 30]:

δ ĥµ̂ ν̂ = ε̄ Γ(µ̂ ψ̂ν̂)+∂(µ̂ Λ̂ν̂) ,

δψ̂µ̂ =−1
4

Γρ̂ λ̂ ∂ρ̂ ĥλ̂ µ̂ε − 1
12

Γµ̂(M̂+ iΓ5N̂)ε +
1
4

i Âµ̂Γ5ε − 1
12

iΓµ̂Γρ̂ Âρ̂Γ5ε +∂µ̂η̂ ,

δM̂ =−ε̄ Γρ̂ λ̂ ∂ρ̂ ψ̂λ̂ , (5.9)

δ N̂ =−i ε̄ Γ5Γρ̂ λ̂ ∂ρ̂ ψ̂λ̂ ,

δ Âµ̂ =
3
2

i ε̄ Γ5 Γ ρ̂ λ̂
µ̂ ∂ρ̂ ψ̂λ̂ − i ε̄ Γ5Γµ̂Γρ̂λ̂ ∂ρ̂ ψ̂λ̂ .

Next, we split the four-dimensional coordinates asxµ̂ = (xµ ,x3), write all fields as a Fourier series
and impose reality conditions on the bosonic fields and Majorana conditions on the fermionic fields.
After this, we project onto the lowest, massive (!), Kaluza–Klein sector (n = 1 modes) and obtain
the transformation rules of all the fields. Since this procedure effectively doubles our variables
we have to truncate half of the fields and the gauge parametersthereby getting rid of the so-called
central charge transformations.

This way we find a three-dimensional massive multiplet whosesupersymmetry algebra closes
off-shell. Formally, this multiplet contains the same fields that occur in a massless mutiplet with
N = 2 supersymmetry. However, in the massive case the gauge-symmetries of the four-dimen-
sional fields carry over to the three-dimensional fields in such a way that some of them are subject
to trivial shift-symmetries. Hence these fields are not physical but rather represent Stückelberg
symmetries and can be gauged away.

We fix all Stückelberg symmetries by choosing a certain gauge, taking into account the com-
pensating gauge transformations. Thus we obtain the final form of the supersymmetry rules of the
three-dimensionalN = 1 off-shell massive spin-2 multiplet. The off-shell supersymmetric version

11
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of FP is then given by the action

Im 6=0 =

∫

d3x
{

hµνGlin
µν(h)−m2(hµνhµν −h2)

−4ψ̄µγµνρ∂νψρ −4χ̄µγµνρ∂ν χρ +8mψ̄µγµν χν

− 2
3

M2− 2
3

N2+
2
3

P2+
2
3

AµAµ
}

.

(5.10)

The first line is the standard FP action. The fermionic off-diagonal mass term can be diagonalized
by going to a basis in terms of the sum and difference of the twovector-spinorsψµ andχµ each
of which describes one helicity state with helicity either +3/2 or -3/2. The “trivial“ auxiliary fields
M, N, P and Aµ are needed for off-shell closure of the supersymmetry algebra. The algebra is
determined in terms of the supersymmetry transformation rules

δhµν = ε̄γ(µψν)+
1
m

ε̄∂(µ χν) ,

δψµ =−1
4

γρλ ∂ρhλ µ ε +
1
12

γµ(M+P)ε +
1

12m
∂µ(N + γρAρ)ε ,

δ χµ =
1
4

mγρhρµε +
1
4

Aµε − 1
12

γµ(N + γρAρ)ε −
1

12m
∂µ(M−2P)ε ,

δM = ε̄γρλ ∂ρψλ −mε̄γρ χρ , (5.11)

δN =−ε̄γρλ ∂ρ χλ +mε̄γρψρ ,

δP =
1
2

ε̄γρλ ∂ρψλ +mε̄γρ χρ ,

δAµ =
3
2

ε̄γµ
ρλ ∂ρ χλ − ε̄γµγρλ ∂ρ χλ − 1

2
mε̄γµ

ρ ψρ +mε̄ψµ ,

which also leave invariant the action (5.10).
The off-shell massive spin-2 multiplet (5.11), together with the off-shell massless spin-2 multi-

plet given in [27], can be used to write a supersymmetric version of linearized NMG in the auxiliary
field form. This can be achieved by separately supersymmetrizing the massless and massive parts
of the action (3.6) using the known massless off-shell multiplet and the given massive off-shell
multiplet (5.11), respectively.

A non-linear version of the multiplet (5.11) is not known anda supersymmetric auxiliary field
version of (non-linear) NMG does not (yet) exist. To obtain such a non-linear extension most likely
a superspace approach is needed.

6. Outlook

We have motivated and discussed recent efforts towards a consistent theory of massive gravity.
After reviewing the work of Fierz and Pauli on a linearized theory of massive spin-2 particles
we focused on two recently proposed models of massive gravity, NMG and dRGT gravity. We
discussed the pros and cons of these two models and shortly discussed different generalizations.
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One extension we discussed, in the case of three-dimensions, was the incorporation of the dif-
ferent models into a bi-gravity theory. Bi-gravity theories have received a lot of attention recently.
They allow for interesting cosmological solutions. From a more theoretical point of view one can
ask questions such as how the intrinsic “good” features of these models, like ghost-freedom, vanish
in certain limits [26].

A second generalization we discussed concerns supersymmetric extensions. Three-dimensional
supergravity theories with higher-curvature actions havebeen studied in [27]. An interesting open
question is whether one can combine the two extensions we discussed and construct a supersym-
metric bi-gravity theory. Such and other questions make it clear that much more work needs and
can to be done in the field of massive gravity.
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