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We show how we can implement chaotic inflation in the context of supergravity by conveniently
selecting the functional form of a strong enough non-minimal coupling between the inflaton and
the Ricci scalar curvature. The procedure can be applied when a gauge singlet or non-singlet
inflaton is coupled to another singlet superfield within linear-quadratic, trilinear or bilinear su-
perpotential terms. The tachyonic instability occurring along the direction of the accompanying
non-inflaton field can be cured by expanding the kinetic part of the frame function up to the fourth
order in powers of the various fields. In the case of a gauge non-singlet inflaton, though, a con-
jugation symmetry has to be imposed on these terms in order for the flatness of the inflationary
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cile the resulting scalar spectral index with the current PLANCK measurements while the other
inflationary observables are in agreement with data.
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1. Introduction

Non-minimal (chaotic) inflation (nMI) is a class of inflationary models which arises in the
presence of a strong enough non-minimal coupling function between the inflaton field and the
Ricci scalar curvature. In this talk, which is based on Refs. [1–4], we first briefly review the
basic ingredients of nMI in a non-Supersymmetric (SUSY) framework (Sec. 1.1) and constrain the
parameters of two typical models in Sec. 1.3 taking into account the observational requirements
described in Sec. 1.2. Throughout the text, the subscript ,χ denotes derivation with respect to
(w.r.t) the field χ and we follow the conventions of Ref. [1].

1.1 Coupling non-Minimally the Inflaton to Gravity

The action of an inflaton ϕ with potential VI (ϕ) non-minimally coupled to Ricci scalar R
through a coupling function fR(ϕ), in the Jordan frame (JF), takes the form:

S=
∫

d4x
√
−g

(
−1

2
m2

P fR(ϕ)R+
fK(ϕ)

2
gµν∂µϕ∂νϕ −VI (ϕ)

)
, (1.1)

where mP = 2.44 · 1018 GeV is the reduced Planck mass, g is the determinant of the background
Friedmann-Robertson-Walker metric, gµν . We allow also for a kinetic mixing through the function
fK(ϕ). We can write S in the Einstein frame (EF) as follows

S=
∫

d4x
√

−ĝ

(
−1

2
m2

PR̂+
1
2

ĝµν∂µ ϕ̂∂ν ϕ̂ −V̂I(ϕ̂)
)
, (1.2)

by performing a conformal transformation [1] according to which we define the EF metric

ĝµν = fR gµν ⇒

{√
−ĝ= f 2

R
√
−g and ĝµν = gµν/ fR ,

R̂ =
(
R+3� ln fR +3gµν∂µ fR∂ν fR/2 f 2

R
)
/ fR ,

(1.3)

where � = (−g)−1/2 ∂µ (
√
−g∂ µ) and hat is used to denote quantities defined in the EF. We also

introduce the EF canonically normalized field, ϕ̂ , and potential, V̂I, defined as follows:

(
dϕ̂
dϕ

)2

= J2 =
fK

fR
+

3
2

m2
P

(
fR,ϕ

fR

)2

and V̂ (ϕ̂) =
VI

(
ϕ̂(ϕ)

)
fR

(
ϕ̂(ϕ)

)2 · (1.4)

For convenient choices of VI(ϕ) and fR(ϕ) we can obtain a sufficiently flat V̂I(ϕ̂) which can support
nMI. The analysis of nMI in the EF using the standard slow-roll approximation is equivalent with
the analysis in JF. We have just to keep in mind the dependence of ϕ̂ on ϕ .

1.2 Inflationary Observables – Constraints

Under the assumptions that (i) the curvature perturbation generated by ϕ is solely responsible
for the observed one and (ii) nMI is followed in turn by a decaying-inflaton, radiation and matter
domination, the parameters of nMI can be restricted by requiring that:
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Figure 1: Conventions for the type and the
color of the lines used for the various restric-
tions on the parameters of our models.

(i) The number of e-foldings, N̂∗, that the scale k∗ = 0.05/Mpc suffers during nMI, leads to a
solution of the horizon and flatness problems of standard big bang, i.e., [5]∫ ϕ̂∗

ϕ̂f

dϕ̂
m2

P

V̂I

V̂I,ϕ̂
=
∫ ϕ∗

ϕf

J2 V̂I

V̂I,ϕ

dϕ
m2

P
≃ 19.4+2ln

VI(ϕ∗)
1/4

1 GeV
− 4

3
ln

VI(ϕf)
1/4

1 GeV
+

1
3

ln
Trh

1 GeV
+

1
2

ln
fR(ϕf)

fR(ϕ∗)
,

(1.5)
where ϕf [ϕ̂f] is the value of ϕ [ϕ̂ ] at the end of nMI, which can be found, in the slow-roll approxi-
mation and for the considered in this paper models, from the condition

max{ε̂(ϕf), |η̂(ϕf)|}= 1, where

ε̂ =
m2

P
2

(
V̂I,ϕ̂

V̂I

)2

=
m2

P
2J2

(
V̂I,ϕ

V̂I

)2

and η̂ = m2
P

V̂I,ϕ̂ ϕ̂

V̂I
=

m2
P

J2

(
V̂I,ϕϕ

V̂I
−

V̂I,ϕ

V̂I

J,ϕ
J

)
· (1.6)

Also Trh is the reheat temperature after nMI, which is taken Trh = 108 GeV throughout, since its
variation over some orders of magnitude influences only weakly N̂∗, which remains close to 50.

(ii) The amplitude As of the power spectrum of the curvature perturbation generated by ϕ at the
pivot scale k∗ is consistent with data [5]√

As =
1

2
√

3πm3
P

V̂I(ϕ̂∗)
3/2

|V̂I,ϕ̂ (ϕ̂∗)|
=

|J(ϕ∗)|
2
√

3πm3
P

V̂I(ϕ∗)
3/2

|V̂I,ϕ (ϕ∗)|
≃ 4.685 ·10−5, (1.7)

where ϕ∗ [ϕ̂∗] is the value of ϕ [ϕ̂ ] when k∗ crosses outside the inflationary horizon.

(iii) The (scalar) spectral index, ns, its running, as, and the scalar-to-tensor ratio r – estimated
through the relations:

ns = 1−6ε̂∗ + 2η̂∗, αs = 2
(
4η̂2

∗ − (ns −1)2)/3−2ξ̂∗ and r = 16ε̂, (1.8)

where ξ̂ = m4
PV̂I,ϕ̂V̂I,ϕ̂ ϕ̂ ϕ̂/V̂ 2 = m2

P V̂I,ϕ η̂,ϕ/V̂I J2 +2η̂ ε̂ and the variables with subscript ∗ are evalu-
ated at ϕ = ϕ∗ – are consistent with the fitting of the data [5] with ΛCDM model, i.e.,

(a) ns = 0.9603±0.0146, (b) −0.0314 ≤ as ≤ 0.0046 and (c) r < 0.11, (1.9)

at 95% confidence level (c.l.)

(iv) The effective theory describing nMI remains valid. This aim can be achieved if the ultraviolet
cut-off scale [6], Λeff, remains larger than the inflationary scale which is represented by V̂I(ϕ∗)

1/4

or, less restrictively, by the corresponding Hubble parameter, ĤI∗ = V̂I(ϕ∗)
1/2/

√
3mP, i.e.

(a) V̂I(ϕ∗)
1/4 ≤ Λeff or (b) ĤI∗ ≤ Λeff with Λeff ≃ mP/cR. (1.10)

Note that the imposition of Eq. (1.10) implies automatically the validity of V̂I(ϕ∗)
1/4 ≤ mP which

is necessary in order to avoid possible corrections from quantum gravity. Less favored, from the-
oretical point of view, is also the domain of parameters where ϕ∗ ≥ mP. The conventions adopted
for the description of the various restrictions on the parameters of our models are shown in Fig. 1.
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1.3 Non-SUSY Models of nMI

Using the criteria of Sec. 1.2, it would be instructive to test two simple models of inflation
based in quartic (Sec. 1.3.1) and quadratic (Sec. 1.3.2) potential using minimal and, conveniently
chosen, non-minimal coupling functions.

1.3.1 The Quartic Potential

Adopting the potential VI = λϕ 4/4 for the inflaton ϕ we can analyze the cases:

(i) If we use fR = 1 and fK = 1, i.e. the minimal coupling to gravity, the slow-roll parameters and
the number of e-foldings, suffered from k∗ during minimal inflation (MI) can be calculated applying
Eq. (1.6) and Eq. (1.5) – after removing hats and setting J = 1 – with results

ε ≃ 8m2
P/ϕ 2, η ≃ 12m2

P/ϕ 2 and N∗ ≃ ϕ 2
∗ /8m2

P· (1.11a)

Therefore, the values of ϕ at the end of MI and the horizon crossing of k∗ are transplanckian, since

ϕf = 2
√

3mP and ϕ∗ = 2
√

2N∗mP. (1.11b)

Moreover, the normalization of Eq. (1.7) imposes the condition√
As ≃

√
λϕ 3

∗
16

√
3πm3

P

= 4.685 ·10−5 ⇒ λ 1/2 ≃
√

3
2

4.685 ·10−5πN−3/2
∗ ⇒ λ ≃ 2 ·10−13 (1.11c)

for N∗ ≃ 53. This value of λ signals an ugly tuning. From Eq. (1.8) we get

ns ≃ 1−3/N∗ ≃ 0.947, αs ≃−3/N2
∗ ≃ 9.5 ·10−4 and r ≃ 16/N∗ ≃ 0.28, (1.11d)

with the last value being in clear contradiction with Eq. (1.9c).

(ii) If we employ fR(ϕ) = 1+ cR(ϕ/mP)
2 and fK = 1, i.e., the standard non-minimal coupling to

gravity, we find from Eq. (1.4), for cR ≫ 1

J ≃
√

6mP/ϕ and V̂I = λϕ 4/4 f 2
R ≃ λm4

P/4c2
R. (1.12a)

We observe that V̂I exhibits an almost flat plateau. From Eqs. (1.5) and (1.6) we find

ε̂ ≃ 4m4
P/3c2

Rϕ 4, η̂ ≃−4m2
P/3cRϕ 2 and N̂∗ ≃ 3cRϕ 2

∗ /4m2
P . (1.12b)

Therefore, ϕf and ϕ∗ are found from the condition of Eq. (1.6) and the last equality above, as follows

ϕf =
4
√

4/3mP/
√

cR and ϕ∗ = 2mP

√
N̂∗/3cR. (1.12c)

Also the normalization of Eq. (1.7) implies the following relation between cR and
√

λ√
As ≃

√
λ N̂∗

6
√

2πcR
= 4.685 ·10−5 ⇒ cR ≃ 4.2 ·104

√
λ (1.12d)

for N̂∗ ≃ 52. Obviously λ can be larger than this in Eq. (1.11c). From Eq. (1.8) we get

ns ≃ 1−2/N̂∗ ≃ 0.965, αs ≃−2/N̂2
∗ ≃−6.4 ·10−4 and r ≃ 12/N̂2

∗ ≃ 4 ·10−3, (1.12e)

which are in agreement with Eq. (1.9). If, in addition, we impose the requirement ϕ ≤ mP and that
of Eq. (1.10a) we end-up with following ranges – c.f. Ref. [1]:

74 ≃ 4N̂/3 . cR . 300 and 0.3 . λ/10−5 . 4.6 . (1.12f)

Therefore, the presence of fR can rescue the model based on the simplest quartic potential.
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1.3.2 The Quadratic Potential

Focusing on the potential VI = m2ϕ 2/2 for the inflaton ϕ we concentrate on the cases:

(i) If we use fR = 1 and fK = 1, i.e. the minimal coupling to gravity, and work along the lines of
Sec. 1.3.1, from Eqs. (1.6) and (1.5) we find

ε = η = 2m2
P/ϕ 2 and N∗ =

(
ϕ 2
∗ −ϕ 2

f
)
/4m2

P. (1.13a)

Imposing the condition of Eq. (1.6) and solving the second expression above w.r.t ϕ∗ we find

ϕf =
√

2mP and ϕ∗ ≃ 2mP
√

N∗. (1.13b)

As in Sec. 1.3.1 transplanckian ϕ ’s are required. Enforcing Eq. (1.7), we extract√
As ≃

mϕ 2
∗

4
√

6πm3
P

= 4.686 ·10−5 ⇒ m ≃ 4.686 ·10−5
√

6πmPN−1
∗ ⇒ m ≃ 1013 GeV, (1.13c)

which can be related to the masses of the right-handed neutrinos [2]. Applying Eq. (1.8) we get

ns ≃ 1−2/N∗ ≃ 0.965, αs ≃−2/N2
∗ ≃−6.5 ·10−4 and r ≃ 8/N∗ ≃ 0.13. (1.13d)

Although ns is close to the observationally favored one, r is in tension with Eq. (1.9c).

(ii) If we employ fR(ϕ) = 1+ cRϕ/mP and fK = 1, i.e. a linear non-minimal coupling to gravity,
we find from Eq. (1.4), for cR ≫ 1

J ≃
√

3/2mPϕ−1 and V̂I ≃ m2m2
P/2c2

R , (1.14a)

where a plateau is again generated as in Sec. 1.3.1. Employing Eqs. (1.5), (1.6) and (1.14a), the
slow roll parameters and N̂∗ read

ε̂ ≃ 4mP/3c2
Rϕ 2, η̂ ≃−4mP/3cRϕ and N̂∗ ≃ 3cRϕ∗/4mP. (1.14b)

Imposing the condition of Eq. (1.6) and solving then the latter equation w.r.t ϕ∗ we arrive at

ϕf ≃ 2mP/
√

3cR and ϕ∗ ≃ 4mPN̂∗/3cR· (1.14c)

On the other hand, Eq. (1.7) implies a relation between m and cR – cf. Eq. (1.12d)

√
As ≃

mN̂∗
6πmPcR

= 4.686 ·10−5 ⇒ m = 4.13 ·1013cR GeV. (1.14d)

Applying Eq. (1.8) we find that the predictions of the model w.r.t ns,αs and r are identical to those
in Eq. (1.12e). If, in addition, we impose the requirement ϕ ≤mP and that of Eq. (1.10a) we end-up
with following ranges – c.f. Ref. [1]:

77 ≃ 4N̂∗/3 . cR . 313 and 2.9 . m/1015 GeV . 12 , (1.14e)

where the ranges above are derived numerically. Therefore, the presence of a linear fR renders
observationally more interesting the model based on the simplest quadratic potential.
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1.4 Outline

It would be certainly interesting to enquire if it is possible to realize similar models of nMI in
a SUSY framework where the hierarchy problem of Grand Unified Theories (GUTs) is elegantly
resolved. We below describe the formulation of nMI in the context of Supergravity (SUGRA) and
we specify three models of nMI: two with a gauge singlet inflaton (coupled to another gauge singlet
in a linear-quadratic or a bilinear superpotential term) and one with a gauge non-singlet inflaton.

2. Realization of nMI Within SUGRA

In Sec. 2.1 we present the basic formulation of a theory which exhibits non-minimal coupling
of scalar fields to R within SUGRA and in Sec. 2.2 we outline our strategy in constructing viable
models of nMI.

2.1 The General Set-up

Our starting point is the EF action for the scalar fields Φα within SUGRA [2, 7] which can be
written as

S=
∫

d4x
√
−ĝ

(
−1

2
m2

PR̂+Kαβ̄ ĝµν DµΦαDνΦ∗β̄ −V̂
)
, (2.1a)

where the following notation is adopted

Kαβ̄ = K,Φα Φ∗β̄ > 0 and DµΦα = ∂µΦα −AA
µkα

A (2.1b)

are the covariant derivatives for scalar fields Φα . Here and henceforth the scalar components of the
various superfields are denoted by the same superfield symbol. Also AA

µ stand for the vector gauge
fields and kα

A is the Killing vector, defining the gauge transformations of the scalars [7]. The EF
potential, V̂ , is given in terms of the Kähler potential, K, and the superpotential, W , by

V̂ = V̂F +V̂D with V̂F = eK/m2
P

(
Kαβ̄ FαF∗

β̄ −3
|W |2

m2
P

)
and V̂D =

1
2

g2 ∑
a

DaDa. (2.1c)

Here, g is the unified gauge coupling constant and the summation is applied over the generators Ta

of a considered gauge group – a trivial gauge kinetic function is adopted. Also we use the shorthand

Kβ̄αKαγ̄ = δ β̄
γ̄ , Fα =W,Φα +K,ΦαW/m2

P and Da = Φα (Ta)
α
β Kβ with Kα = K,Φα . (2.1d)

By performing a conformal transformation and adopting a frame function Ω which is related
to K as follows

−Ω/3 = e−K/3m2
P ⇒ K =−3m2

P ln(−Ω/3) , (2.2)

we arrive at the following action

S=
∫

d4x
√
−g

(
−m2

P
2

(
−Ω

3

)
R+m2

PΩαβ̄ DµΦαDµΦ∗β̄ −ΩAµA µ/m2
P −V

)
, (2.3)

where gµν = −(3/Ω) ĝµν is the JF metric, we use the shorthand notation Ωα = Ω,Φα and Ωᾱ =

Ω,Φ∗ᾱ and Aµ is the purely bosonic part of the on-shell value of the auxiliary field Aµ given by

Aµ =−im2
P
(
DµΦαΩα −DµΦ∗ᾱΩᾱ

)
/2Ω . (2.4)

6
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It is clear from Eq. (2.3) that S exhibits non-minimal couplings of the Φα ’s to R. However, Ω enters
the kinetic terms of the Φα ’s too. In general, Ω can be written as [7]

−Ω/3 = 1−FK
(
ΦαΦ∗ᾱ)/3+

(
FR(Φα)+FR

∗(Φ∗ᾱ)
)
, (2.5)

where FK is a dimensionless real function while FR is a dimensionless, holomorphic function. For
FR > FK , FK expresses mainly the kinetic terms of the Φα ’s whereas FR represents the non-minimal
coupling to gravity – note that Ωαβ̄ is independent of FR since FR,Φα Φ∗β̄ = 0. In order to get
canonical kinetic terms, we need [8] Aµ = 0 and FKαβ̄ ≃ δαβ̄ . The first condition is attained when
the dynamics of the Φα ’s is dominated only by the real moduli |Φα |. The second condition is
satisfied by the choice

FK
(
|Φα |2

)
= |Φα |2/m2

P + kαβ |Φα |2|Φβ |2/m4
P (2.6)

with sufficiently small coefficients kαβ . Here we assume that the Φ’s are charged under a global –
see Secs. 3 and 5 – or gauge – see Sec. 4 – U(1) symmetry, so as mixed terms of the form ΦαΦ∗

β
are disallowed. The inclusion of the fourth order term for the accompanying non-inflaton field,
Φ1 := S is obligatory in order to evade [7] a tachyonic instability occurring along this direction. As
a consequence, all the allowed terms are to be considered in the analysis for consistency.

2.2 Modeling nMI in SUGRA

The realization of nMI in SUGRA requires V̂D = 0. This condition may be attained, when the
inflaton is (the radial part of) a gauge:

• Singlet, by introducing an extra field Φ2 := Φ which obviously has zero contribution to V̂D.

• Non-singlet by introducing a conjugate pair of Higgs superfields, Φ2 := Φ and Φ3 := Φ̄,
which are parameterized so as V̂D = 0.

The presence of S is crucial for the realization of our scenaria, since it assists us to isolate via
its derivative the contribution of the inflaton(s) in V̂ , Eq. (2.1c). Indeed, placing S at the origin the
resulting V̂ = V̂I0 – in both cases above – is equal to

V̂I0 = eK/m2
PKSS∗ W,S W ∗

,S∗ =VF/ fSΦ f 2
R since eK/m2

P = 1/ f 3
R and KSS∗ = fR/ fSΦ, (2.7)

where fR = −Ω/3 and fSΦ = m2
PΩ,SS∗ . Also VF = |W,S|2 is the F-term SUSY potential, obtained

from Eq. (2.1c) with Dα = 0 in the limit mP → ∞. Given that fSΦ ≪ fR, the construction of an
inflationary plateau is reduced in the selection of the appropriate W and FR so that V̂I0 ≃ VF/ f 2

R

is almost constant. In the case of a gauge-singlet inflaton, where Dα = 0, this objective can be
achieved with one of the two choices:

• If we set [2, 8] W = λSΦ2 and FR = 1+ cRΦ2/m2
P – cf. Sec. 1.3.1 –, we obtain VF = λ 2|Φ|4

and f 2
R ≃ c2

R|Φ|4 for cR ≫ 1. Therefore, Eq. (2.7) implies that V̂I0 turns out to be almost
constant.

• If we choose [4] W = mSΦ and FR = 1+ cRΦ/mP – cf. Sec. 1.3.2 –, we find VF = m2|Φ|2

and f 2
R ≃ c2

R|Φ|2 for cR ≫ 1. Eq. (2.7) gives again an almost constant V̂I0.

7
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In the case of a gauge non-singlet inflaton, we can take [3] W = λS
(
ΦΦ̄−M2

)
which can be

combined with the gauge invariant FR, FR = 1+cRΦ̄Φ/m2
P – cf. Ref. [9]. For |Φ|= |Φ̄|, we expect

VD = 0, VF ≃ λ 2|Φ|4 (for |Φ| ≫ M) and f 2
R ≃ c2

R|Φ|4 for cR ≫ 1. Therefore, Eq. (2.7) again implies
that V̂I0 is almost constant. The GUT gauge group is spontaneously broken during and at the end of
nMI, where Φ and Φ̄ acquire their vacuum expectation values (VEVs) ⟨Φ⟩= ⟨Φ̄⟩= M with SUSY
unbroken – up to tiny corrections from SUSY breaking effects.

In the following we show details on the realization of these three scenaria. Our analysis is
carried out exclusively in the EF substituting into Eq. (2.1c), Eqs. (2.2) and (2.5) and the chosen
FR. Then, Eq. (1.4) can be employed in order to find the canonically normalized inflaton field ϕ̂ in
terms of ϕ defining

fK ϕ̇ 2/2 = m2
PΩαβ̄ Φ̇αΦ̇∗β̄ and fR =−Ω/3. (2.8)

We also check the stability of the inflationary trajectory w.r.t the fluctuations of the non-inflaton
fields and find the whole spectrum during nMI. Employing the derived masses we find the one-loop
radiative correction ∆V and the corresponding EF potential using the Coleman-Weinberg formula

V̂I = V̂I0 +∆V with ∆V =
1

64π2 ∑
i
(−)FiM4

i ln
M2

i

Λ2 , (2.9)

where the sum extends over all helicity states i, Fi and M2
i is the fermion number and mass squared

of the ith state and Λ is a renormalization mass scale.

3. nMI with Quartic Potential for a Gauge Singlet Inflaton

This setting is realized in the presence of two superfields S and Φ charged under a global U(1)
symmetry with charges 2 and −1 respectively. In particular we take

W = λSΦ2, FR =
cΦ

4m2
P

Φ2, FK =
|S|2

m2
P
+

|Φ|2

m2
P
−2kS

|S|4

m4
P
−2kΦ

|Φ|4

m4
P
−2kSΦ

|S|2|Φ|2

m4
P

· (3.1)

In Sec. 3.1 we describe the salient features of this model and in Sec. 3.2 we expose our results.

3.1 Structure of the Inflationary Potential

The EF F–term (tree level) SUGRA scalar potential, V̂ , of this model is obtained from Eq. (2.1c)
upon substitution of Eq. (3.1) into Eqs. (2.2) and (2.5) with Φ1 := S and Φ2 := Φ – note that Dα

vanish by construction. We can verify that along the trajectory

S = 0 and θ := argΦ = 0 (3.2)

and for cΦ ≫ 1, V̂ develops a plateau with almost constant potential energy density, V̂I0 and corre-
sponding Hubble parameter ĤI found by Eq. (2.7):

V̂I0 =
λ 2ϕ 4

4 fSΦ f 2
R
≃ λ 2m4

P

4 fSΦc2
R

and ĤI =
V̂ 1/2

I0√
3mP

≃ λmP

2
√

3 fSΦcR
, (3.3a)

where fR and fSΦ are calculated by employing their definitions below Eq. (2.7)

fR = 1+ cRx2
ϕ + kΦx4

ϕ/6 and fSΦ = 1− kSΦx2
ϕ with xϕ = ϕ/mP and cR = cΦ/4−1/6. (3.3b)
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FIELDS EINGESTATES MASS SQUARED

1 real scalar θ̂ m2
θ̂
= λ 2 (1+6cR)m2

Px4
ϕ/3 fSΦ f 3

RJ2 ≃ 4Ĥ2
I

2 real scalars ŝ1, ŝ2 m2
ŝ ≃ λ 2m2

P

(
2+ c2

R(12kS(1+ cRx2
ϕ )−1)x4

ϕ

)
/6c2

R f 3
SΦ f 2

R

2 Weyl spinors ψ̂± = ψ̂Φ±ψ̂S√
2

m2
ψ̂± ≃ λ 2m2

P(2− kSΦx2
ϕ + kSΦcRx4

ϕ )
2/18 f 3

SΦ f 2
R

Table 1: The mass spectrum of the model along the inflationary trajectory of Eq. (3.2).

Expanding Φ and S in real and imaginary parts according to the prescription

Φ = ϕeiθ/
√

2 and S = (s1 + is2)/
√

2, (3.4)

we find that along the trajectory of Eq. (3.2), Kαβ̄ defined in Eq. (2.1b) takes the form(
Kαβ̄

)
= diag

(
J2, fSΦ/ fR

)
where J ≃

√
3c2

Rϕ 2/
√

2 f 2
R ≃

√
6/xϕ , (3.5)

as can be inferred from Eq. (1.4) for fK = 1−4kΦx2
ϕ – see Eq. (2.8). Consequently, we can introduce

the EF canonically normalized fields, ϕ̂ , θ̂ and ŝi, with i = 1,2 as follows – cf. Ref. [2, 3, 7, 8]:

Kαβ̄ Φ̇αΦ̇∗β̄ =
1
2

(
˙̂ϕ

2
+

˙̂θ
2
+ ˙̂s

2
1 +

˙̂s
2
2

)
, (3.6)

where the dot denotes derivation w.r.t the JF cosmic time and the hatted fields are defined as follows

dϕ̂/dϕ = J, θ̂ ≃ Jϕθ and ŝi =
√

fSΦ/ fRsi with i = 1,2. (3.7)

To check the stability of V̂ in Eq. (2.1c) along the trajectory in Eq. (3.2) w.r.t the fluctuations
of θ̂ and ŝi we construct the mass spectrum of the theory. Our results are summarized in Table 1.
From there it is evident that kS & 0.5 assists us to achieve m2

ŝ > 0. We have also numerically
verified that the various masses remain greater than ĤI during the last 50 e-foldings of nMI, and so
any inflationary perturbations of the fields other than the inflaton are safely eliminated. In Table 1
we also present the masses squared of chiral fermions along the direction of Eq. (4.3), which can
be served for the calculation of ∆V in Eq. (2.9). We observe that the fermionic (4) and bosonic
(4) degrees of freedom (d.o.f) are equal – here we take into account the 1 d.o.f of ϕ̂ which is not
perturbed. ∆V has no impact on our results, since the slope of the inflationary path is generated at
the classical level and the various masses are proportional to the weak coupling λ .

3.2 Results

As can be easily seen from the relevant expressions above, the model depends on the following
parameters: λ , kS, kΦ, kSΦ, and cR. Recall that we use Trh = 108 GeV throughout. Our results are
essentially independent of kS, provided that m2

Ŝ
> 0 for λ < 1 – see in Table 4. We therefore set

kS = 0.5. Also we take a central value kΦ = 0.5. Besides these two values, in our numerical code,
we use as input parameters cR, kSΦ and ϕ∗. For every chosen cR ≥ 1, we restrict λ and ϕ∗ so that the

9
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Figure 2: Allowed (hatched) region as determined by Eqs. (1.5), (1.7) and (1.9) in the λ − cR [λ − kSΦ]
plane (a) [(b)], for kS = kΦ = 0.5. The conventions adopted for the type and the color of the various lines are
described in Fig. 1.

conditions Eqs. (1.5) and (1.7) are satisfied. By adjusting kSΦ we can achieve ns’s in the range of
Eq. (1.9). Our results are displayed in Fig. 2-(a) [Fig. 2-(b)], where we delineate the hatched region
allowed by Eqs. (1.5), (1.7) and (1.9) in the λ − cR [λ − kSΦ] plane. The conventions adopted for
the various lines are shown in Fig. 1. In particular, the dashed [dot-dashed] lines correspond to
ns = 0.975 [ns = 0.946], whereas the solid lines are obtained by fixing ns = 0.96 – see Eq. (1.9).
The constraint of Eq. (1.10b) is satisfied along the various curves whereas Eq. (1.10a) is valid only
along the gray and light gray segments of these. Along the light gray segments, though, we obtain
ϕ∗ ≥ mP. Note that for vanishing kSΦ and kΦ our results can be approximated by the analytical
expressions exhibited in the paragraph (ii) of Sec. 1.3.1 replacing

√
λ with λ . Indeed, cR remains

almost proportional to λ and for constant λ , cR increases as ns decreases. We remark that mostly
negative kSΦ’s are needed which for λ > 0.16 ⇔ ϕ∗ < 0.1mP – see Eq. (1.12c) – take quite natural
(of order one) values. Focusing on kSΦ < 0 for ns = 0.96 and N̂∗ ≃ 50 we find

112 . cR . 1.6 ·105 with 2.5 ·10−3 . λ . 3.7 and 0 .−kSΦ . 2.5 . (3.8)

Also 6.8 . |αs|/10−4 . 8.2 and r ≃ 3.8 ·10−3 which lie within the allowed ranges of Eq. (1.9).

4. nMI with Quartic Potential for a Gauge non-Singlet Inflaton

In the present scheme the inflaton field can be identified
SUPERFIELDS S Φ Φ̄

U(1)B−L 0 1 −1

R 1 0 0

Table 2: Charge assignments of the
superfields.

with the radial component of a conjugate pair of Higgs super-
fields. We here – cf. Ref. [9] – focus on the Higgs superfields,
Φ̄ and Φ, with B−L =−1, 1 which break a GUT symmetry,
e.g., GGUT = GSM ×U(1)B−L down to MSSM gauge group
GSM through their VEVs. We also impose a U(1) R symme-
try, U(1)R, which guarantees the linearity of the superpoten-
tial, W , w.r.t the singlet S – see Table 2. The functions W , FR
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and FK , which respect the imposed symmetries, are respectively given by

W = λS
(
Φ̄Φ−M2) , FR =

cΦ̄Φ
2m2

P
Φ̄Φ, (4.1a)

FK =
|S|2

m2
P
+

|Φ|2

m2
P
+

|Φ̄|2

m2
P
− kS

|S|4

m4
P
− kΦ

|Φ|4

m4
P
− k̄Φ

|Φ̄|4

m4
P

− 2kSΦ
|S|2|Φ|2

m4
P

−2k̄SΦ
|S|2|Φ̄|2

m4
P

−2kΦΦ̄
|Φ|2|Φ̄|2

m4
P

· (4.1b)

We below outline the salient features of our inflationary scenario (Sec. 4.1) and then, we present its
predictions in Sec. 4.2.

4.1 Structure of the Inflationary Potential

The EF F–term (tree level) SUGRA scalar potential, V̂I0, for this model is obtained by substi-
tuting Eqs. (4.1a) and (4.1b) into Eqs. (2.1c) and (2.5) with Φ1 = S, Φ2 = Φ and Φ3 = Φ̄. If we
parameterize the SM neutral fields Φ and Φ̄ by

Φ = ϕeiθ cosθΦ/
√

2 and Φ̄ = ϕeiθ̄ sinθΦ/
√

2, (4.2)

we can easily deduce that a D-flat direction occurs at

θ = θ̄ = 0 and θΦ = π/4, (4.3)

provided that K remains invariant under the interchange Φ → Φ̄ and Φ̄ → Φ, which implies

kΦ = k̄Φ and kSΦ = k̄SΦ. (4.4)

From Eq. (2.1c), we can verify that for cR ≫ 1, kSΦ ≪ 1 and mBL ≪ 1, V̂ takes a form suitable for
the realization of nMI, since it develops a plateau. The (almost) constant potential energy density
V̂I0 and the corresponding Hubble parameter ĤI – along the trajectory in Eq. (4.3) – are given by

V̂I0 = m4
P

λ 2(x2
ϕ −4m2

BL)
2

16 fSΦ f 2
R

≃ λ 2m4
P

16 fSΦc2
R

and ĤI =
V̂ 1/2

I0√
3 fSΦmP

≃ λmP

4
√

3 fSΦcR
, (4.5a)

where fR and fSΦ, given by their definitions below Eq. (2.7), are specified as follows

fR = 1+ cRx2
ϕ +(kΦ + kΦΦ̄)

x4
ϕ

24
, fSΦ = 1− kSΦx2

ϕ with mBL =
M
mP

and cR =
cΦ̄Φ

4
− 1

6
· (4.5b)

We next proceed to check the stability of the trajectory in Eq. (4.3) w.r.t the fluctuations of
θΦ, θ , θ̄ and S = s/

√
2 – here S has been rotated to the real axis via a suitable R transformation.

We first check that V̂,χ = 0, with χ = θΦ,θ , θ̄ and s, and then we find

Kαβ̄ Φ̇αΦ̇∗β̄ =
1
2

J2
(

ϕ̇ 2 +
1
2

ϕ 2θ̇ 2
+

)
+

fΦϕ 2

2 fR

(
1
2

θ̇ 2
−+ θ̇ 2

Φ

)
+

fSΦ

2 fR
ṡ

=
1
2

(
˙̂ϕ

2
+

˙̂θ
2

++
˙̂θ

2

−+
˙̂θ

2

Φ + ˙̂s
2
)

with θ± =
θ̄ ±θ√

2
and s =

S√
2
· (4.6)
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FIELDS EIGENSTATES MASSES SQUARED

2 real scalars θ̂Φ m2
θ̂Φ

≃ g2m2
Px2

ϕ/4 fΦ fR

θ̂+ m2
θ̂+

= λ 2m2
Px6

ϕ cR/12 f 3
R fSΦ ≃ 4Ĥ2

I

1 complex scalar Ŝ m2
ŝ = λ 2m2

P

(
12+ x2

ϕ

(
1+6c2

Rx2
ϕ

)
(6kS −1)

+36c3
RkSx6

ϕ

)
/144c2

R f 3
SΦ f 2

R

1 gauge boson ABL M2
BL = g2m2

Px2
ϕ fΦ/4 fR

4 Weyl spinors ψ̂± = ψ̂Φ+±ψ̂S√
2

m2
ψ̂± ≃ λ 2m2

P

(
2+ kSΦx2

ϕ (cRx2
ϕ −1)

)
/36 f 3

SΦ f 2
Rc2

R

λBL, ψ̂Φ− M2
BL = g2m2

Px2
ϕ fΦ/4 fR

Table 3: The mass spectrum of the model along the inflationary trajectory of Eq. (4.3) in the presence of the conditions
in Eq. (4.4). To avoid very lengthy formulas we neglect terms proportional to m2

BL ≪ x2
ϕ .

In the last line, we introduce the EF canonically normalized fields, ϕ̂ , θ̂+, θ̂−, θ̂Φ and ŝ, defined as
follows – cf. Ref. [3]:

dϕ̂
dϕ

= J, θ̂+ =
Jϕθ+√

2
, θ̂− =

√
fΦ

2 fR
ϕθ−, θ̂Φ =

√
fΦ

fR
ϕ
(

θΦ − π
4

)
and ŝ =

√
fSΦ

fR
s, (4.7)

where J and fK can be found from Eqs. (1.4) and (2.8) with fΦ = 1− (kΦ + kΦΦ̄)x
2
ϕ .

Having defined the canonically normalized scalar fields, we can derive the mass spectrum of
the model along the direction of Eq. (4.3). Our results are listed in Table 3, where we present
the eigenvalues and the corresponding eigenvectors of the relevant mass-squared matrices. As we
observe, no instability arises in the spectrum, since kS & 1 ensures m2

Ŝ
> 0 and m2

θ̂Φ
> 0 thanks the

D-term contributions which are proportional to g ≃ 0.7 > λ . Moreover, the masses of the various
scalars remain greater than ĤI and so any perturbations of the fields other than the inflaton are
safely eliminated. We also remark that U(1)B−L is broken during nMI and therefore the gauge
boson ABL becomes massive absorbing the massless Goldstone boson associated with θ̂−. As a
consequence, no cosmic strings are produced at the end of nMI and so, no extra restrictions on the
parameters have to be imposed. From Table 3 we can deduce that the numbers of bosonic (8) and
fermionic (8) d.o.fs are equal. Plugging these results into Eq. (2.9) we get ∆V , which is dominated
by the contributions from mθ̂Φ

and MBL since these are proportional to g ≫ λ . Namely we find

∆V ≃ 1
64π2

(
m4

θ̂Φ
ln(m2

θ̂Φ
/Λ2)−M4

BL ln(M2
BL/Λ2)

)
. (4.8)

Note that the presence of fΦ ̸= 1 prevents the exact cancellation, occurring in Ref. [3], of the two
contributions above. Since this result can be continued until the SUSY vacuum of the theory, we
determine there the employed Λ by imposing the condition ∆V = 0.

4.2 Results

The free parameters of this model are λ , M, kS, kΦ, kΦΦ̄, kSΦ, and cR. Following the same
reasoning with Sec. 3.2 we set kS = 1 and kΦ = 0.1 throughout. Moreover, we can determine M

12
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Figure 3: Allowed (hatched) region as determined by Eqs. (1.5), (1.7) and (1.9) in the λ − cR [λ − kSΦ]
plane (a) [(b)] for kS = 1, kΦΦ̄ = 0.1 and kΦ = 0.01. The conventions adopted are described in Fig. 1.

identifying the mass of the gauge boson ABL in the SUSY vacuum with the GUT scale MGUT ≃
2 ·1016 GeV within the MSSM, i.e.√

fΦ0/ fR0gM = MGUT ⇒ mBL ≃ (2
√

2cmax
R − cR)

−1 with cmax
R = g2m2

P/8M2
GUT, (4.9)

fR0 = fR(xϕ = 2mBL) and fΦ0 = fΦ(xϕ = 2mBL). The requirement 2cmax
R − cR > 0 sets an upper

bound cR < 2cmax
R ≃ 1.8 ·103. To obtain solutions consistent with the requirements of Sec. 1.2 we

need a rather low kΦ. We take kΦ = 0.01.
Working along the lines of Sec. 3.2 we delineate the allowed (hatched) region, as determined

by Eqs. (1.5), (1.7) and (1.9) in the λ − cR [λ − kSΦ] plane – see Fig. 3-(a) [Fig. 3-(b)]. The
conventions adopted for the various lines are shown in Fig. 1. We observe that the allowed region
is considerably shrunk w.r.t that obtained with a gauge singlet inflaton in Fig. 2 and this is limited in
the regime where only Eq. (1.10b) is valid. Also cR remains almost proportional to λ and increases
as ns decreases. Note that for vanishing k’s, our results can be approximated by the analytical
expressions exhibited in the paragraph (ii) of Sec. 1.3.1 replacing

√
λ with λ/2. Especially for

ns = 0.96 and N̂∗ ≃ 50 we find

7.3 . cR/102 . 18 with 2.9 . λ/10−2 . 8.4 and 0.6 .−kSΦ/10−1 . 8.5. (4.10)

Therefore, kSΦ < 0 assists us again to obtain the central ns in Eq. (1.9a). Also 0.7. |αs|/10−3 . 1.2
and r ≃ (3−3.8) ·10−3 in agreement with Eq. (1.9).

5. nMI with Quadratic Potential

This model [4] is characterized by the following ingredients:

W = mSΦ, FR =
cΦ√
2mP

Φ, FK =
|S|2

m2
P
+

|Φ|2

m2
P
−2kS

|S|4

m4
P
−2kΦ

|Φ|4

m4
P
−2kSΦ

|S|2|Φ|2

m4
P

· (5.1)

To ensure the form of W and FK we can impose a global U(1) symmetry under which S and Φ have
charges 1 and −1. The imposed U(1) is broken though during nMI by FR. Due to the form of FR,
in which Φ appears linearly, Φ has to be singlet under the gauge group of the theory and therefore,
we obtain Dα = 0 by construction. In Sec. 5.1 we outline the derivation of the inflationary potential
of this model and in Sec. 5.2 we present our results.
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FIELDS EINGESTATES MASSES SQUARED

1 real scalar θ̂ m2
θ̂
≃ cRm2xϕ/ f 3

RJ2 ≃ 4Ĥ2
I

2 real scalars ŝ1, ŝ2 m2
ŝ ≃ m2

(
2+ c2

Rx2
ϕ (12cRkS −1)

)
/ f 3

SΦ f 2
R(2+3c2

R)

2 Weyl spinors ψ̂± = ψ̂Φ±ψ̂S√
2

m2
ψ̂± ≃ m2(6+ x2

ϕ +6cRkSΦx3
ϕ )

2/12 f 3
SΦ f 2

R(2+3c2
R)

Table 4: The mass spectrum of the model along the inflationary trajectory in Eq. (3.2).

5.1 Structure of the Inflationary Potential

Inserting Eq. (5.1) into Eqs. (2.5) and (2.1c) we can derive V̂ which, along the trajectory of
Eq. (3.2) for cR ≫ 1 and xϕ ≪

√
6, develops a plateau with (almost) constant potential energy

density, V̂I0 and corresponding Hubble parameter ĤI calculated, in accordance with Eq. (2.7), as

V̂I0 =
m2ϕ 2

2 fSΦ f 2
R
≃ m2m2

P

2c2
R fSΦ

and ĤI =
V̂ 1/2

I0√
3mP

≃ m√
6 fSΦcR

, (5.2a)

where fR and fSΦ, defined below Eq. (2.7), are specified as follows

fR = 1+ cRxϕ − x2
ϕ/6+ kΦx4

ϕ/6 and fSΦ = 1− kSΦx2
ϕ . (5.2b)

To check the stability of the trajectory of Eq. (3.2) w.r.t the fluctuations of the various fields we
expand Φ and S in real and imaginary parts according to the prescription of Eq. (3.4). We then find
that along the trajectory of Eq. (3.2), Kαβ̄ defined in Eq. (2.1b) turns out to be(

Kαβ̄

)
= diag

(
J2, fSΦ/ fR

)
where J ≃

√
3cR/

√
2 fR ≃

√
3/2x−1

ϕ . (5.3)

Consequently, we can introduce the EF canonically normalized fields, ϕ̂ , θ̂ and ŝi, with i = 1,2
which satisfy Eq. (3.6) with the hatted fields defined as in Eq. (3.7). As in the previous cases, we
check the stability of the inflationary path in Eq. (3.2) deriving the mass spectrum of the model,
presented in Table 4. We observe that now the various masses are proportional to m and obviously
our findings are similar to those obtained in Sec. 3.1.

5.2 Results

This model depends on the parameters: m, kS, kSΦ, kΦ, and cR. Following the same reasoning
with Sec. 3.2 we set throughout kS = kΦ = 0.5. The allowed (hatched) regions in the m− cR and
m− kSΦ plane, as determined by Eqs. (1.5), (1.7) and (1.9), are depicted in Fig. 4-(a) and Fig. 4-
(b) respectively, following the conventions Fig. 1. We confine conservatively ourselves to values
m . 3 ·1017 GeV. For vanishing k’s, our results here are almost identical with those in paragraph
(ii) of Sec. 1.3.2. For m & 4 ·1016 GeV, rather natural kSΦ’s result to ns = 0.96. For this ns, N̂∗ ≃ 50
and confining ourselves to kSΦ < 0 we find

1.2 . cR/102 . 60 with 0.5 . m/1016 GeV . 3 and 0 .−kSΦ . 2.4. (5.4)

Also αs ≃−6.5 ·10−4 and r ≃ 3.9 ·10−3 compatibly with Eq. (1.9). Note, though, that for kSΦ > 0
and ϕ > mP we can obtain αs and r as large as 0.006 and 0.036 respectively.
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Figure 4: Allowed (hatched) region as determined by Eqs. (1.5), (1.7) and (1.9) in the m− cR [m− kSΦ]
plane (a) [(b)] for kS = kΦ = 0.5. We follow the conventions of Fig. 1.

6. Conclusions

We reviewed the implementation of nMI in both a non-SUSY and a SUSY framework, by
conveniently choosing the coupling function of the inflaton to gravity. In all cases the inflationary
observables are compatible with the current data. In the SUSY cases the tachyonic instability, oc-
curring along the direction of the accompanying non-inflaton field, can be remedied by considering
terms up to the fourth order in the kinetic part of the frame function. Some of these terms assist in
obtaining ns close to its central observationally favored value. The role of the inflaton can be played
by a gauge singlet or non-singlet superfield. In the latter case, though, a conjugation symmetry has
to be imposed to the higher order terms so that the flatness of the potential is maintained and the
radiative corrections turn out to be significant. For this reason, we can conclude that nMI within
SUGRA is more naturally realized by a gauge singlet inflaton.
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