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In this talk, I have discussed the implications of a multi-component nature of cosmic Dark Mat-
ter for the observational bounds on possible long-range fifth-forces mediated by a Dark Energy
scalar field. By assuming a simple internal symmetry of the Dark Matter component associated
to opposite coupling "charges" of two different particle species, the effects of Dark Energy inter-
actions on both the background and linear perturbations evolution are strongly suppressed during
the whole matter dominated phase, thereby relaxing present bounds on the coupling strength. The
associated attractive and repulsive fifth-forces, however, might still have a very significant impact
on the nonlinear dynamics of collapsed structures. I have also described how some of these non-
linear effects are identified through dedicated cosmological N-body simulations as i) a possible
fragmentation of bound Dark Matter halos into smaller objects, and ii) a consequent suppression
of the nonlinear matter power at small scales. Both effects are potentially observable and might
allow to further constrain the model.
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1. Introduction

The overwhelming evidence for the Universe being presently dominated for about 95% of
its total energy budget by particles and fields that do not belong to the standard model of parti-
cle physics (see e.g. the recent results of the Planck satellite mission, [1]) did not provide yet
a sufficiently firm indication about the fundamental nature of such cosmic "Dark Sector". Even
its traditional split into two distinct and independent components identified with Dark Matter and
Dark Energy has been recently challenged and is found to be mostly conventional in terms of
model-independent observable quantities [2]. Therefore, although the minimal concordance sce-
nario based on a cosmological constant and on a single family of collisionless Cold Dark Matter
particles keeps to be proven fully consistent with data, a higher level of internal complexity of
the dark sector cannot yet be excluded. Such additional complexity might involve either of the
two conventionally-defined constituents of the dark sector, or possibly both, allowing a non-trivial
dynamics and/or non-negligible perturbations and interactions of the Dark Energy field (see e.g.
[3, 4, 5, 6, 7, 8]), as well as non-cold, non-collisionless, or multi-component nature of the Dark
Matter fraction (see e.g. [9, 10]). Even models where a single field is assumed to be responsible of
the phenomenology of both Dark Energy and Dark Matter have been proposed and widely investi-
gated [11]; alternatively, a modification of gravity at large scales might be invoked as the source of
the observed accelerated expansion of the Universe [12]. For a comprehensive review of possible
extensions to the standard ΛCDM scenario, see e.g. [13].

A wide range of such alternative scenarios have been investigated in recent years down to
the level of nonlinear structure formation making use of specifically-designed N-body algorithms,
allowing to identify peculiar features arising only in the nonlinear regime (for an overview of cos-
mological simulations in non-standard Dark Energy cosmologies, see e.g. [14]).

In the present work, I will review the main features and the possible observational footprints
of a particular class of such extended cosmologies, characterised by a higher level of complexity in
both the Dark Energy and the Dark Matter sectors. Such model, known as the "Multi-coupled Dark
Energy" scenario [15, 16], is characterised by the existence of two distinct species of Cold Dark
Matter particles, interacting with individual couplings to an evolving Dark Energy scalar field. The
results presented in this paper will show how an internal complexity of the Dark Matter component
might result in significantly relaxed constraints on possible interactions between Dark Energy and
Dark Matter, with associated scalar fifth-force interactions of gravitational strength being not easily
ruled out through standard background, linear and nonlinear observables.

The paper is organised as follows. In Section 2, I will review the main equations describ-
ing Multi-coupled Dark Energy cosmologies, both for what concerns the background expansion
history and the evolution of linear perturbations; in Section 3, I will describe the first attempts to
simulate the formation and evolution of nonlinear structures in Multi-coupled Dark Energy cos-
mologies through dedicated N-body simulations, and I will discuss the first results obtained with
such analysis. Finally, in Section 4 I will summarise the results and draw my conclusions.
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2. Multi-coupled Dark Energy

2.1 Background

I will consider flat cosmologies where the role of the Dark Energy (DE) responsible for the
observed accelerated expansion of the Universe is played by a classical Quintessence scalar field φ

moving in a self-interaction potential V (φ). We include in our analysis also the Cold Dark Matter
(CDM) and radiation components of the Universe, and for simplicity we neglect the presence of
baryons. In the present work, without loss of generality we will restrict our discussion to the case
of an exponential [17, 18] self-interaction potential in the form:

V (φ) = Ae−αφ/MPl . (2.1)

We consider the possibility of a species-dependent coupling between the DE scalar field and
other forms of gravitating energy in the Universe, following the original proposal of [19], which is
the basic argument for standard interacting DE models [6, 7]. Interacting DE scenarios, also known
as "coupled DE" (cDE) cosmologies, have been thoroughly investigated in the past concerning their
effects on the background [7, 8, 20, 21], linear perturbations [22, 23, 24], and nonlinear structure
formation [25, 26, 27, 28, 29] evolution. Observational constraints have allowed to significantly
restrict the viable parameter space for standard cDE models [30, 31, 32, 33], and in particular have
bound the coupling value to a few percent of the standard gravitational strength, ruling out with
very high significance a possible scalar interaction of strength comparable to standard gravity.

In the present discussion, we will show how a higher level of internal complexity in the CDM
sector might allow to evade such constraints and reconcile a possible interaction of gravitational
strength in the dark sector with the expected observational evolution of a standard ΛCDM cos-
mology. More specifically, we will assume that the CDM budget of the Universe is made by two
different types of particles, with identical physical properties except for the sign of their coupling to
the DE scalar field φ . Similar types of multiple Dark Matter models have already been considered
in the literature in the context of Warm Dark Matter cosmologies (see e.g. [10, 34]) and also for
the case of interacting DE scenarios (see e.g. [8, 35, 36, 37, 38]). The peculiarity of the model
discussed here, however, is to avoid the introduction of additional free parameters as compared to
standard cDE models with a single CDM particle species, by associating the DE-CDM interaction
to a sort of "charge" of CDM particles as a consequence of a new hidden symmetry in the CDM
sector.

The background evolution of the Universe in the context of such Multi-coupled DE (McDE)
scenario can be described by the following system of dynamic field equations:

φ̈ +3Hφ̇ +
dV
dφ

= +Cρ+−Cρ− , (2.2)

ρ̇++3Hρ+ = −Cφ̇ρ+ , (2.3)

ρ̇−+3Hρ− = +Cφ̇ρ− , (2.4)

ρ̇r +4Hρr = 0 , (2.5)

3H2 =
1

M2
Pl

(
ρr +ρ++ρ−+ρφ

)
, (2.6)
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where an overdot represents a derivative with respect to the cosmic time t, the CDM density is
given by ρCDM = ρ++ ρ−, H ≡ ȧ/a is the Hubble function, and MPl ≡ 1/

√
8πG is the reduced

Planck mass. The dimensional coupling constant C is defined as:

C ≡
√

2
3

1
MPl

β , (2.7)

with β = const.≥ 0 being the usual definition (see e.g. [22, 27, 29]) of the dimensionless coupling
between DE and CDM.

The interaction terms in Eqs. 2.3-2.4 imply a variation of the mass of CDM particles of each
species (+ and −) as a consequence of the evolution of the DE field, according to the equation:

d ln [M±/MPl]

dt
=∓Cφ̇ , (2.8)

where M± is the mass of a CDM particle of the positively (+) or negatively (−) coupled species.
It is important to notice that the dynamics of the DE scalar field determines an opposite variation
of the mass of particles of the two different CDM types associated to their opposite couplings. As
a consequence of such different evolution, the relative abundance of the two CDM particle species
changes in time. We quantify such evolution with the dimensionless asymmetry parameter defined
as

µ ≡ Ω+−Ω−
Ω++Ω−

, (2.9)

with the fractional density parameters Ωi defined in the usual way as:

Ωi ≡
ρi

3H2M2
Pl
. (2.10)

The dynamical evolution of such McDE model is equivalent (see [37]) to that of a standard
cDE model with a single CDM species and with an effective coupling given by

βeff = β

(
Ω+

ΩCDM
− Ω−

ΩCDM

)
= β µ . (2.11)

Such equivalence already shows how the internal complexity of the CDM sector might provide an
effective screening mechanism of the DE interaction in the background, since the effective coupling
is dynamically suppressed whenever the two CDM species share the same relative abundance.

In fact, previous investigations [37, 15] have shown that during matter domination the sym-
metric state µ = 0 is an attractor of the system, such that even for initially asymmetric states
the system moves towards symmetry at the beginning of matter domination, and remains in such
state until the emergence of DE. Therefore, the existence of a symmetric attractor for the McDE
background system dynamically realises the conditions for the effective screening described by
Eq. 2.11. This basic feature of the McDE model ensures that even large values of the coupling
have a very mild impact on the background evolution of the Universe, thereby evading most of
the present observational constraints. This is well explained in the two panels of Fig. 1, where the
dynamical suppression of the effective coupling during matter domination for initially asymmetric
states with an initial asymmetry of µ∞ = ±0.5 is shown in the left plot, while the deviation from
the Hubble expansion history of an uncoupled system (i.e. identical to ΛCDM) at the end of matter
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domination is shown in the right plot for an initially symmetric state. The latter is a consequence
of the dynamical evolution of the scalar field that after being frozen during matter domination in
the minimum of the effective potential defined by:

dVeff

dφ
≡ dV

dφ
−Cρ++Cρ− , (2.12)

starts moving again as soon as DE takes the lead of the cosmic budget. McDE models therefore
also naturally provide a time-dependent effective coupling (see e.g. [27]) without imposing a priori
any specific form for the coupling evolution. The right plot of Fig. 1 clearly shows that in any case,
even for very large values of the coupling, the deviation of the Hubble function from the ΛCDM
case never exceeds a fraction of a percent, thereby being undetectable with the present level of
observational precision.
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Figure 1: Left: The effective coupling βeff for a series of initially asymmetric McDE cosmologies (µ∞ 6=
0) with different coupling values. All the models evolve towards the symmetric attractor during matter
domination. Right: The relative difference of the Hubble function H(z) over the ΛCDM Hubble function
HΛ for a series of initially symmetric McDE models. The expansion history of symmetric McDE models is
almost indistinguishable from ΛCDM even for couplings as large as β = 10.

2.2 Linear Perturbations

As discussed in [15], the evolution of linear density perturbations in McDE cosmologies is
described by the equations:

δ̈+ = −2H
[

1−β
φ̇

H
√

6

]
δ̇++4πG [ρ−δ−ΓR +ρ+δ+ΓA] , (2.13)

δ̈− = −2H
[

1+β
φ̇

H
√

6

]
δ̇−+4πG [ρ−δ−ΓA +ρ+δ+ΓR] , (2.14)

where δ± = δρ±/ρ± is the density contrast of the two different CDM species.
The Γ factors in Eqs. 2.13-2.14 are defined as

ΓA ≡ 1+
4
3

β
2 , ΓR ≡ 1− 4

3
β

2 , (2.15)
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and encode the attractive (ΓA) or repulsive (ΓR) corrections to standard gravity due to the long-
range fifth-force mediated by the DE scalar field, while the different signs of the extra-friction term
(second term in the first squared brackets on the right-hand side) are a consequence of the of the
opposite mass evolution of the two CDM particle types.

Since a dimensionless coupling β determines a correction to standard gravity in Eqs. 2.13-
2.14 of order β 2, a coupling of order unity or larger might provide a scalar fifth-force with strength
comparable or even larger than standard gravity, while present constraints on standard cDE models
with a single CDM species based on different types of observables provide an upper limit of β .
0.08− 0.15 [30, 32, 33, 39] corresponding to a few percent correction to standard gravity. More
specifically, a coupling of β =

√
3/2≈ 0.87 would induce a scalar force with the same strength as

gravity, thereby resulting in the absence of any force for repulsive corrections (ΓR = 0), and in a
force twice as strong as gravity for attractive corrections (ΓA = 2), while a coupling of β =

√
3/2≈

1.22 would imply an attractive total force with three times the strength of gravity for attractive
corrections (ΓA = 3), and a repulsive force with gravitational strength for repulsive corrections
(ΓR =−1).

If we restrict to the case of initially symmetric models and of initially adiabatic density pertur-
bations of the two CDM species (for a more general discussion of asymmetric and non-adiabatic
models see [15]), i.e. to the case:

µ∞ = 0 , (2.16)

δ+(z∞) = δ−(z∞) , (2.17)

Eqs. 2.13-2.14 reduce to:

δ̈+ = −2H
[

1−β
φ̇

H
√

6

]
δ̇++8πGρ+δ+ , (2.18)

δ̈− = −2H
[

1+β
φ̇

H
√

6

]
δ̇−+8πGρ−δ− . (2.19)

For this choice of initial conditions, we investigate the dynamics of the total linear density pertur-
bations defined as:

δCDM ≡
Ω+δ+

ΩCDM
+

Ω−δ−
ΩCDM

(2.20)

by numerically solving Eqs. 2.18-2.19 for different values of the coupling β . The ratio of the linear
growth factor obtained in this way to the standard ΛCDM growth factor is shown in Fig. 2. As
the plot clearly shows, while at the background level the effective screening of the coupling due
to the attractor symmetric state of the system suppresses almost completely the interaction and
allows couplings as large as β = 10 to be observationally viable, the evolution of linear density
perturbations poses much tighter constraints on the coupling, as the linear growth factor signifi-
cantly deviates from the ΛCDM case at low redshifts even for coupling values as small as β = 2.
More specifically, as one can see in the plot, couplings larger than β = 1.6 (cyan curve) determine
an overall enhancement of the amplitude of linear density perturbations at z = 0 exceeding 40%,
while a coupling β = 1.5 induces just a ∼ 13% enhancement, and a coupling β = 1 does not pro-
duce any appreciable deviation in the growth. This clearly shows that the screening effect of the
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Figure 2: The ratio of the growth factor of CDM density perturbations to the ΛCDM case for a series of
McDE models with couplings between β = 1 and β = 2 and with adiabatic initial conditions.

matter-dominated attractor of the McDE system is broken at the level of linear density perturba-
tions, which potentially allow to distinguish a McDE model from an uncoupled cosmology, even
for coupling values that would be completely undetectable based on pure background observations.
Nevertheless, the effect of enhanced growth at low redshifts appears to be very strongly dependent
on the coupling value, such that a coupling of order unity does not show any enhancement at all,
thereby resulting still indistinguishable from ΛCDM. Couplings of order unity therefore cannot be
ruled out even at the linear level in McDE models, and this is of course equally true for even smaller
couplings β . 1.

3. Non-linear evolution

Since the background and linear perturbations evolution of McDE scenarios still leave a large
portion of the parameter space as fully viable, the next step in the investigation of McDE is the
exploration of the nonlinear regime of structure formation, by means of dedicated N-body simula-
tions. Such analysis has been performed by [16] making use of the N-body code C-GADGET [26].
Such code was initially developed as a modified version of the widely used Tree-PM N-body code
GADGET-3 [40] for standard cDE models, and has been widely employed in the last years to in-
vestigate different realisations of interacting DE cosmologies with constant couplings [41, 42, 43],
variable couplings [27, 44, 45], and with "bouncing" DE potentials [46, 29]. Since the same code
can be directly applied also to the case of multiple CDM families with individual couplings, [16]
have run some intermediate-resolution simulations of McDE cosmologies for six different values
of the coupling (β = 0 ,1/2 ,

√
3/2 ,1 ,

√
3/2 ,3/2) with the aim to highlight the main qualitative

features of McDE models in the nonlinear regime. Such simulations have followed the evolution
of 2×2563 CDM particles in a periodic cosmological box of 100 Mpc/h aside, with a mass reso-
lution of m± = 2.24× 109 M�/h, and a gravitational softening εg = 10 kpc/h. Initial conditions
have been generated by rescaling the amplitude of the linear matter power spectrum obtained with
the Boltzmann code CAMB [47] for a standard ΛCDM universe with cosmological parameters in
accordance with WMAP7 results [48] between last scattering (z ≈ 1100) and the starting redshift
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of the simulations by applying the specific growth factor computed for each model by numerically
integrating Eqs. (2.13,2.14).

Figure 3 shows the projected position of particles of the positively- and negatively-coupled
CDM species (as red and black points, respectively) in a 2 Mpc/h-thick slice of the cosmological
box of the different simulations at z = 0. The figure clearly shows that in the absence of coupling
(β = 0, left panel of the upper row) the red points (always plotted first such that they might be
covered by the black ones) are barely visible (except in voids) as their spatial distribution matches
that of the negatively-coupled particles represented by the black points: this is the expected be-
haviour for the case of two different particle species obeying the same gravitational interaction law.
It is already interesting to notice that the situation does not significantly change for the case of a
coupling β = 1/2, that would be ruled out at more than 5 σ C.L. [30, 32, 33] for the case of a
single coupled CDM species, for which the qualitative shape of the large-scale structures appears
indistinguishable from the uncoupled case. This result already shows that a scalar fifth-force with
one third the strength of standard gravity does not affect in a significant way the formation of large-
scale cosmic structures even in the nonlinear regime probed with full N-body simulations. More
detailed investigations of the impact of such a coupling value on the innermost structure of highly
nonlinear collapsed objects is presently ongoing.

Moving to progressively larger couplings, some clear and characteristic effects on the shape of
large-scale structures start to appear, with the two different CDM particle species being no longer
identically distributed in space, even though for a coupling of β =

√
3/2 (corresponding to a scalar

fifth-force as strong as standard gravity) the overall effect is still relatively mild. For even larger
coupling values, the two CDM particle species start to show a clear shift in their distributions, due
to the repulsion of particles of opposite type as a consequence of their opposite coupling to DE. This
effect becomes progressively more dramatic for increasing coupling values, leading to the distinct
formation of two independent and almost equally-shaped cosmic networks. The development of
such "mirror" structures represents a characteristic footprint of McDE models in the nonlinear
regime of structure formation, possibly allowing to constrain the model beyond the relatively loose
bounds allowed by background and linear perturbation analyses.

Even such a qualitative inspection of the outcomes of these six simulations already shows quite
clearly how the nonlinear regime of structure formation can highlight characteristic observational
features of McDE scenarios that were proven to be almost indistinguishable from the standard
ΛCDM cosmology at the level of background and linear perturbations observables, thereby offering
an additional possibility to test and constrain the model. Nonetheless, for coupling values smaller
than β =

√
3/2 such effects appear still relatively mild.

In order to better quantify the impact of McDE models on structure formation, going beyond
the rather qualitative visual inspection of simulated large-scale structures that we discussed above,
one can compute the matter power spectrum associated with the distribution of the two different
CDM species in the different simulations outputs at z = 0, and compare the total matter power
spectrum with the one obtained in the absence of any coupling. This is done in Fig. 4, where the
separate matter power spectra of the two different CDM species are plotted as red and black solid
curves (P+(k) and P−(k), respectively), while the total CDM power spectrum is plotted in blue, and
the reference ΛCDM power is also included for reference as a dashed green curve. The bottom
plot of each panel of Fig. 4 shows the ratio of the power spectra of the two different CDM species
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β = 0 β = 1/2

β =
√

3/2 β = 1

β =
√

3/2 β = 3/2

Figure 3: The distribution of the positively- and negatively-coupled CDM particles (red and black points,
respectively) in a slice of 100×100×2 Mpc/h for different values of the coupling β .
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P−(k)/P+(k) in red, while the ratio of the total CDM power to the standard ΛCDM expectation is
displayed in blue.

As the different plots clearly show, a coupling β = 1/2 has almost no impact on the power
spectra at z = 0 over the whole range of scales probed by our simulations. This result quantitatively
confirms the qualitative conclusion obtained by visually inspecting Fig. 3. However, for larger
coupling values, already starting with β =

√
3/2, some effects become apparent both on the rel-

ative shape of the power spectra of the two different CDM species and on the relative behaviour
of the total CDM power as compared to the standard ΛCDM case. In particular, for β =

√
3/2,

corresponding to a scalar fifth-force with gravitational strength, a suppression of the total CDM
power spectrum is visible for k & 1h/Mpc, and further increases for even smaller scales, reaching
a maximum suppression of ∼ 40% at the Nyquist frequency of the box (kNy ∼ 8h/Mpc), while for
k . 1h/Mpc the effect is practically absent and all the different power spectra are still indistin-
guishable. This is a very interesting result since it shows a characteristic observational feature of a
long-range scalar force with gravitational strength that appears only at scales that will be efficiently
probed by upcoming weak lensing surveys, while larger scales as well as the background evolution
of the universe remain completely unaffected.

These effects become progressively larger when moving to larger coupling values, with a sup-
pression of the total CDM power that can reach a level of about 40−50% already at k ∼ 2h/Mpc.
The plateau in the ratio of the total CDM power spectrum over the ΛCDM expectation that appears
in the plots for β ≥ 1 at small scales, leaving a maximum in the power spectrum suppression at
intermediate scales, can be explained in terms of the progressive fragmentation – starting from the
smallest scales that are the first to grow nonlinear – of collapsed object made of a mixture of the
two CDM particle types into smaller objects composed primarily by one single particle species.
Such fragmentation is triggered by local deviations from perfect spherical symmetry that makes
the repulsive fifth-force between opposite types of CDM particles to pull them apart (see [16] for a
more detailed discussion on the fragmentation process in McDE).

4. Conclusions

In the present paper, I have presented a general overview of a new class of cosmological sce-
narios characterised by the interaction of a Dark Energy scalar field with two different species of
Cold Dark Matter particles, through individual couplings with equal absolute value but opposite
sign. This determines the existence of both attractive and repulsive fifth-forces between CDM par-
ticles, which have a very significant impact on the evolution of structure formation processes. Such
particular model that has been recently proposed in the literature and termed the "Multi-coupled
Dark Energy" scenario, does not require additional free parameters with respect to standard coupled
Quintessence models, but has the additional appealing feature of providing a dynamical screen-
ing of the coupling during matter domination, thanks to the presence of a stable attractor of the
background dynamical system characterised by a vanishing effective coupling. As a consequence
of this particular behaviour, Multi-coupled Dark Energy models allow for much larger values of
the interaction strength as compared to standard coupled Quintessence models, for which present
bounds constrain the coupling parameter to β . 0.1. For Multi-coupled Dark Energy models, in-
stead, coupling values as large as β = 10 appear almost indistinguishable from the standard ΛCDM
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Figure 4: The upper plot of each panel shows the power spectrum of the different CDM species P+(k) and
P−(k) and of the total CDM component PCDM(k), plotted as red, black, and blue solid lines, respectively,
and the matter power spectrum of the standard ΛCDM cosmology as a green dashed line, all at z = 0. The
bottom plots show in red the ratio of the power spectra of the two different CDM components P−(k)/P+(k)
and in blue the ratio of the total CDM power spectrum to the ΛCDM reference case, PCDM/PΛ.
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background evolution, as the coupling becomes active only at the onset of Dark Energy domination.

The analysis of the evolution of linear density perturbations in Multi-coupled Dark Energy
scenarios, shows that such effective screening that suppresses the coupling at the background level
is to some extent broken for linear perturbations, due to the instability associated to the repulsive
fifth-force experienced by density perturbations in the two different CDM species. Such instability
becomes apparent in a timescale shorter than the Hubble time only for relatively large values of
the coupling β , but nevertheless allows to significantly restrict the viable range of parameters to
coupling values β . 1.5, thereby providing a much stronger constraining power as compared to the
background evolution. Nonetheless, couplings of order unity, corresponding to a fifth-force with
the same strength of standard gravity, still appear completely indistinguishable from the ΛCDM
predictions even at the level of linear density perturbations.

The next step in the investigation of Multi-coupled Dark Energy models is then clearly the
exploration of the nonlinear regime of structure formation, where the direct effects of attractive and
repulsive fifth-forces with a strength comparable to ordinary gravity are expected to have a signif-
icant impact. Such analysis, however, requires to adapt standard cosmological N-body algorithms
by including all the additional physical effects associated with the Dark Energy interaction and with
the existence of two distinct Cold Dark Matter species. This is allowed by the code C-GADGET that
was originally developed for standard Coupled Quintessence models and that can be easily applied
also to the case of Multi-coupled Dark Energy scenarios. By using such code, it has been possible to
test the evolution of nonlinear structures in the context of six different Multi-coupled Dark Energy
cosmologies with couplings ranging from β = 0 to β = 3/2, and to highlight the most prominent
features arising in the different models. Interestingly, this analysis has shown that coupling values
as large as β =

√
3/2 still have a very little impact on the large-scale shape of cosmic structures,

and on the total Cold Dar Matter power spectrum, even though a slight suppression of power starts
to appear at the smallest scales (k & 1h/Mpc). This is associated with ongoing processes of halo
fragmentation that occur as a consequence of the repulsive fifth-force. For larger values of the cou-
pling, the effect of the interaction on both the large-scale distribution of structures and the resulting
matter power spectrum becomes more prominent and might possibly allow a direct constraint on
the model using galaxy correlation functions or weak lensing observables. In particular, already
a coupling of order unity, that was found to be completely indistinguishable from the uncoupled
case at the background and linear perturbations level, shows a significative suppression (of about a
factor 2) of the total Cold Dark Matter power at nonlinear scales, whereas the simulations results
confirm the negligible impact at linear scales already found through a linear perturbations analysis.

To conclude, Multi-coupled Dark Energy models have been investigated over a wide range
of possible observational regimes, from their impact on the background expansion history of the
Universe, to the effects on nonlinear structure formation. More detailed studies on the highly non-
linear regime characterising the internal structure of collapsed objects are presently ongoing, and
will be required to further constrain the scenario. However, the analysis carried out so far already
allowed to significantly restrict the viable parameter space of the model, and to highlight possible
characteristic observational footprints for those parameter values that appear still compatible with

12



P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
6
4

Multi-coupled Dark Energy cosmologies Marco Baldi

present observational bounds. As a final result of this investigation, it is interesting to stress that
scalar fifth-forces of gravitational strength in the dark sector do not seem to be ruled out yet under
the not so unlikely assumption of a hidden internal symmetry of the Cold Dark Matter sector.
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