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1. Introduction

“Branes”, i.e. massive objects with a number of worldvolume and transverse directions, play
a crucial role in string theory and M-theory. Historically, the first example of a brane other than
a string was the eleven-dimensional supermembrane [1]. An important class of branes are the
Dirichlet branes or, shortly, D-branes of ten-dimensional superstring theory [2]. These branes are
non-perturbative in the sense that their brane tension scales with the inverse of the string coupling
constant. D-branes played a decisive role in the calculation of the entropy of a certain class of black
holes [3]. Branes also play a central role in the AdS/CFT correspondence [4] and the brane-world
scenario [5].

Much information about branes can be obtained by studying the low-energy approximation
of string theory and/or M-theory which is a supergravity theory. For instance, the mere fact that
eleven-dimensional supergravity contains a 3-form potential is already indicative of the fact that
M-theory contains a membrane since 3-forms naturally couple to membranes. The fact that this
membrane is actually a supermembrane which breaks half of the supersymmetry follows from the
construction of a kappa-symmetric supermembrane action [1]. Kappa symmetry requires that the
worldvolume action describing the dynamics of the brane contains a Nambu-Goto and a Wess-
Zumino (WZ) term. The latter describes the coupling of the brane to the potentials of supergravity.
A classification of branes therefore necessarily involves a classification of the supergravity poten-
tials.

Due to their different nature it is important to distinguish between branes with more than 2
transverse directions and branes with 2 or less transverse directions. The half-supersymmetric
branes with more than 2 transverse directions have been classified a long time ago. We will refer
to them collectively as the “standard” branes. The classification of the remaining branes is more
subtle and has only recently been obtained [6, 7, 8]. We will refer to them as the “non-standard”
branes. We call the ones with 2, 1 and 0 transverse directions “defect-branes”, “domain-walls” and
“space-filling branes”, respectively. To summarize:

standard branes : more than 2 transverse directions ,

non-standard branes : 2,1 or 0 transverse directions .

One difference between the standard and non-standard branes is that the non-standard ones
are not asymptotically flat. Furthermore, they are only well-defined if one considers multiple brane
configurations together with an orientifold. For our purposes it will be enough to consider single
brane configurations. Another difference is that the standard branes couple, via the WZ term, to
potentials that describe continuous degrees of freedom. For the non-standard branes this is only
the case for the defect branes which couple to the dual of the supergravity scalars. Even this case
is different form the standard brane case in the sense that the number of dual potentials that fit
into a U-duality representation is not equal to the number of physical scalars. From the higher-
dimensional point of view the origin of this mismatch is the fact that some of the scalars originate
from the higher-dimensional metric for which no dual metric can be defined. The potentials that
couple to domain walls can be viewed as dual to a discrete degree of freedom such as a mass
parameter or a gauge coupling constant. The space-filling branes are a bit special since they couple
to potentials that do not describe any degree of freedom at all.
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To verify whether a given potential couples to a half-supersymmetric brane or not we re-
quire that a gauge-invariant WZ term can be constructed. This often requires that, besides the
embedding scalars, more world-volume potentials are introduced that transform under (some of)
the gauge transformations of the supergravity potentials with non-trivial shifts. In this way gauge-
invariance of the WZ term can always be achieved but it is not clear whether the newly introduced
worldvolume potentials together with the embedding scalars fit into a worldvolume supermultiplet.
This so-called “WZ-term requirement” imposes restrictions on the number of half-supersymmetric
branes. Using the WZ-term requirement we have found that there is another difference between the
standard and non-standard branes. Whereas for standard branes every supergravity potential (and
its dual) couples to a half-supersymmetric brane, for the non-standard ones we find that there are
less half-supersymmetric branes than there are potentials:

# half-susy standard branes = # potentials ,

# half-susy non-standard branes < # potentials .

In the next section we will discuss in more detail the relation between branes and the WZ
terms. We will review a so-called “light-cone rule” which provides a simple way, by using a light-
cone basis for the T-duality indices, to specify which potentials couple to a half-supersymmetric
brane and which do not. In section 3 we will show that the light-cone rule has a simple group-
theoretical interpretation in terms of a “longest-weight rule” which states that the number of half-
supersymmetric branes is equal to the number of longest weights of the T-duality representation
to which the potentials in question belong. Having classified the half-supersymmetric branes of
maximal supergravity it is natural to ask how the branes in different dimensions are related to
each other via dimensional reduction. In section 4 we will show that reducing the branes of ten-
dimensional string theory one obtains the half-supersymmetric branes in lower dimensions we just
classified provided we impose simple wrapping rules for these branes. In the conclusions, see
section 5, we will discuss the origin and interpretation of these wrapping rules.

2. Branes and Wess-Zumino terms

It is instructive to first consider the branes of Type IIB string theory. These branes can be
analysed by looking at the field content of the low-energy IIB supergravity effective action. This
includes not only the propagating fields and their magnetic duals - an SL(2,R) doublet of 2-forms,
corresponding to the F1 fundamental string and the D1-brane, the magnetic dual 6-forms, corre-
sponding to the D5-brane and the NS5-brane, and a selfdual 4-form, corresponding to the D3-
branes - but also forms of higher rank. These forms can be obtained by imposing the closure of
the supersymmetry algebra, and they are a triplet of 8-forms and a quadruplet of 10-forms [9]. In
[10] the half-supersymmetric branes associated to these latter fields were derived by looking at the
corresponding brane effective action. The result of this analysis is that only two components of
the triplet of 8-forms and only two components of the quadruplet of 10-forms are associated to
half-supersymmetric branes. A simple explanation of this result can be given by looking at the WZ
term in the effective action. Denoting with A8,αβ the triplet of 8-forms (α,β = 1,2 are SL(2,R)
doublet indices), gauge invariance implies that such a term must be of the form

T αβ [A8,αβ +A6,(αF2,β )+ ...] , (2.1)
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where T αβ is the 7-brane charge, A6,α are the doublet of 6-forms and F2,α = da1,α +A2,α are a
doublet of world-volume 2-form field-strengths (a1,α are a doublet of world-volume vectors and
A2,α are the 2-forms). In order for the effective action to preserve one-half of the supersymmetries,
we must impose that the world-volume fields fit in an 8-dimensional 16-supercharge multiplet, that
is a vector multiplet (one vector and two scalars). The two scalars are the transverse scalars, while
the request that eq. (2.1) contains only one world-volume vector imposes that the charge must be
either T 11 or T 22 (the third component T 12 would result in a WZ term containing both components
of the doublet of world-volume vectors). The same analysis leads to two 9-branes in the quadruplet
of 10-forms. The main lesson of this analysis is that in the IIB theory the number of standard branes
is the same as the number of corresponding potentials, while the number of non-standard branes is
less than the number of components of the corresponding potentials.

We now move to consider maximally supersymmetric theories in any dimension. A full classi-
fication of the potentials of these theories for all dimensions was given in [11, 12] making use of the
properties of the very extended Kac-Moody algebra E11 [13]. Starting from this result, the study of
the half-supersymmetric branes as components of the U-duality representations of the correspond-
ing potentials, based on the analysis of the WZ terms was initiated in [14]. This analysis, completed
in [6, 8], shows that as in ten dimensions the number of half-supersymmetric non-standard branes
is less than the dimension of the corresponding U-duality representations. Here we are interested
in the analogous analysis in terms of representations of the T-duality group. Denoting with E11−D

the U-duality group in D dimensions, one has

E11−D ⊃ SO(10−D,10−D)×R+ , (2.2)

where SO(10−D,10−D) is the T-duality group, that will be denoted from now on as SO(d,d),
with d = 10−D. Decomposing the U-duality representations under T-duality allows to classify
the branes according to the way their tension T scales with respect to the D-dimensional string
coupling,

T ∼ gα
s , (2.3)

where α is related to the R+ weight. The value of α is always non-positive, and α = 0 corresponds
to the fundamental branes, while the other branes, with α < 0, are non-perturbative objects in string
theory.

It turns out that the classification of the potentials associated to branes as representations of
SO(d,d) is universal for α > −4. The fields with α = 0 are a 1-form B1,A in the vector represen-
tation of SO(d,d) and a 2-form singlet B2. The RR fields, with α = −1, belong to spinor repre-
sentations with alternalting chirality, and we denote them with C2n+1,a and C2n,ȧ. The fields with
α = −2 are DD−4, DD−3,A, DD−2,A1A2 , DD−1,A1A3A4 and DD,A1A2A3A4 , where sets of indices A1...An

are always meant to be antisymmetrised. Finally, the fields with α = −3 are ED−2,ȧ, ED−1,Aȧ and
ED,A1A2ȧ, in irreducible tensor-spinor representations.

In [15] the α =−2, i.e. solitonic branes were classified by looking at the world-volume field
content of the WZ terms. The outcome of that analysis is that the components of the T-duality
representations of the α =−2 potentials that correspond to branes are obtained from the following
“light-cone rule”:
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We introduce light-like indices i±, i = 1, ...,d for SO(d,d). The α =−2 fields are then denoted as
DD−4+n,i1±...in±, with n = 0,1, ...,4. The components associated to half-supersymmetric branes are
those for which the i’s are all different. The number of (D−5+n)-branes is therefore(

d
n

)
×2n , (2.4)

which is smaller than the dimension of the representation, which is
(2d

n

)
.

As can be deduced from eq. (2.4), there are no solitonic branes with world-volume dimension
higher than 6, because they correspond to fields with n > d, for which eq. (2.4) clearly gives a
vanishing result. The case n = d, which can only occur in D ≥ 6 and always corresponds to a
5-brane, is special because the T-duality representation with d antisymmetric indices of SO(d,d)
splits into a selfdual and an anti-selfdual part. Correspondingly, the 2d branes that come from
eq. (2.4) split into 2d−1 branes supporting a vector multiplet and 2d−1 branes supporting a tensor
multiplet. In all the other cases the branes support a world-volume vector multiplet.

A similar analysis was applied in [16] for the α = −3 branes. In this case, as we already
mentioned, the fields belong to tensor-spinor representations. The number of branes within each
representation is obtained supplementing the light-cone rule above with the following rule:

For each lightlike vector index, half of the spinor components are projected out. For the D−2-form
potential ED−2,ȧ, one has

(D−3)−branes : 2d−1 , (2.5)

which is equal to the dimension of the corresponding representation. For the D−1-form potential
ED−1,i±ȧ, one obtains

(D−2)−branes : 2d ×2d−2 , (2.6)

which is less than the dimension of the representation, (2d−1)×2d−1. Finally, the D-form poten-
tials ED,i1±i2±ȧ lead to

(D−1)−branes :
(

d
2

)
×4×2d−3 , (2.7)

which is less than the dimension of the representation, d(2d −3)×2d−1.

The peculiarity of the branes with α > −4 is that for each T-duality representation there is
always at least one brane that comes from torus dimensional reduction from the 10-dimensional
branes (either wrapped or unwrapped along some of the internal directions). There is also an
α = −4 brane in Type IIB string theory, namely the S-dual of the D9-brane. In D dimensions,
this brane wraps along the T d internal torus to give a spacefilling (D− 1)-brane. The potential
associated to this brane is the field F+

D,A1...Ad
in the selfdual representation of T-duality with d

antisymmetric indices. According to the light-cone rule, the number of branes associated to this
potential is given by eq. (2.4) with n = d, divided by two because of the selfduality condition. This
gives 2d−1 branes, which is clearly less than the dimension of the representation, 1

2

(2d
d

)
.

Starting from D = 7, there are also half-supersymmetric branes with α ≤ −4 that belong to
T-duality representations that do not contain any brane coming from 10 dimensions. These branes
will not be discussed here, but their number was obtained by the WZ term analysis in [6, 8].
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Before we proceed, it is important to mention that all the results discussed so far have been also
obtained in [7] using a different method, namely by counting the real roots of the E11 Kac-Moody
algebra. In the next section we will show that the light-cone rule discussed above can be replaced
by an alternative group-theoretical rule, which we will denominate the “longest-weight rule”. This
new rule also reveals why the WZ requirement and the E11 method give the same result.

3. Branes and weights

The counting of branes that results from the analysis of the WZ terms in [6, 8] has a simple
group-theoretical explanation: the components of the U-duality representations of the potentials
that correspond to half-supersymmetric branes are those associated to the longest weights [17]. The
potentials corresponding to standard branes belong to representations whose weights have all the
same length, and this explains why in that case the number of half-supersymmetric branes coincides
with the dimension of the representation. On the other hand, the potentials corresponding to non-
standard branes belong to representations whose weights have different lengths, and therefore in
this case the number of branes is less than the dimension of the representation. As an example
one can consider the defect branes, associated to the (D−2)-form potentials, which belong to the
adjoint representation. The number of such branes is equal to the dimension of the group minus the
rank [18], which is the number of roots. Given that the symmetry groups of maximal supergravities
are always simply laced, which means that all the roots have the same length, this implies that the
roots are the longest weights of the adjoint (the other weights being the Cartan, which have zero
length). The longest weights of the U-duality representation precisely correspond to the real roots
of E11, and therefore the observation that the branes correspond to the longest weights explains
why the WZ analysis of [6, 8] and the E11 analysis of [7] give the same result.

We now want to give a characterisation of the length of the various weights within a repre-
sentation in terms of the so-called “dominant weights”. An irreducible representation is denoted in
terms of the Dynkin labels of the highest weight. We recall that a weight is defined as the eigen-
value of the Cartan generators in a given representation, and the corresponding eigenvector is called
a weight vector. A highest-weight vector is a weight vector annihilated by all the positive-root gen-
erators, and the non-zero (i.e. positive) Dynkin labels identify the negative-root generators that do
not annihilate the highest-weight vector. As an example we can consider the group SL(3,R), with
simple roots α1 and α2. We first consider the fundamental representation, which is the 3, whose
Dynkin labels of the highest weight W 3 are 1 0 . From this we read the weight W 3 −α1, with
Dynkin labels −1 1 . The lowest weight of the representation is W 3−α1−α2, with Dynkin labels
0 −1 . The reader can see that only the highest weight of the 3 has Dynkin labels that are all

non-negative. In general one defines a dominant weight as a weight whose Dynkin labels are all
non-negative. Clearly a highest weight is a dominant weight, but the opposite is not necessarily
true. As we have seen, the 3 of SL(3,R) has only one dominant weight, which is the highest
weight. However, this is no longer the case if we consider instead the symmetric product 3⊗S 3,
which is the 6. This representation has highest weight 2 0 , but it also contains the weight 0 1 ,
which is a dominant weight.

In general, each dominant weight in a representation identifies a set of weights which all have
the same length as that dominant weight. We can consider again SL(3,R) as an example. In the
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case of the 3, all the weights have the same length, which is the length of the highest weight. In
the case of the 6 instead, there are three long weights, one of them being the highest weight 2 0 ,
and three short weights, one of them being the second dominant weight 0 −1 . This implies that
the standard branes are associated to potentials belonging to representations that have only one
dominant weight (which is the highest weight) while the non-standard branes are associated to
potentials that are in representations with more than one dominant weight, and one can count for
each representation the number of weights with the same length as each dominant weight. This
was done in [17] for the U-duality representations associated to all the non-standard branes in any
dimension. Here we want to apply the same analysis of [17] to the representations of the T-duality
group SO(d,d) that are associated to branes. We will show that the longest-weight rule of [17] is
the same as the light-cone rule reviewed in the previous section.

We first review what are the Dynkin labels of the highest weights of the representations of
SO(d,d) that are relevant for our discussion. We are assuming that we are labelling the nodes of
the Dynkin diagram of SO(d,d) in the standard way, with the last two nodes (node d −1 and node
d) corresponding to the two spinor representations. The highest weight of the vector representation
is 1 0 0 ... 0 0 , while more generally the highest weight of the representation with n antisymmetric
indices (n< d−1) has all zero Dynkin labels apart from the nth label, whose value is 1. The highest
weight of the representation with d −1 antisymmetric indices is 0 0 0 ...0 1 1 , and the ones with
d antisymmetric indices are 0 0 0 ...0 2 0 (selfdual) and 0 0 0 ...0 0 2 (anti-selfdual). The spinor
representations are 0 0 0 ...0 0 1 (chiral, denoted with the index a) and 0 0 0 ...0 1 0 (anti-chiral,
denoted with the index ȧ).

We now discuss the various dominant weights of the T-duality representations associated to
the half-supersymmetric branes discussed in the previous section for the different values of α , see
eq. (2.3). The α = 0, i.e. fundamental, branes correspond to the potentials B1,A (F0-branes) and B2

(F1-brane). The vector representation clearly has only one dominant weight, which is the highest
weight 1 0 0 ... 0 0 . The F0-branes correspond to the lightlike directions B1,i±, and their number
is 2d, which is equal to the dimension of the representation. There always is a single F1-brane (i.e.
the fundamental string) associated to the T-duality singlet B2. The α = −1 branes, i.e. the Dp-
branes, belong to the chiral (p even) and anti-chiral (p odd) representations. These representations
have only one dominant weight (i.e. the highest weight) and therefore the number of branes is equal
to the dimension of the representation, which is 2d−1.

We then consider the α =−2, i.e. solitonic, branes. The discussion for the (D−5)-branes and
the (D−4)-branes is the same as for the fundamental branes, of which they are the magnetic dual.
The (D− 3)-branes correspond to the potentials DD−2,A1A2 . The dimension of the representation
(which is the adjoint of SO(d,d)) is

(2d
2

)
. There are

(d
2

)
×4 long weights (i.e. the roots) associated

to the dominant weight 0 1 0 0 ...0 0 0 , and d weights of zero length (the Cartan) which means that
the dominant weight 0 0 0 ...0 0 0 has multiplicity d. In components, the long weights correspond
to DD−2,i1±i2± with i1 ̸= i2, and the short weights to DD−2,i+i−, and given that i takes d values, this
explains the degeneracy d of the short dominant weight.

The (D−2)-branes are associated to the potential DD−1,A1A2A3 . In the representation of SO(d,d)
with three antisymmetric indices, there are

(d
3

)
× 8 long weights, one of which being the highest

weight 0 0 1 0 ...0 0 0 , corresponding to the components DD−1,i1±i2±i3± with i1, i2 and i3 all differ-
ent. The remaining components are DD−1,i± j+ j−, with i ̸= j. These are associated to the dominant
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weight 1 0 0 0 ...0 0 0 , which has multiplicity (d −1) because there are d −1 possible values for
j once i is fixed. The total number of short weights is 2d(d − 1). Clearly, the sum of the long
weights and the short weights is

(2d
3

)
, which is the dimension of the representation.

The last type of solitonic branes are the (D−1)-branes, corresponding to the potentials DD,A1...A4 .
The representation has

(d
4

)
×16 longest weights, which are of the same length as the highest weight

0 0 0 1 ...0 0 0 . They correspond to the components DD,i1±i2±i3±i4±, with the i’s all different. The
next-to-longest weights correspond to the components of the form DD,i1±i2± j+ j−, with i1, i2 and j
all different. The corresponding dominant weight is 0 1 0 0 ...0 0 0 , and its multiplicity is (d−2)
because these are the possible choices that can be made for j once i1 and i2 are fixed. The total num-
ber of next-to-longest weights is

(d
2

)
×4× (d −2). Finally, the shortest weights correspond to the

components DD,i+i− j+ j−, with i ̸= j. They all correspond to the dominant weight 0 0 0 0 ...0 0 0 ,
with multiplicity

(d
2

)
because these are all the possible choices for i and j. This gives a total of

(d
2

)
shortest weights. The sum of the longest, next-to-longest and shortest weights gives the dimension
of the representation, which is

(2d
4

)
.

The discussion above is valid if D ≤ 5. In D = 6 the spacefilling branes split into tensor
and vector branes, corresponding to the representation with 4 antisymmetric indices of SO(4,4)
splitting into selfdual and anti-selfdual. For each of the two irreducible representations the number
of longest, next-to-longest and shortest weights is simply half of what one would get putting d = 4
in the analysis above. In D = 7 the representation of SO(3,3) with 4 antisymmetric indices is
dualised to the one with two antisymmetric indices. This is consistent with the fact that if one puts
d = 3 in the formulas above for the longest weights of the representation with four antisymmetric
indices one obtains zero, which implies that there are no solitonic spacefilling branes in D = 7.
Similar considerations apply in D = 8 and D = 9.

We now consider the α =−3 fields. The fields ED−2,ȧ are in the anti-chiral spinor representa-
tion, which has only one dominant weight. The weights all have the same length and the number of
branes is 2d−1. The fields ED−1,Aȧ belong to the irreducible “gravitino” representation of dimension
(2d − 1)× 2d−1. The different dominant weights, their degeneracy and the number of weights of
the same length are

1 0 0 0 ...0 1 0 : d ×2d−1 ,

0 0 0 0 ...0 0 1 × (d −1) : (d −1)×2d−1 . (3.1)

The sum of all the weights is clearly equal to the dimension of the representation. The fields
ED,A1A−2ȧ belong to the irreducible tensor-spinor representation of dimension d(2d − 3)× 2d−1,
and the different dominant weights, their degeneracy and the number of weights of the same length
are

0 1 0 0 ...0 1 0 :
(

d
2

)
×2d−1 ,

1 0 0 0 ...0 0 1 × (d −2) : d(d −2)×2d−1 ,

0 0 0 0 ...0 1 0 ×
(

d
2

)
:

(
d
2

)
×2d−1 . (3.2)
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field dim. of repr. dominant weights weights of same length

DD−2,A1A2

(2d
2

)
0 1 0 0 ... 0 0 0

(d
2

)
×4

d × 0 0 0 0 ...0 0 0 d

DD−1,A1A2A3

(2d
3

)
0 0 1 0 ... 0 0 0

(d
3

)
×8

(d −1)× 1 0 0 0 ...0 0 0 2d(d −1)

DD,A1A2A3A4

(2d
4

)
0 0 0 1 ... 0 0 0

(d
4

)
×16

(d −2)× 0 1 0 0 ...0 0 0 (d −2)
(d

2

)
×4(d

2

)
× 0 0 0 0 ...0 0 0

(d
2

)
ED−1,Aȧ (2d −1)2d−1 1 0 0 0 ... 0 1 0 d ×2d−1

(d −1)× 0 0 0 0 ...0 0 1 (d −1)×2d−1

ED,A1A2ȧ d(2d −3)2d−1 0 1 0 0 ... 0 1 0
(d

2

)
×2d−1

(d −2)× 1 0 0 0 ...0 0 1 (d −2)d ×2d−1(d
2

)
× 0 0 0 0 ...0 1 0

(d
2

)
×2d−1

Table 1: This table gives the dominant weights and the number of weights of same length of each dominant
weight for the α = −2 and α = −3 non-standard branes (apart from the α = −3 defect branes whose
analysis is straightforward because the corresponding representation has only one dominant weight). The
highest weights and the number of weights of the same length, which is the number of half-supersymmetric
branes, are painted in red.

For consistency, one can check that the sum of all the weights equals the dimension of the rep-
resentation. The complete result of this analysis for non-standard α = −2 and α = −3 branes is
summarised in Table 1.

To conclude this section, we consider the α =−4 fields F+
D,A1...Ad

. As reviewed in the previous
section, this representation contains the branes that come from the dimensional reduction of the
S-dual of the D9-brane in IIB. The dimension of the representation is 1

2

(2d
d

)
. The longest weights

correspond to the components F+
D,i1±i2±....id±, with the i’s all different. They are associated to the

dominant (highest) weight 0 0 0 0 ...0 2 0 and their number is 1
2 × 2d = 2d−1 (the first factor

1
2 comes from self-duality which implies that there is always an even number of minus signs).
The next-to-longest weights correspond to components in which a pair of indices is of the form
j+ j−, that is F+

D,i1±i2±....id−2± j+ j− with the i’s and j all different. This corresponds to the dominant

weight 0 0 0 0 ....1 0 0 with degeneracy 1 because there are two possible choices for j once all
the i’s are fixed, and a factor 1

2 because of self-duality. This gives in total
( d

d−2

)
× 2d−2 weights.

Iterating this procedure, the kth-to-longest weights correspond to components in which k pairs
of indices are of the form jm + jm− with m = 1, ...,k (and clearly j’s all different). The fields
are F+

D,i1±i2±...id−2k± j1+ j1−... jk+ jk−. The dominant weight has Dynkin labels all zero apart from 1
corresponding to the node d − 2k, and its degeneracy is 1

2

(2k
k

)
where the factor 1

2 is due to self-
duality and the combinatorial factor is due to the fact that the number of j indices is equal to k
and there are 2k possible choices once the i indices are fixed. The number of such weights is

9
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1
2

(2k
k

)( d
d−2k

)
× 2d−2k. The shortest weights correspond to [d/2] pairs of the form j + j−, with

dominant weight 0 0 0 0 ... 0 0 0 (d even) or 1 0 0 0 ... 0 0 0 (d odd) of multiplicity 1
2

(2[d/2]
[d/2]

)
.

The number of shortest weights is 1
2

(2[d/2]
[d/2]

)
2d−2[d/2]

( d
d−2[d/2]

)
. Summing all the weights, one arrives

at the formula
1
2

(
2d
d

)
=

1
2

[d/2]

∑
k=0

2d−2k
(

2k
k

)(
d

d −2k

)
. (3.3)

In this expression, the sum on the right-hand side is over each set of weights of the same length. The
first term (k = 0) corresponds to the longest weights, the k = 1 term counts all the next-to-longest
weights and so on.

4. Wrapping rules

Now that we know the numbers of half-supersymmetric branes, resulting from either the light-
cone rule or the longest-weight rule, it is natural to ask oneself how all the branes in different
dimensions are related to each other via dimensional reduction, if that can be done at all. Since the
scaling of the brane tension T with respect to the D-dimensional dilaton gs does not change under
dimensional reduction it is natural to consider the reduction of branes whose tension has a given
scaling. We are interested in studying the dimensional reduction of the ten-dimensional branes,
whose tension scales like gα

s with α = 0,−1,−2,−3,−4. This means that in any dimension we are
interested in the branes with these values of α . Explicitly, we refer to these branes as:

TF ∼ 1 : Fundamental branes ,

TD ∼ 1/gs : Dirichlet branes (D-branes) ,

TS ∼ 1/g2
s : Solitonic branes , (4.1)

TE ∼ 1/g3
s : Exotic branes ,

TSF ∼ 1/g4
s : Space-filling α =−4 branes .

Note that this distinction of branes with different dilaton scaling is different from the distinction
between standard and non-standard branes. For instance, one has both standard as well as non-
standard D-branes.

If a brane saw a standard geometry we would expect that upon dimensional reduction it would
always lead to two different branes. Either one reduces along a transverse direction or along a
worldvolume direction. The latter case corresponds to the wrapping of the brane, which leads to
a brane with a reduced world-volume direction. We summarize this by saying that the “wrapping
rules” corresponding to standard geometry are given by

any brane

{
wrapped → undoubled ,
unwrapped → undoubled .

(4.2)

The use of the word ‘undoubled’ stresses the fact that in both cases, wrapped or un-wrapped, only
a single brane is obtained. Giving these wrapping rules and given the branes of ten-dimensional
string theory with a given scaling α it is non-trivial that we precisely obtain the number of half-
supersymmetric brane we obtained in our earlier brane classification. Indeed, it turns out that this
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only happens in the case of D-branes. Given the D-branes of Type IIA or IIB string theory and
applying the wrapping rules (4.2) one precisely obtains the lower-dimensional D-branes which
organize themselves into spinor representations of the T-duality group.

The same strategy does not work for the fundamental branes. As we saw earlier, in each di-
mension we have a singlet fundamental string and fundamental 0-branes that form the components
of a vector representation of the T-duality group SO(d,d). This means that we need for each com-
pactified direction two fundamental 0-branes. Clearly only one of these two branes can come from
a wrapped fundamental string. We need another source to explain the occurrence of the second
0-brane. This is provided by the T-dual of the fundamental string, which is a pp-wave which upon
reduction gives rise to the second 0-brane. The extra contribution due to the pp-waves gives rise to
the following effective wrapping rules for the fundamental branes:

TF ∼ 1 :

{
wrapped → doubled ,
unwrapped → undoubled .

(4.3)

These wrapping rules remind the ‘doubled geometry’ proposal of [19] where each compactified
direction is doubled with a T-dual direction. Note that the doubled geometry proposal is based on
a perturbative symmetry and therefore only applies to the fundamental branes and not necessarily
to the other type of branes. Indeed, as we saw above, the D-branes have their own wrapping rules
(4.2) corresponding to standard geometry.

Things get more interesting when we consider the solitonic branes. Again we find that the
wrapping rules (4.2) corresponding to standard geometry do not lead to the right number of half-
supersymmetric solitonic branes in lower dimensions. In this case, however, the extra input comes
from the Kaluza-Klein (KK) monopoles. In each dimension D ≥ 5 there is a KK monopole which
can be considered as the dual of the pp-wave. The KK monopole divides spacetime into three
different directions:

KK monopole :


p+1 worldvolume directions ,
1 isometry direction ,
3 transverse directions .

(4.4)

A brane in lower dimensions is obtained by reducing over the single isometry direction. In each
dimension we have a singlet solitonic (D−5)-brane which is dual to the fundamental string. This
singlet follows from the worldvolume reduction of the ten-dimensional NS5-brane. We also have
solitonic (D−4)-branes which transform as a vector of the T-duality group. This implies that for
each compactified direction we need two (D−4)-branes. Consider, for instance, the doublet of soli-
tonic 5-branes in 9D. The first 5-brane follows from a transverse reduction of the ten-dimensional
NS5-brane. To obtain the second 5-brane we need the help from the 10D KK-monopole. Indeed,
the ten-dimensional KK monopole has 6 worldvolume, 1 isometry and 3 transverse directions.
Reducing over the isometry direction leads to the second 5-brane. We thus obtain the following
effective wrapping rules for solitonic branes [20]:

TS ∼ 1/g2
s :

{
wrapped → undoubled ,
unwrapped → doubled .

(4.5)
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These rules can be viewed as dual to the fundamental wrapping rules (4.3).
An issue arises if we now also consider the non-standard solitonic (D− 3)-, (D− 2)- and

(D−1)-branes which transform according to anti-symmetric tensor representations of the T-duality
group, see Table 1. The precise number of such branes, which is given by the red entries in the last
column, first three rows of Table 1, is reproduced if we apply the solitonic wrapping rules (4.5) also
for these cases [20]. However, the KK monopole, upon reduction over the isometry directions, only
gives rise to a standard brane with three transverse directions. We need to introduce something new
to explain the numbers of the non-standard solitonic branes. One possibility is that one introduces
‘generalized’ KK monopoles which have less than three transverse directions. Such monopoles
have already been considered a long time ago using T-duality arguments [21]. At the moment
it is not clear how rigorously such generalized objects can be defined within string theory. Note
that such objects, if they exist at all, seem to couple to mixed-symmetry tensors instead of p-form
potentials. The possibility of including such mixed-symmetry tensors into a supergravity multiplet
is as yet unknown. Another attitude is to say that the solitonic branes ‘see’ a different so-called
‘dual doubled geometry’ which is different from the ‘doubled’ geometry sensed by the fundamental
branes or the standard geometry as viewed by the D-branes. In some sense, the generalized KK-
monopoles represent information about this dual doubled geometry.

The pattern that arises is that each type of brane, depending on the scaling of the brane tension
with the string coupling constant, sees a different geometry. For instance, the ten-dimensional Type
IIB string theory has only one brane with a tension that scales with T ∼ 1/g3

s . This is the S-dual of
the D7-brane. Clearly, this type of brane is highly non-perturbative and therefore difficult to study
with the usual string theory techniques that one can use for the Dirichlet branes. Nevertheless, IIB
supergravity suggests that this type of ‘exotic’ branes do exist. We find that, in order to explain the
number of ‘exotic’ α =−3 branes in lower dimensions that follows from our classification (see the
red entries in the last column, forth and fifth row of Table 1) we need to impose the following new
wrapping rule:

TE ∼ 1/g3
s :

{
wrapped → doubled ,
unwrapped → doubled .

(4.6)

We call the new geometry defined by these wrapping rules ‘exotic geometry’. Like in the previous
cases the realization of this wrapping rule requires the input of new objects. How to precisely define
these new objects within string theory is not clear but one could think about them as ’generalized’
KK monopoles with less than three transverse and/or more than one isometry direction.

The only other type of brane that exists within ten-dimensional string theory is a space-filling
brane whose tension scales as T ∼ 1/g4

s . It is the S-dual of the D9-brane. Space-filling branes are a
bit special in the sense that they can only wrap to give a space-filling brane in lower dimensions. As
we reviewed in the previous sections, the field that contains the (D−1)-brane that comes from the
wrapping of this brane is the D-form F+

D,A1...Ad
, and from the light-cone rule (or the longest-weight

rule) one obtains 2d−1 branes in D dimensions. To explain this number from the wrapping of the
S-dual D9-brane we need to impose the following wrapping rule:

TSF ∼ 1/g4
s : wrapped → doubled . (4.7)
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Since these branes can only wrap, one cannot tell whether they see a doubled geometry or an exotic
geometry.

Based upon the above wrapping rules we conclude that the different branes of ten-dimensional
string theory see the following kind of geometries:

fundamental branes : doubled geometry

Dirichlet branes : standard geometry

solitonic branes : dual doubled geometry

exotic branes : exotic geometry .

This is not yet the end of the story. Starting from D = 7, there are additional α = −4 branes
apart from those associated to the potential F+

D,A1...Ad
. More generally, maximal supergravity in

lower dimensions suggests the existence of branes with α < −4. Clearly, all such branes can
never result from the reduction of any brane in ten dimensions. They should either follow from
the reduction of new objects within string theory or result as the effect of a new kind of geometry.
Clearly, the last word has not been said on this issue.

5. Conclusions

We have classified the half-supersymmetric branes of maximal supergravity by investigating
the worldvolume WZ term that describes the coupling of the supergravity potentials to these branes.
By requiring that a gauge-invariant WZ term could be constructed involving only worldvolume
fields that fit into a half-maximally supersymmetric matter multiplet we were able to classify the
branes. The worldvolume content of these branes is either a vector multiplet or a 6-dimensional
(self-dual) tensor multiplet. We call such branes vector branes and tensor 5-branes, respectively.
Note that for branes with a low-dimensional world-volume, such as membranes and strings, the
vector multiplet becomes equivalent to a scalar multiplet. 1 The dynamics of vector branes is gov-
erned by a Dirac-Born-Infeld/Volkov-Akulov (DBI-VA) action. Such vector branes have recently
been considered in discussions on the quantum properties of 4D supergravity theories [22].

The investigation of the WZ term led to two simple, equivalent, rules that specify the number
of half-supersymmetric branes. The first, so-called ‘light-cone rule’, is based on decomposing the
SO(d,d) indices into its light-cone directions. The second, so-called ‘longest-weight rule’, states
that the light-cone rule is equivalent to the group-theoretical rule that the half-supersymmetric
branes correspond to the longest weights of the T-duality representation in which the supergravity
potentials transform. We have not commented on the role of the next-to-longest weights etc. They
are related to bound states of half-supersymmetric branes. These states, unlike bound states of
standard branes, can be 1/2-supersymmetric threshold bound states [23, 17].

Having classified the branes we went on to investigate the way in which the branes in different
dimensions are related to each other by dimensional reduction. This led us to consider the introduc-
tion of several wrapping rules, one set of rules for each brane with a given brane tension scaling α
for α = 0,−1,−2,−3,−4. These wrapping rules can be found in eqs. (4.3), (4.2), (4.5), (4.6) and

1In 3D a vector is dual to a scalar, whereas in 2D a vector is equivalent to an integration constant.
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(4.7), respectively. In some cases, the origin of the doubling in the wrapping rules is understood.
They come from pp-waves and KK monopoles that upon reduction give rise to additional branes.
But this is not enough. In order to explain the doubling in all cases something new is needed. Here
there are two different points of view. Either one introduces new objects in string theory. We called
them ‘generalized KK monopoles’ but the precise status of these monopoles in string theory is not
clear. They seem to be related to the issue whether mixed-symmetry tensors can be introduced in
supergravity. Another point of view is to say that the extra branes result from a new geometry that
is described by the brane wrapping rules. This is more in line with the doubled geometry proposal
that can be used to explain the wrapping rules of the fundamental branes.

We did not discuss several other interesting brane properties that follow from our methods.
For instance, our techniques allow to determine the BPS conditions of the branes and their relation
to the central charges in the supersymmetry algebra 2. Again, we find here an important distinction
between the standard and non-standard branes. Whereas for the standard branes each brane has its
own BPS condition, in the case of non-standard branes the same BPS condition can be satisfied by
several branes. We have calculated the degeneracies of each BPS condition [17]. Apart from this,
one may also study brane orbits and multi-charge configurations [8, 17] 3.

It remains to be seen what the precise role is of the non-standard branes we discussed. Re-
cently, is has been argued that in particular the defect branes play a role in describing the micro-
scopic degrees of freedom of black holes [28] and that they are related to non-geometric Q-fluxes
[29].

Our methods may be generalized and applied to study the half-supersymmetric branes of
supergravities with less supersymmetry. The branes of half-supersymmetric supergravity have
already been studied [27]. We hope to report on the half-supersymmetric branes of a quarter-
supersymmetric supergravity shortly [30].

Finally, we hope that all this new information on branes will lead to a better understanding of
their role in string theory and, most importantly, of the geometry underlying string theory.
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