
P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
0
1

One-loop Amplitudes as BPS state sums

Ioannis Florakis∗†
Max-Planck-Institut für Physik
Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München, Germany
E-mail: florakis@mppmu.mpg.de

We review a novel method for evaluating one-loop BPS-saturated amplitudes in string theory.
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lattice, which are only valid in certain regions of the moduli space and which obscure the T-
duality invariance of the result, we will describe how the elliptic genus can be represented as
a linear combination of certain absolutely convergent Poincaré series, against which F can be
unfolded. The result can be expressed as a sum of one-loop contributions of perturbative BPS-
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1. Introduction

The problem of calculating scattering amplitudes in string theory lies at the core of any attempt
to make contact with low-energy phenomenology. Indeed, string phenomenology has been marked
with impressive progress during the last two decades and several semi-realistic models have been
constructed which, at tree-level, provide viable candidates for the description of supersymmetric
extensions of the Standard Model, including particle content and interactions. To this end, the need
for incorporating loop corrections to gauge and gravitational couplings in the effective action is
inherently linked with any attempt to make further contact with experimental data. Furthermore,
and regardless of the possible direct applications to low-energy phenomenology, the development
of a powerful framework for the study of stringy corrections to effective couplings acquires a theo-
retical importance on its own especially since, in the presence of sufficient supersymmetry, several
BPS-saturated couplings are protected against higher perturbative or even non-perturbative correc-
tions and provide useful laboratories in which to test string dualities (see e.g.[1] and references
therein).

In closed (oriented) string perturbation theory, one is typically dealing with a topological
(Polyakov) expansion over closed, genus-g Riemann surfaces, which we schematically write as:

∞

∑
g=0

g2(g−1)
s

∫
moduli

∫
vertex operator
insertions–zi

∫
DX Dψ . . .Vi(zi) . . . e−S[X ,ψ,gab,...] , (1.1)

where gs is the string coupling and S[X ,ψ,gab, . . .] is the worldsheet action. After appropriately
gauge-fixing the diffeomorphism and Weyl gauge symmetries and performing the path integral
over the various worldsheet fields X ,ψ , one is instructed to integrate over the worldsheet positions
zi of the various vertex operator insertions Vi(zi) and, eventually, integrate over the moduli space of
the Riemann surface with an appropriate measure. We will focus entirely on one-loop amplitudes
(g = 1), for which the latter is an integral over the complex structure τ ∈H of the worldsheet
torus, of the generic form: ∫

F

dµ A (τ, τ̄) . (1.2)

The Teichmüller parameter τ is initially defined over the upper half-plane H , before gauging
the residual discrete group PSL(2;Z) of large diffeomorphisms, also known as the modular group,
restricts integration down to its fundamental domain under the modular group, F =H /PSL(2;Z).
The SL(2;R)-invariant measure will, henceforth, be denoted by dµ ≡ d2τ/τ2

2 . The function A (τ, τ̄),
obtained after performing the path integral and integration over the positions of the insertions Vi,
is, by consistency, modular invariant.

The techniques that we will review in this note concern precisely the evaluation of genus-
1 modular integrals of the form (1.2), for certain classes of the integrand functions A , which
appear naturally in string theory. Contrary to the traditional ‘orbit method’ used in the literature
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], the new methods we present [14, 15] manifestly preserve the T-
duality symmetries of the theory, provide a natural modular invariant IR regularization and clearly
exhibit the singularity structure of the associated amplitudes, without depending on the region in
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moduli space around which one is unfolding. There are four major cases of interest, of increasing
difficulty, depending on the holomorphicity of A :

Case A Type
I Φ(τ) holomorphic function of τ

II Γ(d,d)(τ, τ̄) Narain lattice
III Γ(d+k,d)(τ, τ̄)Φ(τ) lattice with Wilson lines times elliptic genus Φ

IV Z (τ, τ̄) manifestly non-holomorphic function

Case I involves a holomorphic modular invariant function of τ and can be treated in a straightfor-
ward fashion using Stokes’ theorem [16], in addition to the new methods we will review here. Case
II involves the integral of a d-dimensional lattice and can be considered a special case of III, where
an asymmetric1 lattice is multiplied together with an holomorphic function Φ(τ) of modular weight
w =−k/2, known as the (modified) elliptic genus. Case III is the generic form of special classes of
N = 2 amplitudes, known as BPS-saturated couplings. Due to the presence of extended N = 2
supersymmetry, which is responsible for the factorization of A into a lattice Γ(d+k,d) times the
elliptic genus Φ(τ), perturbative corrections to these couplings may terminate at 1-loop. Typical
examples are the N = 2 gauge and gravitational threshold corrections (cf. [12, 13]) in Heterotic
string theory compactified on K3×T 2:

∆G =−i
∫
F

dµ

[
τ2

2η2 Tr
{

J0 eiπJ0 qL0− c
24 q̄L̄0− ĉ

24

(
Q2− 1

4πτ2

)}
−bG τ2

]
,

∆grav =−i
∫
F

dµ

[
τ2

2η2 Tr
{

J0 eiπJ0 qL0− c
24 q̄L̄0− ĉ

24

}
Ê2

12
−bgrav τ2

]
,

(1.3)

where the traces run over the internal (9,22) superconformal (SCFT) theory, with the right-movers2

set to their Ramond ground state and J0 is the U(1) generator of the internal N = 2 SCFT. The
trace in the second line is identified with the modified elliptic genus times the T 2-lattice and Q
denotes one of the Cartan generators of the gauge group factor G whose 1-loop correction is being
computed. Furthermore, bG,bgrav are the coefficients of the associated 1-loop beta functions. The
holomorphicity breaking term 1/(4πτ2) in the group trace in ∆G arises from a contact term in the
Kac-Moody gauge current correlator. Taking the difference of thresholds for two different gauge
groups of the same Kac-Moody level (here we consider kGi = 1), results in the cancellation of the
universal contact terms. In the absence of Wilson lines, the resulting modular integral for the dif-
ference ∆G1 −∆G2 will again involve the T 2-lattice times a weak holomorphic modular function
(w = 0). Since the unphysical tachyon pole is chargeless under Gi, it will not contribute to the dif-
ference of quadratic Casimirs Tr(Q2

1−Q2
2) and the resulting modular function will be holomorphic

everywhere, including the cusp at τ = i∞. It is then a standard result in the theory of modular forms
that an everywhere holomorphic modular function (w = 0) is actually constant and the difference
of thresholds will produce an integral of the Γ(2,2) lattice alone. This falls precisely in the class of

1The asymmetry k of the lattice can be thought of as parametrizing the presence of non-trivial Wilson lines of a
Heterotic compactification.

2For notational simplicity, we adopt the convention where the supersymmetric side of the Heterotic string is taken
to be the right-moving, holomorphic side.
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modular integrals of Case II and is, indeed, encountered e.g. when one is calculating the difference
between the E7 and E8 group thresholds in K3× T 2 compactifications of the E8×E8 Heterotic
string.

2. The unfolding method

For simplicity and concreteness, we will henceforth restrict our attention to the modular inte-
grals of Case III: ∫

F

dµ Γ(d+k,d)(G,B,Y ) Φ(τ) , (2.1)

which appear naturally in 1-loop corrections BPS-saturated couplings in the effective action. The
Narain lattice Γ(d+k,d) depends on the compactification moduli GIJ,BIJ,Y a

I parametrizing the coset
SO(d+k,d)

SO(d+k)×SO(d) , with I = 1, . . .d and a = 1, . . .k. In the most general case, Φ(τ) is a weak almost
holomorphic modular form of SL(2;Z), with modular weight w =−k/2 and with at most a simple
pole at the cusp3. The latter requirement derives from the reparametrization properties of the string
worldsheet. The major difficulty with evaluating (2.1) lies in the non-rectangular shape of the
fundamental domain F = {τ ∈H : |τ| ≥ 1 , |τ1| ≤ 1/2} and the general technique for evaluating
such integrals is known as the ‘orbit method’ or the ‘unfolding method’, which we now briefly
review.

Start from the generic integral:

I =
∫
F

dµ f (τ, τ̄) , (2.2)

where f (τ, τ̄) is a modular function. The idea behind the unfolding method is to exploit modular
transformations in order to simplify the integration region, by rewriting (2.2) as an integral over a
rectangular integration domain. It relies on one’s ability to express f as a sum over modular orbits
or, technically, in finding a Poincaré series representation for f :

f (τ, τ̄) = ∑
γ∈Γ∞\SL(2;Z)

ϕ(γ · τ,γ · τ̄) , (2.3)

where Γ∞ is the stabilizer of the cusp:

Γ∞ =

{(
1 n
0 1

)
: n ∈ Z

}
⊂ SL(2;Z) , (2.4)

and the element γ =
(

a
c

b
d

)
∈ Γ∞\SL(2;Z) acts on τ ∈H by linear fractional transformations

γ · τ = aτ+b
cτ+d . The function ϕ in (2.3) is known as the ‘seed’, since its modular averaging produces

the modular function f , and is assumed to be invariant under rigid translations γ ∈ Γ∞. Using the

3In the case of SL(2;Z), the only cusp is the point at τ = i∞.
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Poincaré series representation (2.3) into the integral (2.2) and, assuming absolute convergence, so
that we can pull the sum outside the integral, we obtain after a change of variables τ ′ = γ · τ:

I = ∑
γ∈Γ∞\SL(2;Z)

∫
F

dµ ϕ(γ · τ,γ · τ̄) = ∑
γ∈Γ∞\SL(2;Z)

∫
γF

dµ ϕ(τ ′, τ̄ ′) =
∫

Γ∞\H

dµ ϕ(τ, τ̄) . (2.5)

Hence, summing over SL(2;Z) orbits, we see that F has been ‘unfolded’ to the half-infinite strip
S ≡ Γ∞\H = {τ ∈H : − 1

2 ≤ τ1 <
1
2 , τ2 > 0}. As a result, the original modular integral (2.2)

has been reduced to a simpler integral over the strip, involving the seed ϕ instead of the original
function f . In fact, the new integration domain being rectangular, the last integral can now be
given a ‘field-theoretic’ interpretation, in the sense that we can now consider the τ1-integral to be
imposing level-matching, whereas the τ2-integral will later turn out to provide a Schwinger-like
representation of the amplitude.

3. Traditional unfolding of F against the lattice

So far, the traditional approach in the literature has been to use the orbit decomposition of the
Narain lattice in order to evaluate modular integrals of the form (2.1). This has both advantages
and disadvantages that we will shortly discuss. We illustrate the unfolding of F against the lattice
with a simple example of this type :

I =
∫
F

dµ Γ(1,1)(R) j(τ) , (3.1)

involving a 1-dimensional lattice, corresponding to a circle S1 of radius4 R:

Γ(1,1)(R) = R ∑
m̃,n∈Z

e−
πR2
τ2
|m̃+τn|2

, (3.2)

times the holomorphic Klein j-invariant function. The latter is the unique holomorphic modular
function with a first-order pole in the q = e2πiτ -expansion at the cusp and is conventionally defined
with vanishing constant term, i.e. j(τ) = 1

q +O(q). The partition function of the lattice (3.2) is
given in its Lagrangian representation, with m̃,n being the two winding numbers parametrizing
the wrapping of the string around S1, with respect to the two non-trivial cycles of the world-sheet
torus. To obtain a Poincaré series representation of Γ(1,1), we separate out the (m̃,n) = (0,0) term
and, in the remaining sum, we factor out the greatest common divisor (g.c.d.) N = (m̃,n) of the
non-vanishing windings. We can then express the windings as m̃ = N p, n = Nq with (p,q) = 1 :

Γ(1,1)(R) = R+2R ∑
N≥1

[
1
2 ∑
(p,q)=1

e−
π(NR)2

τ2
|p+τq|2

]
. (3.3)

The quantity inside the square brackets above is precisely a Poincaré series with seed ϕ(τ, τ̄) =

exp(−π(NR)2

τ2
). This is easy to verify by noting that Im(γ · τ2) =

τ2
|p+τq|2 for a matrix γ = (?q

?
p) ∈

4For simplicity, we set everywhere α ′ = 1.
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Γ∞\SL(2;Z). We then use this Poincaré series in order to unfold F , as in (2.5):

I = R
∫
F

dµ j(τ)+2R ∑
N≥1

∞∫
0

dτ2

τ2
2

e−
π(NR)2

τ2

1∫
0

dτ1 j(τ) . (3.4)

Since j(τ) is defined with vanishing constant term in its (Fourier) q-expansion, the sum in the r.h.s.
vanishes due to the τ1-integration (level matching) and the integral (3.1) is simply given by the first
integral in the r.h.s. of the expression above. Being an integral of a holomorphic function (Case I
of the previous section), this integral can be readily evaluated using Stokes’ theorem, or using the
techniques that we will review in the upcoming sections,

∫
F dµ j(τ) =−8π and, hence, we arrive

at the following result:

∫
F

dµ Γ(1,1)(R) j(τ) =−8πR . (3.5)

Now we encounter one of the major deficiencies of the traditional unfolding of F against the
lattice. Namely, the result is not invariant under T -duality, even though the lattice Γ(1,1)(R) in the
l.h.s. is invariant under R→ 1

R , as can be seen by Poisson resummation. The discrepancy is due to
the loss of absolute convergence which, while being automatically ensured by the lattice in the UV,
is only conditional in the IR (τ2→ ∞) and breaks down at precisely the T-self-dual radius R = 1,
due to the presence of ‘extra massless states’5. As a result, we are no longer allowed to exchange
the order of integration and summation (2.5) and the unfolding of F is no longer justified. The
result (3.5) is, in fact, only valid in the particular chamber of the moduli space, where R > 1. In
order to evaluate the integral for radii R < 1, one should first double Poisson resum the lattice to its
dual radius and then repeat the unfolding.

This simple example served to illustrate one of the most obvious deficiencies of the traditional
unfolding approach. Indeed, using the orbit decomposition of the lattice in order to unfold F

is only useful for extracting the large volume behaviour of the integral, with the loss of absolute
convergence around extended symmetry points (i.e. fixed points under T-duality) obscuring the
behaviour of the amplitude around these regions. This is, in fact, a reflection of a much deeper
drawback of the traditional unfolding method : using a Poincaré series representation of the lattice
in order to unfold, does not yield the result in a manifestly T-duality invariant representation. The
reason for this is that, unfolding against the lattice, inevitably starts with the lattice in its Lagrangian
representation and relies on decomposing the winding sum into SL(2;Z) orbits, with each orbit
being used separately in order to unfold F . However, the orbit decomposition of the winding
sum leads to the loss of manifest T-duality invariance. Even though this may seem marginal in the
simple example (involving a one-dimensional lattice) we presented above, as soon as one considers
higher dimensional lattices, this problem becomes much more serious. For example, for the slightly
more complicated integral involving a two-dimensional lattice and the almost holomorphic modular

5The extra states becoming massless at R = 1 are precisely saturated by the contribution of the unphysical ‘tachyon’
pole of the j-function, responsible for the loss of exponential suppression in the IR.
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function Ê2E4E6/∆, one obtains:

∫
F

dµ Γ(2,2)(T,U)
Ê2 E4 E6

∆
' Re

[
−24 ∑

k>0

(
11Li1(e2πikT )− 30

πT2U2
P(kT )

)

−24 ∑
`>0

(
11Li1(e2πi`U)− 30

πT2U2
P(`U)

)
+ ∑

k>0,`>0

(
c̃(k`)Li1(e2πi(kT+`U))− 3c(k`)

πT2U2
P(kT + `U)

)

+Li1(e2πi(T1−U1+i|T2−U2|))− 3
πT2U2

P (T1−U1 + i|T2−U2|)

]
+

60ζ (3)
π2 T2U2

+22log
(

8πe1−γ

√
27

T2U2

)
+

(
4π

3
U2

2
T2
− 22π

3
U2−4πT2

)
Θ(T2−U2)+

(
4π

3
T 2

2
U2
− 22π

3
T2−4πU2

)
Θ(U2−T2) , (3.6)

where P(z) = Im(z)Li2(e2πiz) + 1
2π

Li3(e2πiz), c, c̃ are the Fourier coefficients of E4E6/∆ and
E2E4E6/∆, respectively, and we are only displaying the IR finite part. Here, Ê2,E4,E6 are the
weight 2 (almost holomorphic), weight 4 and weight 6 (holomorphic) Eisenstein series, respec-
tively, and ∆ = η24 is the weight 12 cusp form. As illustrated by this example, even though the
traditional unfolding method can be useful for extracting the asymptotic behaviour of amplitudes
in the large volume limit, the results are generally local, in the sense that they depend on the region
in moduli space around which one is unfolding6. Even the task of merely checking the T-duality in-
variance of result (3.6) becomes a daunting task, whereas the singularity structure of the associated
amplitude is fully obscured in this representation.

4. New methods of unfolding

The discussion above stresses the necessity for new methods of unfolding, able to overcome
the limitations of the traditional unfolding method outlined in the previous section. In particular,
one is ideally looking for a global7 representation of the result, which preserves the manifest T-
duality symmetries of the lattice and which is able to capture the behaviour around the T-self-dual
points. We will now proceed to briefly review two such techniques: the Rankin-Selberg-Zagier
method and the unfolding against Niebur-Poincaré series, applicable to integrals of Cases II and
III, respectively.

4.1 Integrals of Case II: the Rankin-Selberg-Zagier method

Integrals of Case II and, in general, modular integrals of a function of moderate (i.e. non-
exponential) growth at the cusp, can be treated using a technique known in the mathematics litera-
ture as the Rankin-Selberg-Zagier (RSZ) method [17, 14]. Here we will only point out the salient
features applied to integrals of Case II. Notice first that the modular integral of a d-dimensional
lattice Γ(d,d) has an IR divergence, since the integrand grows polynomially as τ

d/2
2 at τ → i∞ and

needs to be regularized. The idea behind the RSZ method is to regularize the integral by truncating

6This is especially visible in (3.6) from the Heaviside Θ-functions in the last line.
7We use ‘global’ here in order to stress the independence of the result from the region in moduli space around which

one is unfolding.

7



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
0
1

One-loop Amplitudes as BPS state sums Ioannis Florakis

the fundamental domain to some (large) cutoff value T and to deform the integrand by an insertion
of the (completed) non-holomorphic Eisenstein series:∫

F

dµ Γ(d,d)(G,B;τ, τ̄) −→
∫

FT

dµ Γ(d,d)(G,B;τ, τ̄)E?(s;τ) . (4.1)

Here, FT = {τ ∈F : τ2 < T} is the truncated fundamental domain and the Eisenstein series is
defined as:

E?(s;τ) = ζ
?(2s) ∑

γ∈Γ∞\SL(2;Z)

[
Im(γ · τ)

]s
= 1

2 ζ
?(2s) ∑

(c,d)=1

τs
2

|cτ +d|2s , (4.2)

with ζ ?(2s)= π−sΓ(s)ζ (2s) being the completed Riemann zeta function. Using the above Poincaré
series representation for E? we can unfold FT for Re(s)> 1:∫
FT

dµ Γ(d,d)(G,B;τ, τ̄)E?(s;τ) = ζ
?(2s)

∫
ST

dµ τ
s
2 Γ(d,d)−

∫
F−FT

dµ Γ(d,d)(E
?(s;τ)−ζ

?(2s)τs
2) ,

(4.3)

making sure to perform the appropriate subtraction of an infinite number of disks Sa/c (with a,c
coprime integers, such that c ≥ 1 and a ∈ Zc), corresponding to the images of the complement
F −FT under γ =

(a
c

?
?

)
∈ SL(2;Z), which give rise to the second integral in the r.h.s of (4.3).

It turns out that the latter becomes part of the definition of the renormalized integral. The next
thing to notice is that E?(s;τ) is a meromorphic function with simple poles at s = 0,1 with residue
Ress=1E?(s;τ) = 1

2 and, furthermore, E?(s;τ) = E?(1− s;τ). Extracting the residue of both hand
sides of (4.3) at s = 1 in order to obtain the desired integral and rearranging terms, one eventually
obtains:

R.N.
∫
F

dµ Γ(d,d) = 2Ress=1

[
ζ
?(2s)

∞∫
0

dτ2 τ
s+d/2−2
2

1∫
0

dτ1 ∑
(m,n)6=(0,0)

e−2πτ2M
2
e2πiτ1mT n

]

= 2Ress=1

[
ζ
?(2s)

Γ(s+ d
2 −1)

πs+ d
2−1 ∑

(m,n)6=(0,0)
mT n=0

1

[M 2]s+
d
2−1

]
, (4.4)

where the l.h.s. is the renormalized integral8 and the r.h.s. is an integral over the half-infinite strip S
that can be easily performed. The constrained sum (mT n = m ·n = 0 projects onto 1/2-BPS states)
runs over the momentum and winding quantum numbers, m,n, respectively, excluding the origin
mi = ni = 0 and M 2 is the (physical) BPS mass squared. It is related to the constrained Epstein
zeta series constructed in [18]. The result (4.4) is manifestly invariant under T-duality, since the
unfolding against the Eisenstein series does not depend on the point in moduli space around which
we are unfolding. As a check, it is straightforward to use (4.4) and the known Fourier expansion
of E?(s;τ), in order to reproduce the standard results for the integrals of the d = 1 and d = 2 -
dimensional lattices. Aside from manifestly preserving the T-duality symmetries, another upshot
of the RSZ method is that it provides a natural modular invariant regularization. This should be
contrasted with the traditional unfolding against a d = 2 lattice, where the degenerate orbit is IR
divergent and the regulator one introduces does not preserve modular invariance.

8The definition of the renormalized integral and further details on the connection to other renormalization schemes
can be found in [14].
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4.2 Integrals of Case III: unfolding against Niebur-Poincaré series

We now return to the generic integral (2.1), involving a (possibly asymmetric) lattice Γ(d+k,d)

times a weak, almost holomorphic modular form Φ (elliptic genus) of weight w =−k/2 and with
(at most) a simple pole in the q-expansion at the cusp. The presence of the pole in the q-expansion
can be thought of as the contribution of the unphysical tachyon of the bosonic side of the Heterotic
string. Due to the latter pole, the integrand grows exponentially at the cusp and the RSZ technique
outlined in subsection 4.1 is no longer applicable. A new method [15] is then required to treat
integrals of Case III.

The main idea of [15] is to construct a Poincaré series representation for the elliptic genus
Φ itself and use it in order to unfold F . The elliptic genus Φ can be expanded in the generators
{Ê2,E4,E6,∆

−1} of the graded ring of weak almost holomorphic modular forms of weight w and
with a simple pole in q at the cusp as:

Φ(τ) = ∑
2m+4n+6r=12+w

m,n,r≥0

cmnr
Êm

2 En
4 Er

6
∆

, (4.5)

where cmnr are appropriate coefficients. The problem of determining the correct seed constructing
the Poincaré series representation of Φ is a highly non-trivial one and we will not endeavor to
present here the full details. Rather, it will suffice to mention only the guiding principles behind
the construction. First, one notices that the hyperbolic Laplacian ∆w = 2τ2

2 ∂τ̄(∂τ − iw
2τ2

) acts as a
Casimir operator in the space of modular forms Φ of weight w and the latter can be organized
into appropriate linear combinations of its eigenmodes. The main idea is to construct a Poincaré
series whose seed is already an eigenmode of ∆w. For generality, one imposes a pole of order κ

at the cusp Φ∼ q−κ + . . . and we are interested in constructing Poincaré series that are absolutely
convergent for w≤ 0, so as to justify the unfolding. These conditions essentially lead to the choice
of seed:

ϕ(τ, τ̄) = Ms,w(−κτ2)e−2πiκτ1 , (4.6)

where Ms,w(y) = |4πy|−w/2 Mw
2 sgn(y),s− 1

2
(4π|y|) and M is the Whittaker M-function. Summing

over its images under Γ∞\SL(2;Z), this seed generates a Poincaré series known in the mathematics
literature as the Niebur-Poincaré (NP) series [19, 20, 21, 22, 23, 24]:

F (s,κ,w) = 1
2 ∑
(c,d)=1

(cτ +d)−w Ms,w

(
− κτ2

|cτ +d|2

)
exp
{
−2πiκ

(
a
c
− cτ1 +d

c|cτ +d|2

)}
,

where the sum is over coprime integers c,d and the integers a,b are some solution of ad−bc = 1.
The NP series converges absolutely for Re(s) > 1 and for κ > 0, it indeed reproduces the desired
pole of order κ in the q-expansion at the cusp. By construction, it is an eigenmode of ∆w with
eigenvalue − s(1−s)

2 − w(w+2)
8 . Its spectrum can be obtained by studying its Fourier expansion and

with the help of the modular derivatives Dw = i
π
(∂τ − iw

2τ2
), D̄w = −iπ τ2

2 ∂τ̄ , acting as raising and
lowering operators of the modular weight by units of 2, respectively.

The NP series F (s,κ,w) transforms, by construction, in the same way as an holomorphic
modular form. However, a careful study of its Fourier expansion reveals that it generically also

9
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contains a non-holomorphic part. What kind of modular objects do NP series represent ? In fact, the
weak almost holomorphic modular forms we are interested in are eigenmodes of ∆w with eigenvalue
−w

2 and the NP series has the exact same eigenvalue9 for s = 1− w
2 . It turns out, in general, that

NP series F (1− w
2 ,κ,w) are not (weak, almost) holomorphic modular forms but, rather, weak

harmonic Maass forms. These are objects transforming like (weak, almost) holomorphic modular
forms, but which are the sum of an holomorphic ‘Mock modular’ part plus an infinite tower of
negative frequency modes, explicitly breaking holomorphicity, called the ‘Shadow’. Hence, even
though the holomorphic (Mock) part has an anomalous behaviour under modular transformations,
this modular anomaly is precisely cancelled by the non-holomorphic (Shadow) part, which provides
the modular completion. How then can we hope to obtain Niebur-Poincaré series representations
of weak almost holomorphic modular forms Φ? The answer is that, by taking appropriate linear
combinations of NP series F (1− w

2 ,κ,w) with definite coefficients matching the principal part in
the q-expansion of the modular form Φ we wish to represent, the Shadows cancel each other and
the resulting linear combination precisely represents the given weak, holomorphic modular form.
Weak almost holomorphic modular forms can then be formed out of similar –uniquely determined–
linear combinations of NP series with s = 1− w

2 +n.
Since all weak, almost holomorphic modular forms Φ can be uniquely expressed as linear

combinations of absolute convergent Niebur-Poincaré series, we can effectively reduce the problem
of evaluating the generic integral (2.1) into calculating the integral of the lattice Γ(d+k,d) times
F (s,κ,− k

2). The fundamental domain can now be unfolded using the Niebur-Poincaré series and
the result is given in terms of a BPS sum:

R.N.
∫
F

dµ Γ(d+k,d) F (s,κ,− k
2) = lim

T→∞

∫
FT

dµ Γ(d+k,d) F (s,κ,− k
2)+ f0(s)

T
d
2+

k
4−s

s− d
2 −

k
4


=

∞∫
0

dτ2 τ
d/2−2
2 Ms,− k

2
(−κτ2) ∑

BPS
e−πτ2 (P2

L+P2
R)/2 . (4.7)

The first line provides the natural, modular invariant definition10 of the renormalized integral in
terms of the appropriate cutoff-dependent subtraction, with f0(s) being the zero-frequency mode
in the Fourier expansion of F (s,κ,w). The second line yields the result in terms of a strip integral,
with the τ1-integration imposing the BPS constraint P2

L −P2
R = κ , whereas the τ2-integral casts the

BPS-contribution in its Schwinger representation. The τ2-integral can be explicitly performed to
yield the BPS sum:

I = (4πκ)1− d
2 Γ(s+ d

2 +
k
4 −1) ∑

BPS
2F1

(
s− k

4
,s+

d
2
+

k
4
−1;2s;

4κ

P2
L

) (
P2

L

4κ

)1−s− d
2−

k
4

, (4.8)

which can be proven to converge absolutely for Re(s)> d
2 +

k
4 and can be meromorphically contin-

ued to the full s-plane with the exception of a simple pole at s = d
2 +

k
4 which requires an additional

9To be precise, the same eigenvalue also appears for NP series with s = w
2 , but this lies outside the range of conver-

gence for w < 0, so that we can safely ignore it for the present discussion.
10This definition of the renormalized integral is valid for Re(s) > d

2 + k
4 and can be extended, by meromorphic

continuation, to the whole s-plane, except for the pole s = d
2 + k

4 , which requires a slightly modified subtraction of a
logarithmic divergence (for details, see [15]).

10
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subtraction. The result (4.8) is manifestly invariant under T-duality and chamber independent,
providing a global representation of the result, valid at any point in moduli space. Therefore, it
can be applied to study the behaviour of amplitudes around points of extended symmetry, where
the traditional method of unfolding breaks down. In fact, for all cases of interest to string theory
applications, it is possible to re-express the hypergeometric function in (4.8) in terms of elemen-
tary functions. The general expression is given in [15] and renders the singularity structure of the
integral crystal clear. One finds that that for odd-dimensional lattices, the integral (4.7) always
develops conical singularities, whereas for d ≥ 3 real singularities also appear. On the other hand,
only real singularities appear in even dimensions, including power-like singularities for d ≥ 4 and
logarithmic ones for d ≤ 2s+w. Furthermore, in the absence of Wilson lines, one may prove that
the universal singularity behaviour in d = 2 dimensions has the form:∫

F

dµ Γ(2,2)F (1+n,1,0)'−(2n+1)!
n!

log | j(T )− j(U)|4 . (4.9)

Furthermore, the explicit expression for the BPS sum (4.8) in [15] can be used to prove, in a
chamber independent fashion, the absence of singularities in gauge thresholds involving elliptic
genera where the unphysical tachyon pole cancels out11. In the last section, we will illustrate the
power of our new method by applying it to specific examples.

5. Examples

We will first start with integrals of Case III involving a one-dimensional lattice:∫
F

dµ Γ(1,1)(R) F (1+n,1,0) = 22+2n√
π Γ(n+ 1

2)

(
R1+2n +

1
R1+2n −

∣∣∣∣R1+2n− 1
R1+2n

∣∣∣∣) ,

(5.1)

for any integer n≥ 0. For example, for n = 0, one has F (1,1,0) = j(τ)+24. With the help of the
elementary result

∫
F dµ Γ(1,1)(R) =

π

3 (R+ 1
R), which can be derived e.g. using the RSZ method,

we immediately derive: ∫
F

dµ Γ(1,1)(R) j(τ) =−4π

(
R+

1
R
+

∣∣∣∣R− 1
R

∣∣∣∣) . (5.2)

The result is manifestly invariant under T-duality and holds for any radius. It should be contrasted
with (3.5), which is only valid in the R > 1 chamber and fails to display the T-duality symmetries
of the S1-lattice. On the other hand, the conical singularity appears naturally within our formalism.
Another example is the one-dimensional analogue of gravitational thresholds in E8×E8 Heterotic
string theory compactified on K3×T 2 :∫

F

dµ Γ(1,1)(R)
Ê2E4E6

∆
= 8π(R3 +R−3−|R3−R−3|)−68π(R+R−1)+20π|R−R−1| , (5.3)

11Note that, using the traditional unfolding method of Section 3, such a proof is a priori not possible, even if one
asymptotically approaches the boundary separating different chambers of moduli space around an enhancement point.
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which can be easily obtained using the Niebur-Poincaré series expansion Ê2E4E6/∆ =F (2,1,0)−
5F (1,1,0)−144.

Let us now consider examples of N = 2 thresholds of the E8×E8 Heterotic string compacti-
fied on K3×T 2, where we realize K3 as a T 4/Z2 orbifold. The gauge thresholds for the E8 and E7

factors are given by the BPS-sums:

∆E8 =−
1
12

∫
F

dµ Γ(2,2)(T,U)
Ê2E4E6−E2

6
∆

= ∑
BPS

[
1+

P2
R

4
log
(

P2
R

P2
L

)]
+72 log

(
T2U2|η(T )η(U)|4

)
+ cst ,

∆E7 =−
1
12

∫
F

dµ Γ(2,2)(T,U)
Ê2E4E6−E3

4
∆

= ∑
BPS

[
1+

P2
R

4
log
(

P2
R

P2
L

)]
−72 log

(
T2U2|η(T )η(U)|4

)
+ cst .

The case of non-trivial Wilson lines can also be easily treated. If we Higgs the E8 group factor
down to its Coulomb branch, the E7 threshold becomes:

∆E7 =−
1
12

∫
F

dµ Γ(2,10)
Ê2E6−E2

4
∆

= ∑
BPS

[
1+

P2
R

4
log
(

P2
R

P2
L

)
− 2

P2
L
− 8

3P4
L
− 16

3P6
L
− 64

5P8
L

]
,

where the left- and right- moving momenta PL,R now also depend on the Wilson lines Y a
I and the

BPS constraint now involves also the U(1) charge vectors Q in the Cartan of E8, mT n+ 1
2 QT Q = 1.

It is straightforward to verify that the amplitudes are regular12 at any point in moduli space and
valid in any chamber.

A further application of our new methods of unfolding concerns the treatment of integrals
involving insertions of PL,R lattice momenta of the generic form:∫

F

dµ

[
τ
−λ/2
2 ∑

PL,PR

ρ(PL
√

τ2,PR
√

τ2) q
1
4 P2

L q̄
1
4 P2

R

]
Φ(τ) . (5.4)

For consistency, the quantity in the brackets must be a modular form of weight λ + d + k
2 . The

general conditions on the function ρ(x,y) for this to take place can be found in [25, 15]. Provided
they are satisfied, the integrand is modular invariant and −w = λ + d + k

2 . One may then expand
the elliptic genus Φ in terms of Niebur-Poincaré series and unfold against each of them to obtain
the corresponding BPS sum:∫
F

dµ τ
−λ/2
2 ∑

PL,PR

ρ(PL
√

τ2,PR
√

τ2) q
1
4 P2

L q̄
1
4 P2

R F (s,κ,w)

= (4πκ)1+λ/2
∞∫

0

dt t2+ 2d+k
4 −2

1F1

(
s− 2λ +2d + k

4
;2s; t

)
ρ

(
PL

√
t

4πκ
,PR

√
t

4πκ

)
∑
BPS

e−tP2
L/4κ .

In order to demonstrate the power of our methods, we will present one final example involving
an ‘exotic’ integral that does not even contain moduli dependence:∫

F

dµ
(√

τ2ηη̄
)3 Ê2

2 E8−2 Ê2 E10

∆
=−20

√
2 . (5.5)

12This is physically expected, since the unphysical tachyon of the Heterotic string is chargeless with respect to E7
and E8.
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This integral is not only interesting as a mathematical exercise but, in fact, appears in [26] as a
threshold contribution to certain non-compact Heterotic constructions on ALE spaces in the pres-
ence of NS5 branes. This is an example where the traditional orbit method cannot even be applied.
Expanding the weak almost holomorphic modular form into Niebur-Poincaré series:

Ê2
2 E8−2Ê2E10

∆
= 1

5F (3,1,0)−6F (2,1,0)+23 j+984 , (5.6)

and using (5.1), it is straightforward to arrive at the explicit numerical value −20
√

2 in (5.5). This
simple example illustrates that our novel methods can also be applied to integrals that do not even
contain the Narain lattice.

6. Conclusions

In this short review we attempted to briefly portray some of the aspects of our novel approach
to evaluating one-loop BPS-saturated amplitudes in string theory. We discussed how the traditional
unfolding method, using the orbit decomposition of the lattice, generically fails to preserve the
manifest T-duality symmetries of the theory. Our novel proposal was to exploit the fact that any
weak, almost holomorphic modular form (such as the modified elliptic genus) can be uniquely
represented as a linear combination of absolutely convergent Niebur-Poincaré series and we can
use these to unfold the fundamental domain F . BPS-saturated one-loop string amplitudes are then
naturally expressed as sums over the perturbative BPS states in a manifestly T-duality invariant
fashion. Within this new framework, the singularity structure of the amplitudes becomes crystal
clear and the results in this representation are valid at any point in moduli space (chamber in-
dependent). The incorporation of non-trivial Wilson lines and lattice momentum insertions is also
achieved in a simple manner, as illustrated in several examples. Finally, these methods successfully
apply to cases of ‘exotic’ integrals, that may not even involve moduli dependence.

We end this short review with a few comments concerning integrals of Case IV, namely, the
class of integrals where the integrand function A is manifestly non-holomorphic. Examples of
this class in string theory include, e.g. the non-trivial 1-loop corrections to the effective potential
(vacuum energy) of Type II and Heterotic vacua with spontaneously broken supersymmetry, or the
technically similar case of the free energy of string theories at finite temperature. We would like
to note that, traditionally, the behaviour of the 1-loop effective potential around points of extended
symmetry has been notoriously hard to study. In fact, understanding these properties is highly
related to some of the long-standing puzzles plaguing string thermodynamics and string cosmology,
such as the resolution of the Hagedorn phase transition and the initial singularity problem. Even
though, with our present machinery, attacking the fully non-holomorphic integrals of Case IV
seems to be out of reach (aside from certain notable exceptions), it is still hoped that future progress
in this direction may provide the tools necessary to study such integrals as well.
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