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1. Introduction

Over the past few years, there has been a great deal of progress in understanding the scattering
amplitudes of three-dimensional gauge theories. In particuar, a BCFW recursion relation for three-
dimensional gauge theories with massless fields was developed, and used to show that an N = 6
superconformal Chern-Simons theory known as the ABJM theory [2] has dual superconformal
symmetry [1, 3, 4]. Furthermore, some evidence for an amplitude/Wilson loop duality in the ABJM
theory was found [5, 6, 7], and it was shown that the amplitudes of the ABJM theory can be be
encoded in an integral over the orthogonal Grassmannian [8]. Recently, 1-loop amplitudes were
computed in the ABJM theory and shown to exhibit new structures such as sign functions of the
kinematic variables [9, 10, 11].

More recently, progress has been made in understanding the amplitudes of maximal 3d super-
Yang-Mills theory [12] and mass-deformed 3d gauge theories with N = 2 supersymmetry, notably
mass-deformed Chern-Simons theory and Yang-Mills-Chern-Simons theory [13]. As we will de-
scribe in greater detail, the amplitudes of these theories exhibit many surprising properties. For
example, the amplitudes of N = 8 super-Yang-Mills have enhaced R-symmetry [14], dual confor-
mal covariance, and loop structure which resembles that of the ABJM theory [15]. Furthermore,
the four-point amplitudes of mass-deformed N = 2 Chern-Simons theory can be encoded in a
very simple superamplitude. In N = 2 Yang-Mills-Chern-Simons theory, it is possible to compute
amplitudes without external gauge fields using Feynman diagram techniques and to deduce the
remaining amplitudes using supersymmetry constraints, at least at four-points.

In section 2, we will describe the amplitudes of N = 8 super-Yang-Mills theory. In particular,
we will explain how they can be obtained by dimensional reduction of 4d N = 4 super-Yang-Mills
theory. We also explain how dual conformal covariance is realized in these amplitudes, and briefly
describe the structure of loop amplitudes in N = 8 super-Yang-Mills theory. In section 3, we
describe the amplitudes of mass-deformed 3d gauge theories with N = 2 supersymmetry. We also
describe a proposal for BCFW recursion relations for massive 3d gauge theories. In section 4, we
present some conclusions and open questions.

2. 3d Yang-Mills Theory

In this section, we will describe the scattering amplitudes of maximal 3d super Yang-Mills
theory. In addition to having a Yang-Mills gauge field with gauge group U(N), it has seven scalars
and eight fermionic degrees of freedom which are in the adjoint of the gauge group. This theory can
be obtained by dimensional reduction of maximal 4d super Yang-Mills theory [16]. Note that 3d
Yang-Mills theory is not conformal because the Yang-Mills coupling is dimensionful. Nevertheless,
the amplitudes of maximal 3d super Yang-Mills theory have a property known as dual conformal
covariance, which cannot be seen from the spacetime Lagrangian. We will describe this in greater
detail in the following subsections.

2.1 Dimensional Reduction

The on-shell scattering amplitudes of 3d Yang-Mills theories can be obtained by dimensional
reduction of 4d Yang-Mills amplitudes. To see how this is achieved, consider a null 4d null mo-
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mentum written in bispinor form:
pαβ̇ = λ

α
λ̄

β̇

where α = 1,2 and β̇ = 1,2 are SU(2) indices which arise from the fact that the Lorentz group is lo-
cally SO(4)∼ SU(2)L×SU(2)R. When reducing to three dimensions, the distinction between dot-
ted and undotted indices disappears because the Lorentz group is SU(2)= [SU(2)L×SU(2)R]diagonal .
Hence, to reduce to three dimensions, we simpy change dotted indices to undotted indices and sym-
metrize:

pαβ = λ
(α

λ̄
β ). (2.1)

Note that after symmetrizing, the momentum has three components, as expected. The magnitude
of the three-momentum is

p2 =
1
4
〈
λλ̄
〉2

where
〈
λiλ j

〉
= εαβ λ α

i λ
β

j . If the three-momentum is null, then λ ∝ λ̄ and the momentum can be
written in bispinor form as

pαβ = λ
α

λ
β .

In summary, if we wish to reduce the tree-level amplitudes of 4d super-Yang-Mills to 3d
without breaking supersymmetry, we change dotted indices to undotted indices and leave fermionic
coordinates untouched. Using this reduction procedure, it is easy to see that the MHV amplitudes
of maximal 3d super-Yang-Mills are the same as those of maximal 4d super-Yang-Mills with a
reduced supermomentum delta function:

A MHV
n =

δ 3(P)δ 8(Q)

〈12〉〈23〉 ...〈n1〉
(2.2)

where n is the number of external legs, P=∑
n
i=1 λ α

i λ
β

i , QIα =∑
n
i=1 λ α

i η I
i , and δ 8(Q)=Π4

I=1QIαQI
α .

Furthermore, η I
i is a fermionic variable where I = 1, ...,4 is an SU(4) R-symmetry index and i la-

bels the external legs.
Note that N = 8 super-Yang-Mills has seven scalars and therefore has SO(7) R-symmetry.

On the other hand, only SU(4) R-symmetry is manifest in the amplitudes obtained by dimensional
reduction. This can be understood as follows. One can then define a U(1) R-symmetry which
rotates this scalar and another scalar in the theory, and encodes the helicity [17, 14]. Hence, in
order to define helicity in N = 8 super-Yang-Mills, we must break the SO(7) R-symmetry to
SO(6) ∼ SU(4). It is possible to show that the 4-point superamplitude actually has SO(8) R-
symmetry [14], but this does not persist for higher point amplitudes. For n > 4, there is a single
n-point amplitude with SO(7) R-symmetry, which can be constructed as a linear combination of
n-point amplitudes with different MHV degrees.

2.2 Dual Conformal Covariance and Loop Structure

Although the amplitudes of N = 8 super-Yang-Mills can be obtained by dimensional re-
duction of N = 4 super-Yang-Mills amplitudes, they have many properties which do not follow
trivially from dimensional reduction. For example, they have a property known as dual conformal
covariance. To see this, consider arranging the external supermomenta of a scattering amplitude
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into a null polygon and expressing the amplitude as a function of the vertices of this polygon. In
equations, the vertices of the polygon satisfy

(xi− xi+1)
αβ = λ

α
i λ

β

i , (θi−θi+1)
Iα = λ

α
i η

I
i .

We will refer to (x,θ) as the dual space. Showing dual conformal covariance boils down to showing
that the amplitudes transform covariantly under dual inversions:

I
[
xαβ

]
=

xαβ

x2 , I
[
θ

Iα
]
=

xαβ θ I
β

x2 .

If we strip the MHV amplitudes in eq 2.2 of the supermomentum delta function, it is not
difficult to see that the remaining piece transforms covariantly under a dual inversion:

I
[

1
〈12〉〈23〉 ...〈n1〉

]
= x2

1x2
2...x

2
n

1
〈12〉〈23〉 ...〈n1〉

.

More generally, using the 3d BCFW recursion relation proposed in [1] 1, one can inductively show
that if we decompose a general n-point amplitude as follows

An = δ
3(P)δ 8(Q) fn,

then
I [ fn] = x2

1x2
2...x

2
n fn.

Hence, although maximal 3d super-Yang-Mills theory does not have ordinary conformal symmetry
(since the Yang-Mills coupling is dimensionful), it has dual conformal symmetry at tree-level.

Using unitarity, one can then show that the cut-constructable integrand of an n-point amplitude
with L loops transforms as follows under a dual inversion:

I
[
I L

n
]
= Π

n
i=1x2

i Π
L
j=1
(
x2

j
)4

I L
n

where i runs over the external regions and j runs over loop regions in the dual space. In D dimen-

sions, the loop integration measure will give an additional factor of ΠL
j=1

(
x2

j

)−D
under dual inver-

sion. Hence, we find that the cut-constructable loop integrands transform like 4d loop integrands
under a dual inversion, i.e. the loop amplitudes have dual conformal symmetry if the loop momenta
are taken to be four dimensional. This implies that the loop amplitudes of 3d N = 8 super-Yang-
Mills can be obtained by restricting 4d N = 4 super-Yang-Mills amplitudes to 3d kinematics. In
particular, to obtain a loop amplitude in 3d N = 8 super-Yang-Mills, one simply takes the corre-
sponding 4d N = 4 super-Yang-Mills loop integrand and integrates over three-dimensional loop
momenta.

The 1-loop amplitudes of 4d N = 4 super-Yang-Mills can be reduced to scalar box diagram
[19]. In D-dimensions, this diagram is given by the following integral:

I4 (p1, p2, p3, p4) =
∫ dDl

l2 (l + p1)
2 (l + p1 + p2)

2 (l + p1 + p2 + p3)
2 .

1Although 3-point amplitudes vanish on the support of their supermomentum delta functions when all the external
momenta are null, one must include 3-point MHV and anti-MHV superamplitudes in the BCFW recursion relations of
N = 8 super-Yang-Mills. For more details, see [12].
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Although the propagators in the box diagram are massless, the external legs can be massive. Set-
ting D = 3+ 2ε and expanding around ε = 0, one finds the box diagram is finite if all four legs
are massive, three legs are massive, or two adjacent legs are massive, and zero otherwise. This
implies that in N = 8 super-Yang-Mills, the 1-loop correction vanishes for MHV amplitudes and
is finite for non-MHV amplitudes. This is very similar to the structure of loop amplitudes in a
3d superconformal Chern-Simons theory known as the ABJM theory, and suggests that there is a
way to relate the amplitudes of N = 8 super-Yang-Mills and the ABJM theory order by order in
perturbation theory. Indeed, the 2-loop 4-point amplitudes of both theories can be matched in the
Regge-limit [15].

3. Mass-Deformed Theories

In this section, we describe the amplitudes of mass-deformed 3d gauge theories with N = 2
supersymmetry. Mass-deformed Chern-Simons theories with N ≥ 4 supersymmetry were first
studied in [18]. The mass deformations we consider preserve locality, Lorentz invariance, and
gauge invariance. In particular, there are two types of gauge theories in three dimensions with
these properties, notably mass-deformed Chern-Simons theory and Yang-Mills-Chern-Simons the-
ory. In the mass-deformed Chern-Simons theory, the gauge field is massless and does not have
propagating degrees of freedom. Hence, only the matter fields can appear in the external legs of
on-shell amplitudes and amplitudes with an odd number of external legs vanish on-shell (since
these amplitudes have at least one external gauge field). In the Yang-Mills-Chern-Simons theory,
the Chern-Simons term provides a topological mass for the gauge field, so the gauge field has one
massive propagating degree of freedom [20, 21]. As a result, both gauge and matter fields can
appear in the exernal legs of on-shell amplitudes. For simplicity, we will take all the external legs
to have mass m. In order to describe the amplitudes of these theories, it is convenient to express the
momenta of external legs in bispinor form using eq 2.1. In particular, the spinors satisfy

〈
λλ̄
〉
= 2mi. (3.1)

3.1 Mass-Deformed Chern-Simons Theory

This theory has one SU(N) gauge field, two massive scalars, and two massive Majorana
fermions in the adjoint representation of the gauge group. In particular, it has SO(2) R-symmetry
which rotates the two scalars and two spinors, respectively. Furthermore, the supersymmetry alge-
bra for this theory has a U(1) extension:{

QαI,QβJ
}
=

1
2

(
Pαβ

δ
IJ +mε

αβ RIJ
)

where I,J are the SO(2) R-symmetry indices of the matter fields and RIJ is the SO(2) R-symmetry
generator. The odd-point amplitudes vanish on-shell, so the first nontrivial amplitudes appear at
four-points. Remarkably, all of the four-point amplitudes can be encoded in a single superampli-
tude:

A4 =
〈42〉〈
3̄2
〉δ

3(P)δ 2(Q) (3.2)
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where P=∑
4
i=1 λ

(α
i λ̄

β )
i , Qα =∑

4
i=1
(
λ α

i η̄i + λ̄ α
i ηi
)
, δ 2(Q)=QαQα , and ηi is a complex fermionic

variable.

3.2 Yang-Mills-Chern-Simons Theory

This theory has one SU(N) gauge field with both Yang-Mills and Chern-Simons terms. As we
mentioned earlier, the Chern-Simons term gives the gauge field a topological mass, so the guage
field has one massive degree of freedom. In addition, the theory has one massive scalar and two
massive Majorana fermions in the adjoint of the gauge group. Note that there is SO(2) R-symmetry
in the fermionic sector but no R-symmetry in the bosonic sector. Unlike in the mass-deformed
Chern-Simons theory, the supersymmetry algebra of the Yang-Mills-Chern-Simons theory has no
U(1) extension: {

QαI,QβJ
}
=

1
2

Pαβ
δ

IJ

where I,J are the SO(2) R-symmetry indices of the fermions. The supersymmetry algebra can be
used to derive constraints on amplitudes with more than three external legs.

There are various difficulties that arise when trying to compute Yang-Mills-Chern-Simons
amplitudes with external gauge fields using Feynman diagrams. These complications stem from
the difficulty in defining a mode expansion for the gauge field due to subtleties with canonical
quantization. As a result, Feynman rules for external gauge fields in Yang-Mills-Chern-Simons
theory are substantially more complicated than those of Yang-Mills theory. On the other hand, at
least at four points in the N = 2 Yang-Mills-Chern-Simons theory, it is possible to compute all
of the on-shell amplitudes without external gauge fields using Feynman diagrams and then deduce
the remaining amplitudes using algebraic constraints arising from supersymmetry. Unlike in the
mass-deformed Chern-Simons theory, it does not appear possible to encode the amplitudes of the
N = 2 Yang-Mills-Chern-Simons theory in superamplitudes.

3.3 BCFW

A very useful technique for computing on-shell scattering amplitudes is the BCFW recursion
relation [22]. For massless gauge theories in higher than three dimensions, these recursion relations
are usually derived by linearly deforming two external momenta by complex parameter z in such a
way that momentum remains conserved and the momenta remain null. This deformation does not
work in three dimensions, however. Rather, for massless 3d gauge theories, one must deform two
external momenta nonlinearly in the complex parameter z (see [1] for more details). Furthermore,
there is a natural way to generalize this deformation to massive 3d gauge theories. In particular,
consider two massive external legs i, j. The sum of the momenta of these legs is given by:

(pi + p j)
αβ = λ

(α
i λ̄

β )
i +λ

(α
j λ̄

β )
j .

In a supersymmetric theory, one also has supermomenta. Assuming the theory has N = 2 super-
symetry, the sum of the supermomenta of legs i and j is given by

(qi +q j)
α = λ

α
i η̄i + λ̄

α
i ηi +λ

α
j η̄ j + λ̄

α
j η j.
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It is not difficult to see that the supermomentum is conserved by the following deformation:

{(
λi

λ j

)
,

(
λ̄i

λ̄ j

)
,

(
ηi

η j

)
,

(
η̄i

η̄ j

)}
→

{
R(z)

(
λi

λ j

)
,R(z)

(
λ̄i

λ̄ j

)
,R(z)

(
ηi

η j

)
,R(z)

(
η̄i

η̄ j

)}
(3.3)

where

R(z) =

(
1
2

(
z+ z−1

) i
2

(
z− z−1

)
− i

2

(
z− z−1

) 1
2

(
z+ z−1

)) . (3.4)

Furthermore, if we choose phase of λi or λ j such that 〈i j̄〉 = 〈ī j〉, then the deformation preserves
〈iī〉 and 〈 j j̄〉. In massless limit, this deformation reduces to BCFW deformation for massless gauge
theories proposed in [1]. Note that deformation becomes trivial when z = 1.

After performing the deformation in equations 3.3 and 3.4, an on-shell amplitude A will
develope poles in the complex parameter z. Near these poles, the amplitude will factorize into two
on-shell amplitudes (denoted AL and A R) multiplied by a propagator. Using this fact and assuming
that the amplitude vanishes at z→ ∞, one finds that

A (z = 1) =− 1
2πi ∑f , j

∫
dη

∮
z f , j

AL(z,η)AR(z, iη)

p̂ f (z)2 +m2
1

z−1

where the factorization channels are labeled by f , and z f , j corresponds to the jth root of p̂ f (z)2 +

m2. In obtaining this formula, we assumed that all external legs of on-shell amplitudes have the
same mass m. The integral

∫
dη takes into account all the fields in the supermultiplet which can

appear in the propagator. Using this equation, one can compute higher-point on-shell amplitudes
from lower-point on-shell amplitudes. From the deformation in equations 3.3 and 3.4, one can see
that in any channel, p̂ f (z)2 +m2 has the following form

p̂ f (z)2 +m2 = a f z−2 +b f + c f z2.

Hence the poles in each factorzation channel are obtained by solving a quadratic equation in z2.
In order for the BCFW recursion relation to be applicable, the on-shell amplitudes must vanish

after performing the deformation and taking the deformation parameter z to infinity. Although the
amplitudes of the Yang-Mills-Chern-Simons theory do not generally have good large-z behavior,
the 4-point superamplitude in eq 3.2 is O (1/z) when legs (1,3) are shifted, so the recursion relation
may be applicable to the superamplitudes of the mass-deformed Chern-Simons theory. In order
to test this, one should use the recursion relation to compute the 6-point superamplitude of the
mass-deformed Chern-Simons theory, and match various components of the superamplitude with
Feynman diagram calculations.

4. Conclusion

In this note we have reviewed recent progress in understanding the planar, on-shell, color-
ordered scattering amplitudes of various 3d gauge theories, notably maximal 3d super-Yang-Mills
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theory, N = 2 mass-deformed Chern-Simons theory, and N = 2 Yang-Mills-Chern-Simons the-
ory. Although 3d Yang-Mills theories can be obtained by dimensional reduction of 4d Yang-Mills
theories, their amplitudes exhibit many intersting properties which do not follow trivially from
dimensional reduction. For example, the amplitudes of maximal 3d super-Yang-Mills theory ex-
hibit enhanced R-symmetry and dual conformal covariance. Furthermore, the loop amplitudes of
this theory have a similar structure to those of the ABJM theory, which is an N = 6 supercon-
formal Chern-Simons theory. The scattering amplitudes of mass deformed Chern-Simons theory
and Yang-Mills-Chern-Simons theory also exhibit a number of interesting properties. For exam-
ple, the four point amplitudes of the mass-deformed N = 2 Chern-Simons theory can be encoded
in a very simple superamplitude, eq 3.2. In the Yang-Mills-Chern-Simons theory, the gauge field
has one massive propagating degree of freedom, and can therefore appear in the external legs of
on-shell amplitudes. In particular, the Chern-Simons term gives rise to a topological mass for
the gauge field. Although there are difficulties associated with computing amplitudes with exter-
nal gauge fields in Yang-Mills-Chern-Simons theories using Feynman diagrams, it is possible to
compute amplitudes without external gauge fields and then deduce the remaining amplitudes using
supersymmetry, at least at four-points in the N = 2 Yang-Mills-Chern-Simons theory.

There are a number of open questions. For example, it would be interesting to study the
loop amplitudes of mass-deformed N = 2 gauge theories in three dimensions. It would also be
interesting to apply the techniques described in this note to study the scattering amplitudes of 3d
gauge theories with spontaneously broken gauge symmetry. In this case, masses are acquired via
the Higgs mechanism.
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