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1. Introduction

More than thirty years after its discovery, inflation remains our best theoretical candidate in
order to describe the early universe [1, 2]. It naturally explains the high degree of homogeneity
at large scales in the present Universe, thus solving classical problems associated with e.g. the
horizon of CMB beyond patches of 1 degree and the nearly flat spatial geometry. In addition to this
homogeneity, it also provides a compelling explanation for the inhomogeneities in both the CMB
and the LSS.

Focussing on CMB observations [3], data show fluctuations in the temperature power spectrum
which are almost scale invariant and to a large extent Gaussian. In particular, the spectral index is
measured to be

ns = 0.968±0.012 , (1.1)

while the f local
NL , f equil

NL , f ortho
NL parameters, related to non-gaussianity at the bispectrum level are mea-

sured to be

f local
NL = 32±21 ,

f equil
NL = 26±140 ,

f ortho
NL = −202±104 . (1.2)

All observations are, so far, perfectly consistent with the simplest class of inflationary models,
namely the single-field, slow-roll ones. For this class of models many cosmological data are related
to the so called slow-roll parameters1

ε ≡ GIJ DIV DJV
2`2

pV
, η ≡min. eigenvalue

(GIK DKDJV
`2

pV

)
. (1.3)

In particular, the spectral index (1.1) is given by

ns = 1−6ε +2η , (1.4)

and one finds fNL = O(ε), in perfect agreement with observational constraints.
In view of the phenomenological success of the inflationary paradigm, it is natural to look for

a possible embedding into a more fundamental theory of quantum gravity, such as string theory.
Indeed in recent years a large research effort has been devoted to finding realisations of inflation
in string theory. Despite a number of interesting and influential examples, this search is somewhat
hampered by our limited knowledge of the contours of the playground: it remains unclear to this
day which string theory compactifications are admissible, and what their resulting features are.

One example is D-brane inflation (see e.g. [4] for a review with several references), which
has seen a lot of progress in the last years in the context of type IIB flux compactifications, where
moduli stabilisation is under good theoretical control. Much effort has been put in computing the
scalar potential of the D3-brane position, which is responsible to drive inflation. Another approach

1Here we give the multi-field generalisation of the slow-roll parameters in order to make contact with the super-
gravity models. GIJ is the field dependent metric on the manifold described by the scalar fields. Furthermore we use the
definition `2

p = 1/M2
p = 8πGN .
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within type IIB flux compactifications has been to study modular inflation in the Large Volume
scenario [5]. Here the scalar potential responsible to drive inflation can be explicitely computed
and inflation realised [6].

Another example is provided by the analysis of the inflationary properties of flux compacti-
fications of type IIA string theory. Restricting oneself to Calabi-Yau compactifications with only
standard NS-NS 3-form flux, R-R fluxes, D6-branes and O6-planes at large volume and small string
coupling, one can stabilise the moduli at the classical level [7]. However, such constructions al-
ways satisfy a very simple and nevertheless strong lower bound on the first slow-roll parameter [8],
ε ≥ 27/13, violating the slow-roll assumption. Surprisingly, in order to derive this lower bound, only
two of the total set of moduli fields had to be taken into account: one finds violation of the slow-roll
condition already in the projection onto the two-dimensional plane spanned by the dilaton and the
volume modulus. Based solely on the dynamics of these two fields, it has been argued that cosmo-
logical observations have ruled out geometric IIA compactifications. A possible way to circumvent
this no-go theorem would be to replace the six-torus by negatively curved internal manifolds.

In this contribution we want to extend the above analyses in a different direction, namely that
of four dimensional supergravity models. These belong to a very general class of models in which
it is natural to embed inflation. Moreover, due to the presence of many scalar fields, there is still
room for all the subtleties of multi-field inflation, curvatons, isocurvature perturbations and non-
Gaussianities, to name a few. Finally these models are very interesting in wiev of the relationship
with string theory. Indeed some supergravity theories can be obtained as a low energy limit of
string theory. Thus we could look at the attempt of embedding inflation in supergravity as a first
step towards the search of a UV complete theory of inflation.

We start with the simplest supergravity model, namely N = 1 coupled to n chiral multiplets.
Instead of taking this problem head-on, or statistically sample a large number of possibilities as in
[9], we derive an analytic bound by employing a simplification analogous to the two-dimensional
projection of [8]. However, in this case the only directions out of all scalar fields that are singled out
are the so-called sGoldstino directions. These are the scalar partners of the would-be Goldstino that
is eaten up by the gravitino in the process of spontaneous supersymmetry breaking. Therefore, it is
supersymmetry breaking that dynamically determines a number of preferred directions in moduli
space.

It has been shown in various supergravity contexts that the sGoldstino directions are very effi-
cient in tracing possible scalar instabilities [10, 11, 12]. For this reason, one can use the sGoldstino
directions to derive an upper bound on the second slow-roll parameter η . In the context of minimal,
F-term supergravity this slow-roll condition was discussed in [13]. Note that it does not require the
sGoldstino’s and inflaton directions to coincide. We demonstrate that additionally imposing the
condition of effective single-field inflation2 leads to a much stronger bound. We discuss the infla-
tionary implications of this bound and see to what extent it allows for e.g. single-field and slow-roll
inflation. Intriguingly, we also find the necessity to introduce a negatively curved manifold as in [8],
but now as the scalar manifold spanned by the Kähler fields instead of the internal compactification
manifold. In principle, the same line of thought could be followed in the context of N > 1 super-

2In the presence of many scalar fields one can talk about effective single-field inflation whenever one scalar excita-
tion is responsible for the inflationary dynamics while the other fields are stabilised with square mass above the Hubble
constant (which is given by the value of the scalar potential along the inflationary trajectory).
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gravity theories. We briefly outline how the bound obtained in the context of minimal supergravity
could be extended to such theories and then we draw some conclusions.

2. Genesis of the bound

The Lagrangian

The field content of our model is given by a graviton eµ
a and a gravitino ψµ coupled to n chiral

supermultiplets. Each of these is composed by a chiral spin-1/2 field χ and a complex field φ . It
has been shown that the φ i, i = 1, . . .n fields organise themselves in a Kähler-Hodge manifold. This
geometric structure is a fundamental ingredient in building the theory.

The Lagrangian is given by (modulo four fermion terms)

e−1 L = LKIN +LF-M−V , (2.1)

where

LKIN = +
1

2`2
p

R− 1
2

ψ̄µ γ
µνρ Dµψρ −Gi̄ ∂µφ

i
∂

µ
φ̄
̄+

+
`2

p

2
Gi̄
(
χ̄

i
γ

µDµ χ̄
̄+ χ̄

̄
γ

µDµ χ
i) . (2.2)

The gravitino ψµ is a Majorana spinor while χ i is a left-handed spinor

PL χ
i =

1
2
(1l+ γ5)χ

i = χ
i . (2.3)

The fermionic mass terms are given by

LF-M = +
`2

p

2
e`

2
p

K
2 W ψ̄µPR γ

µν
ψν −

`2
p

2
e`

2
p

K
2 Di D jW χ̄

i
χ

j +h.c.+

+
`2

p√
2

e`
2
p

K
2 DiW ψ̄µ γ

µ
χ

i +
`2

p√
2

Gi̄ ψ̄µγ
ν
(
∂ν φ̄

̄
)

γ
µ

χ
i +h.c. , (2.4)

and the scalar potential is given by

V =−3`2
pe`

2
pK W W + e`

2
pK Gi̄ DiW D̄W . (2.5)

Every derivative is covariantised w.r.t. Kähler transformations besides local Lorentz transforma-
tions. Whenever a derivative acts on a quantity with Kähler indices (i, ı̄) it needs to be further
covariantised w.r.t. diffeomorphisms on the Kähler manifold3. The Lagrangian is therefore fully
specified by the following two quantities:

• K = K(φ i, φ̄ ı̄) is the Kähler potential and, by definition, the metric on the Kähler manifold is
given by ∂i∂̄ K ≡Gi̄. It has mass dimension two while the scalar fields φ i are normalised to
the Planck mass.

• W =W (φ i) is the holomorphic superpotential, which has mass dimension three.

3More on our conventions and a detailed derivation of (2.2)-(2.5) can be found in [14].
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The scalar potential (2.5) of any F-term supergravity is made up of two opposing contributions.
The negative definite term, related to the superpotential itself, sets the AdS scale. In contrast, the
positive definite term is related to the first covariant derivatives of the superpotential DiW . The
latter quantities are referred to as F-terms and play an essential role as the order parameter for
supersymmetry breaking.

Scalar mass matrix

A way of carrying out the analysis of this class of supergravity theories is by considering the
following real combination

G = K + `−2
p ln

∣∣`3
pW
∣∣2 . (2.6)

This function is by construction Kähler invariant and hence one does not have to worry about
covariantising derivatives w.r.t. this kind of transformations. In terms of this function the scalar
potential reads

V = `−4
p e`

2
pG(`2

p Gi̄ Gi G̄−3
)
, (2.7)

where Gi denotes the simple partial derivative of G w.r.t. φ i. The first derivative is given by

∂iV = `2
p GiV + `−2

p e`
2
pG (Gi +G j DiG j

)
. (2.8)

The second derivatives are thus

DiD jV = `2
p
(
Gi D jV +G j DiV

)
+ `2

p
(
DiG j + `2

p GiG j
)

V +

+`−2
p e`

2
pG (2D(iG j)+Gk DiD jGk

)
,

Dı̄D jV = `2
p
(
Gı̄ D jV +G j Dı̄V

)
+ `2

p
(
Gı̄ j− `2

p Gı̄G j
)

V +

+`−2
p e`

2
pG [Gı̄ j +

(
Dı̄Gk)(D jGk

)
−R jı̄kl̄ GkGl̄] . (2.9)

Using these derivatives we are able to construct the squared mass matrix for the scalar fields at any
point in field space. It is given by

m2 I
J =

[
m2 i

j m2 i
̄

m2 ı̄
j m2 ı̄

̄

]
=

[
Gik̄ Dk̄D jV Gik̄ Dk̄D̄V
Gı̄k DkD jV Gı̄k DkD̄V

]
. (2.10)

where we have used the collective index I = (i, ı̄).

sGoldstino directions

Spontaneous supersymmetry breaking is induced by DiW . We consider a configuration of
the theory in which supersymmetry is broken, i.e. DiW 6= 0. We see from (2.4) that the mixing
between the gravitino and the chiral spin-1/2 fields is sourced exactly by the order parameter of
supersymmetry breaking and is encoded in the term

`2
p√
2

e`
2
p

K
2 DiW ψ̄µ γ

µ
χ

i =− 1
`p

ψ̄µ γ
µ
(
PLζ

)
, (2.11)

where we have defined a linear combination of spin-1/2 fields

PLζ =−
`3

p√
2

e`
2
p

K
2 DiW χ

i . (2.12)
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This field is usually called the Goldstino. Indeed, it is possible to show that the dynamics of the
gravitino can be disentangled from that of the spin-1/2 fields, by performing a supersymmetry
transformation in which the supersymmetry parameter ε is proportional to the Goldstino. Going
to the so-called unitary gauge it is possible to eliminate from the spectrum the Goldstino. This
is the analogue of the Higgs mechanism for spontaneous gauge symmetry breaking, often called
super-Higgs mechanism. The missing degrees of freedom are absorbed by the gravitino.

We now consider the supersymmetry variation of the Goldstino field. Apart from terms in-
volving fermions, it is given by

δ
(
PLζ

)
= −

`3
p

2
e`

2
p

K
2 DiW

1
`p

γ
µ

∂µφ
i(PRε

)
+

`2
p

2
e`

2
pK Gi̄ DiW D̄W

(
PLε

)
= −

`3
p

2
e`

2
p

K
2 DiW

1
`p

γ
µ

∂µφ
i (PRε

)
+

`2
p

2
V+

(
PLε

)
, (2.13)

where in the second term we recognise the positive definite part of the scalar potential, denoted by
V+. In the first term the complex quantity

`3
p

2
e`

2
p

K
2 DiW (2.14)

defines, for a fixed value of φ i, a direction in the scalar manifold. After a Kähler transformation, it
can be written as

`2
p

2
e`

2
p

G
2 Gi . (2.15)

We normalise the direction to a unit vector taking

gi =
Gi√
G jG j

. (2.16)

At this point we would like to point out a slight subtlety concerning the terminology of the
Goldstino and sGoldstino’s. For cosmological purposes, in which one usually considers time-
dependent scalar fields, the definition of the linear combination of spin-1/2 fields which gives the
Goldstino is slightly different from what is discussed above. This is mainly due to the presence of
couplings of the schematic form ψ̄(∂φ)χ in (2.4). In that case a more careful analysis applies which
can be found for instance in [14]. Therefore, referring to the gi directions as the sGoldstino’s is a
small abuse of notation in the time-dependent case. Nevertheless, these directions can be defined
on the scalar manifold as long as supersymmetry is broken and we will use this in what follows.

A geometric bound

In this section we follow the steps of [13] and consider the projection of the mass matrix on the
direction specified by gi. For any complex quantity Ui with UiŪ i = 1 we could define two dinstinct
real orthonormal directions (Ui, Ūı̄)/

√
2 and (iUi,−iŪı̄)/

√
2. The same could be done with the

sGoldstino direction gi. Consider now the projection of the mass matrix along these directions

1
2

[
gi gı̄

] [m2 i
j m2 i

̄

m2 ı̄
j m2 ı̄

̄

] [
g j

g̄

]
,

1
2

[
−gi gı̄

] [m2 i
j m2 i

̄

m2 ı̄
j m2 ı̄

̄

] [
−g j

g̄

]
, (2.17)
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If we take the averaged sum of these two quantities and normalise it w.r.t. the potential we are left
with

ηsG ≡
gı̄g j Dı̄D jV

`2
pV

=
2
3γ

+
4√
3

1√
1+ γ

ℜ

{
gi DiV

V

}
+

γ

1+ γ

Gı̄ jDı̄V D jV
`2

pV 2 − 1+ γ

γ
R̃ , (2.18)

where we have defined

γ =
`4

pV

3e`
2
pG

=
`2

pV
3 |m3/2|2

, (2.19)

ℜ denotes the real part and R̃ is the sectional curvature related to the plane defined by gi on the
scalar manifold

R̃ ≡
Rı̄ jk̄l gı̄g jgk̄gl

`2
p

. (2.20)

Notice that ηsG is obtained from the averaged sum of two masses. We will come back to this point
in the next section. In [13] ηsG is used to obtain a bound on the second slow-roll parameter η

depending on the first slow-roll parameter ε , γ and the sectional curvature R̃. In order to get the
bound we first notice that, for any unit vector UI = (Ui, Ūı̄)/

√
2 with UiŪ i = 1, we have

η ≤ UI m2 I
J UJ

V
,

∣∣∣∣Ū i DiV
V

∣∣∣∣≤√ε . (2.21)

Combining this information and pluging it into (2.18), we obtain

η ≤ ηsG ≤
2
3γ

+
4√
3

1√
1+ γ

√
ε +

γ

1+ γ
ε− 1+ γ

γ
R̃ . (2.22)

We will be interested in the last inequality of the chain (2.22), namely the one which relates
ηsG to ε and R̃. Before going through the discussion, consider the limit γ � 1 which corresponds
to the case in which the mass of the gravitino is well below the scalar potential during inflation and
the F-term dominates. In this case we get the simple bound

ηsG ≤ ε− R̃ . (2.23)

Both bounds are very interesting as they relate the slow-roll parameters to the geometry of the
scalar manifold. In the next section, after a small summary regarding all the quantities appearing
in (2.22), we will analyse their inflationary implications.

3. Implications of the bound

In this section we discuss the implications of the geometric bounds derived above, (2.22) and
(2.23). In order to do that, we first recap the information contained in this bound and its physical
meaning:

• γ is the ratio between the scalar potential and the gravitino mass (2.19). It tells one which is
the relative importance between the two contributions to the scalar potential. If γ →−1 the
scalar potential is dominated by the negative definite contribution. When γ ∼ 0 the two terms

7



P
o
S
(
C
o
r
f
u
2
0
1
2
)
1
1
0

A geometric constraint on supergravity inflation Andrea Borghese

are of the same order. Finally when γ � 1 the supersymmetry breaking F-terms dominate
over the AdS scale.

During inflation `2
pV ∼ H2 and the limit γ � 1 means the gravitino mass is well below the

Hubble scale since the F-term dominates, as is the case in F-term inflation. Unless other
mechanism enters the game, it is reasonable to assume today’s gravitino mass being of the
same order of magnitude as the one during inflation. If that is the case and today’s gravitino
mass being at the TeV scale, then γ � 1 is a very sensible limit to take.

• ηsG is the averaged sum of two scalar masses normalised to the value of the potential. This
is a key point. If we want to embed effective single-field inflation in F-term supergravity,
there are two possible scenarios. In the first one, the inflaton is not one of the sGoldstino
directions. In this case, if one wants the sGoldstino fields to be spectators during inflation,
their masses should be of order H or above and hence ηsG & 1/2. In the second scenario
the inflaton is one of the sGoldstino directions: this is referred to as sGoldstino inflation (for
recent analyses, see e.g. [15, 16, 17, 18]). Even in this case ηsG should be of order 1/2 or
larger, because the orthogonal sGoldstino field needs to be stabilised along the inflationary
trajectory. Thus in any case, single-field inflation requires ηsG & 1/2.

• ε is the generalisation of the first slow-roll parameter to the case of many scalar fields. It
is a measure of the sum of the squared velocity of all the fields. Despite the multi-field
generalisation, slow-roll inflation requires ε � 1.

• R̃ is the sectional curvature related to the plane identified by the sGoldstino directions. In
general the Riemann tensor of a manifold is completely specified once all the sectional cur-
vatures are given. For our purposes it is sufficient to say that, if R̃ ∼ 1, there are some
components of the Riemann tensor which are of order `−2

p and as a consequence we are deal-
ing with a strongly curved scalar manifold. In other words, the scalar kinetic terms in (2.2)
cannot be simply given by

−Gi̄ ∂µφ
i
∂

µ
φ̄
̄ '−

n

∑
i=1

∂µφ
i
∂

µ
φ̄

ı̄ , (3.1)

but one needs to take into account the presence of the Kähler metric. Therefore canonical
kinetic terms require R̃ = 0.

Let us now discuss the inflationary implications of the bound derived above. For concretness
we will focus on inflationary scenarios for which γ � 1, which is the case in F-term inflation. For
other scenarios with finite values of γ , a similar analysis can be equally done. From the form of the
bound (2.23) and the above discussion it can be seen that one can only impose consistently two of
the conditions {single-field, slow-roll, canonical kinetic terms} together. Let us discuss the three
possible consistent combinations.

Slow-roll single-field inflation

The first possibility consists of imposing the first two conditions: slow-roll and effective
single-field inflation. From the geometric bound (2.23), we see that the sectional curvature of

8
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the scalar manifold must be strictly negative. In other words, slow-roll and single-field inflation
require having non-canonical kinetic terms for the inflaton and all the scalar fields present. More-
over, the non-canonical kinetic terms should correspond to a metric whose Riemann curvature has
a number of components which are negative and of order order one in Planck units. Note that this
rules out a number of examples discussed in [13].

The fact that non-canonical terms are required at any point in field space implies that the
full inflationary trajectory should extend to the point where these terms become relevant – if this
were not the case then inflation should proceed independent of these terms, which is inconsistent
with the bound (2.23). Therefore the requirement of non-canonical kinetic terms, with corrections
to the metric of order one in Planck units, implies that one must have large field inflation. As a
consequence, effectively single-field and slow-roll cannot be realised in small field F-term inflation.
Note that this statement on the full inflationary trajectory follows from an analysis of the bound
(2.23) for a single point in field space.

There is a small caveat to this statement. Indeed R̃ is a specific sectional curvature associated
to the plane defined by the sGoldstino fields. By carefully constructing the Kähler- and super-
potential it is possible to obtain an inflationary trajectory along which the inflaton is completely
orthogonal to the sGoldstino fields (see e.g. [19, 20]). The latter are stabilised and, even being
R̃ . −1

2 , still one can obtain canonical kinetic terms for the inflaton allowing for small field
inflation. The special features of this model provide an escape from my conclusions. On the other
hand, as long as there is a non-negligible overlap between the inflaton and the sGoldstino fields
along the inflationary path, my analysis applies.

Observationally, the consequence of having large field inflation is the prediction that tensor
modes can be detectable. The argument proceeds via the Lyth bound [21], which relates inflationary
trajectories of order one in Planck units to a ratio r between tensor to scalar perturbations of percent
level. The latter corresponds to observable tensor modes, which are therefore a prediction of F-term
inflation.

Furthermore, the implications for the curvature perturbations in inflation with non-standard ki-
netic terms have been studied largely in the literature, starting with the work of Garriga-Mukhanov
[22]. Writing the scalar part of the lagrangian as a general function P(X ,φ), with X = 1

2 gµν∂µφ∂νφ ,
we see that the kinetic term for the inflaton gives rise to a linear function of X in the present case.
Thus, using the results of [22], one sees that the resulting perturbations coincide with the canon-
ical case. In particular, the “speed of sound" of the perturbations cs, equals the speed of light.
In this case, possible departures from the Gaussian spectrum in the equilateral configuration, pa-
rameterised by f eq

NL ∝ 1/c2
s are negligible [23, 24]. Moreover, as has been shown in [25], non-

Gaussianities of the local form f loc
NL, are suppressed by 1−ns for single field inflation. Thus in this

case, one obtains standard single field predictions for the scalar perturbations.

Finally, in the more general case with arbitrary values of γ , the slow-roll and single-field
conditions imply

R̃ .
4−3γ

6(1+ γ)
, (3.2)

and therefore they still impose a geometric bound on the Kähler manifold of F-term supergravity.

9
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Slow-roll with canonical kinetic terms

The next possibility is to impose slow-roll inflation and canonically normalised fields. Thus we
see that the bound (2.23) implies that we have to consider multifield inflation with canonical terms
for all the fields. In this case, large non-Gaussianity can be generated dynamically by inflation due
to the interplay of all fields and large isocurvature perturbations.

Large non-Gaussianity of the local form f loc
NL generated during inflation has been shown to be

generically hard to achieve (for a review with several references see [26]) and is very much model
dependent. Therefore, without knowledge on the form of the potential, one can only conclude that
potentially large non-Gaussianities due to multifield dynamics could be generated in these type of
models.

Single-field with canonical kinetic terms

The last possible combination is to impose effective single field inflation with canonical kinetic
terms. In this case, the geometric bound (2.23) implies that ε & 1/2 and thus slow-roll inflation
cannot be realised.

4. Extension of the bound

In this section we want to argue how an analysis similar to that we have just showed could be
carried out for different supergravity theories. The idea is that, when we focus on the sGoldstino
directions, it is always possible to write down a bound of the form

ηsG ≤ c0
(

f (γ)+g(γ)R̃
)
+ c1/2

1√
1+ γ

√
ε + c1

γ

1+ γ
ε . (4.1)

Clearly the details for each supergravity theory are different. nevertheless it is always possible to
single out the sGoldstino’s and compute their average mass. We show here how the story goes
through in the N = 2 theory coupled to n hypermultiplets and then draw some conclusions.

Fixing conventions

Consider 4 dimensional N = 2 supergravity with n hypermultiplets coupled to the supergrav-
ity multiplet. The spectrum of the theory is given by (ea

µ , ψ i
µ , Aµ) plus n times (ξ α , qX), where we

adopt the following conventions for indices in the theory4

In what follows we stick to Louis et al. treatment [12]. First we list some interesting facts about
quaternionic-Kähler geometry. On the scalar manifold we consider a Killing vector kX such that

D(X kY )(q) = 0 , (4.2)

where D is a derivative covariant with respect to diffeomorphisms on the scalar manifold and
SU(2). We indicate the metric on the scalar manifold with GXY and the triplet of SU(2) com-
plex structures with JXY

r. These complex structures satisfy several properties.

DX JYW
r = 0

JWX
r JW

Y
s = GXY δ

rs + ε
rst JXY t ,

JXY
r JWZ r = −RXYWZ +WXYWZ−GX [W G|Y |Z]− JX [W

r J|Y |Z]r . (4.3)
4In what follows I also set `2

p = 1.
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Table 1: Conventions on N = 2 indices

µ = 0, . . . ,3 space-time world indices
a = 0, . . . ,3 space-time flat indices

i = 1,2 number of susy generators
α = 1, . . . ,2n Sp(2n) indices labeling hyperspinors
X = 1, . . . ,4n indices on the scalar quaternionic-Kähler manifold

r = 1,2,3 adjoint SU(2) indices

The Killing vector is derived from a triplet of Killing prepotential

DXPr = 2JXY
r kY . (4.4)

The previous relation could be, in some sense, inverted obtaining the Killing vector in terms of the
Killing prepotential

kX =−1
6

JXY
r DY Pr . (4.5)

In the N = 2 case we have four sGoldstino directions. We will focus on those defined by

U r
X =−JX

Y r kY =−1
2

DXPr (4.6)

Scalar sector of the theory

The scalar potential is given by

V (q) = 4kX kX −3Pr Pr . (4.7)

The first derivative is given by

DXV = 8kY DX kY −6Pr DXPr , (4.8)

and the second one is given by

DX DYV = 8(DX kW )(DY kW )−8RXWY Z kW kZ−6(DXPr)(DY Pr)−6Pr D(X DY )Pr . (4.9)

This gives directly the mass matrix 2m2
XY = DX DYV .

sGoldstino projection

If we sandwich the mass matrix with the symmetric sGoldstino directions we obtain four terms

UXr UY
r m2

XY = +4(UX r DX kW )(UY
r DY kW )−4RXWY Z UX rkW UY

r kZ +

−3(UX r DXPs)(UY
r DY Ps)−3PsUXr UY

r D(X DY )Ps . (4.10)

The norm of the sGoldstino projection is given by

U r
X UX

r = 3kX kX . (4.11)

The quantity ηsG is defined as

ηsG ≡
UXr UY

r m2
XY

(U s
WUW

s )V
. (4.12)
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The γ parameter

We can again define the γ-parameter

γ ≡ V
3 |m3/2|2

=
4kX kX −3PrPr

3PsPs
, (4.13)

from which we derive

1+ γ =
4kX kX

3PrPr
,

1+ γ

γ
=

4kX kX

V
. (4.14)

The bound

After several tedious algebraic manipulations it is possible to write the following inequality

ηsG ≤−
19+27γ

9γ
− 13

√
2

6
√

3
√

1+ γ

√
ε +

γ

2(1+ γ)
ε− 1+ γ

γ
R̃ . (4.15)

Indeed, this bound is exactely of the form (4.1) and, furthermore, an analysis completely similar to
that performed in the N = 1 case could be carried out.

The analysis for the N = 2 case is still preliminary and so are similar analyses for N = 4,8
theories. Nevertheless the result (4.15) and other results hint at the possibility of obtaining a full
set of bounds of the form (4.1).

5. Conclusions

In this contribution we have shown how spontaneous supersymmetry breaking can constrain
the possibility of embedding inflation in supergravity theories. We have first done that by analysing
the simplest N = 1 model. In there, remerkably, the combination of slow-roll and single-field
imposes a very strong constraint on the theory. The curvature of the Kähler manifold spanned by
the chiral scalars necessarily includes negative components which are order one in Planck units.
Only Kähler manifolds with this property satisfy the necessary but not sufficient condition for slow-
roll, single field inflation. This rules out many of the examples considered in the literature, see
e.g. [13]. Moreover, as discussed in section 3, this automatically implies that the full inflationary
trajectory will be in the large field class. A consequence is the generation of observable tensor
modes in the polarisation of the CMB.

We have also shown how the same analysis could be extended to other four dimensional su-
pergravity theories. Despite the fact that some result are still preliminary there seems to be the
possibility of obtaining a full set of bounds of the form (4.1).
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