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1. Introduction

Supersymmetric black holes in gauged Supergravities have been under recent investigation that
successfully lead to the construction of static supersymmetric black holes solutions in the so-called
N = 2 Fayet-Iliopoulos gauged theory.

Black holes in String theory and Supergravity represent a rich laboratory in which to test prop-
erties of quantum gravity by pushing the semiclassical limits to the edge of their validity. The work
of Strominger and Vafa in 1996 [1], for example, showed that the black hole entropy, computed
by counting the String theory microscopic constituents, agreed with the semiclassical Bekenstein
Hawking entropy, proving how String theory has the chance to account for black holes quantum
degrees of freedom. Supergravity BPS (i.e. supersymmetry-preserving) states have revealed to un-
dergo phenomena like wall crossing, and have been useful in understanding the properties of BPS
spectrum and moduli space shared by both local and rigid Supersymmetric theories.

However, these results are valid for black holes solutions in asymptotically flat (Minkowski)
spacetime. Given the fast progresses made in applications of gauge/gravity duality, it has become
of primary importance to direct the attention to black holes in anti de Sitter space, that are one
of the main tools for holography studies. In order to construct solutions that asymptote to curved
spacetime one has to consider gauged Supergravity theories, in which, due to the gauging, a scalar
potential appears that mimics a cosmological constant. Many works on black holes in gauged
Supergravity are already present in the literature, including results obtained by different groups in
the late 90’s [2] -[8]. In those works, however, no static BPS solution with regular spherical horizon
had been constructed, while it was found that all 1

2 -BPS static black holes with spherical horizon
geometry must have a vanishing horizon. In 2009 Cacciatori and Klemm [9] proved that black
hole states in N = 2 U(1)-gauged SUGRA with regular AdS2×S2 horizon geometry could exists,
if they preserved less supersymmetries, as was shown explicitely by solving for the Killing spinors
[10, 11]. They are 1

4 -BPS static geometries that interpolate between a near horizon AdS2× S2

region and an asymptotic “locally” AdS4 spacetime1. We will restrict our attention to black holes
with spherical horizon, unless otherwise stated.

As already pointed out, these newly constructed black holes solutions are interesting for ap-
plications to various areas: in the context of AdS/CMT correspondence, the existence of solutions
with a regular BPS limit opens the investigation of new holographic scenarios. Moreover, due to
their stable, solitonic nature, BPS black holes in asymptotically locally AdS4 spacetime may play
a role in the destabilization of vacua in the context of String Theory Landscape [12].

2. Extremal black holes in Supergravity

Let us start by giving an introduction to black holes in Supergravity theories. We first construct
black holes in asymptotically flat spacetime, as solutions of ungauged Supergravity, and we show
further on what modifications are needed to deal with solutions in asymptotically curved space.
These additional ingredients will be provided by gauging some isometries of the scalar manifold.

1Notice that, instead, the black hole solutions of [5] have asymptotically global AdS4 geometries.
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2.1 Electric-magnetic dualtiy invariance

The field content of extended Supergravities include in general several abelian vector fields,
responsible for the charge of the black hole. They can be graviphotons but also vectors of the matter
multiplets2. A fundamental property of these theories is their invariance under electric-magnetic
duality. This is a generalization of the electric-magnetic duality of the Maxwell field, in which a
rotation of the U(1) field strength

F ′µν = (cosα + sinα ∗)Fµν , α ∈ R , (2.1)

would affect the Lagrangian in such a way that the equations of motions for gravity coupled to
electromagnetism

∂µFµν = 0 ,

Rµν −
1
2

Rgµν = −8πGTµν (2.2)

remain invariant.
In 1981 Gaillard and Zumino [13] showed that, for a theory of n abelian vector fields Fa,

a = 1, ..,n, coupled to scalar or fermionic fields χ i, and whose Lagrangian only depends on the
abelian field strengths, the scalars and fermions and their derivatives, namely

L= L(Fa,χ i,∂µ χ
i) , (2.3)

it is possible to define a field strength dual to Fa, as

G̃a
µν =

1
2

εµνρσ Gaρσ ≡ 2
∂L

∂Fa µν
. (2.4)

In this way one constructs a 2n-vector of field strengths that transform linearly under the action of
duality transformations, while the other bosonic or fermionic fields transform nonlinearly

δ

(
F
G

)
=

(
A B
C D

) (
F
G

)
, (2.5)

δ χ
i = ξ

i(χ) ,

δ (∂µ χ
i) = ∂µξ

i = ∂µ χ
j ∂ξ i

∂ χ j . (2.6)

The most general matrix acting infinitesimally as a duality transformation on the vector (F ,G) is
a symplectic transformation (

A B
C D

)
∈ sp(2n,R) . (2.7)

The field strengths Fa and their generalized dual Ga thus form a symplectic vector

V≡

(
Fa

Ga

)
,

and the duality transformations are implemented by a matrix S ∈ Sp(2n,R), that acts on the field
strengths as

V′ = SV . (2.8)
2Matter coupling is restricted to N ≤ 4 Supergravity theories.
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2.2 Black holes in extended Supergravity

Supersymmetric black holes carry quantized charges given by the fluxes of the abelian field
strengths on a sphere at infinity

pΛ =
1

4π

∫
S2

FΛ , qΛ =
1

4π

∫
S2

GΛ , Q =

(
pΛ

qΛ

)
. (2.9)

They are solution of the equations of motion obtained from the bosonic sector of N≥ 2 Supergrav-
ity theories

S =
∫ √

−g d4x
(
−1

2
R+ ImNΛΓFΛ

µνFΓ, µν+
1

2
√
−g

ReNΛΓε
µνρσ FΛ

µνFΓ
ρσ +

+
1
2

grs(φ)∂µφ
r
∂

µ
φ

s
)

, (2.10)

which includes the Einstein-Hilbert term, the kinetic and axionic term of the vector fields, and the
kinetic term of the scalar fields φ x describing a nonlinear sigma model. The fermionic equations of
motion, indeed, decouple from the bosonic ones, and we can restrict to solutions on a zero fermions
background. The scalars couple to the vector fields through the matrix NΛΣ(φ). It is important
to notice that, in N = 2 Supergravity, scalar fields are present both in the vector multiplets as
in the hypermultiplets. However, the symplectic matrix NΛΣ only depends on the scalars of the
vector multiplets, so when dealing with black holes in N = 2 theories we can consistently set the
hypermultiplets to zero.

In the above action there is no term that provide a potential responsible for the curvature of
spacetime at infinity. This means that any solution we can derive from the extended ungauged
Supergravity theory will asymptote to flat spacetime.

In particular, the action (2.10), under the assumptions of staticity and spherical symmetry, can
be dimensionally reduced upon the metric ansatz

ds2 =−e2U(τ)dt2 + e−2U(τ)

[
c4dτ2

sinh4(cτ)
+

c2

sinh2(cτ)
(dθ

2 + sinθ
2dφ

2)

]
, (2.11)

that captures the solution of a general (extremal and non-extremal) black hole. In this way, the
system reduces to a 1-dimensional one, described by the Lagrangian

L =

(
dU
dτ

)2

+Gab
dφ a

dτ

dφ b

dτ
+ e2UVBH − c2 , c2 = 4S2T 2 . (2.12)

The warp factor U(r) appear as an additional scalar field, and the dynamics of the 1d system is
governed by the effective black hole potential VBH(φ

a, pΛ,qΛ). This can be written in a symplectic
covariant way as

VBH = −1
2

QT M (ReNΛΣ, ImNΛΣ)Q , (2.13)

where the 2n×2n matrix M depends only on the scalars through the symplectic matrix NΛΣ(φ
a).

The one-dimensional Lagrangian has to be supplemented by a Hamiltonian constraint(
dU
dτ

)2

+Gab
dφ a

dτ

dφ b

dτ
− e2UVBH − c2 = 0 . (2.14)
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The extremal solution has zero temperature, and thus c = 0. In this case the near horizon geometry
is AdS2× S2 and because of the presence of an infinite throath, the AdS2 space, the horizon rhor

becomes an attractor point for the scalars, forcing them to lose memory of their values at infinity
[14, 15, 16]. The scalar flow has a critical point at r = rhor and this translates into a criticality
condition on the black hole potential in moduli space(

∂VBH

∂φ a

)
rhor

= 0 . (2.15)

By the definition (2.13), this corresponds to a set of algebraic equations allowing to fix the scalars
at the horizon in terms of electric and magnetic charges. In this way, in particular, the entropy of
the black hole only depends on the quantize electric and magnetic charges.

3. Gauged N = 2 Supergravity

The scalar manifold of the N = 2 Supergravity is a product of a Special Kähler manifold and
a Quaternionic Kähler manifold

SM×QM , (3.1)

parametrized respectively by complex scalars of the vector multiplets zi and the quaternionic scalars
in the hypermultiplets qu. In general, let g be the Kähler metric of a Kähler manifold M; if g
has a a non trivial group of continuous isometries G ∈M generated by Killing vectors, then the
kinetic Lagrangian admits G as a group of global space-time symmetries. The appearance of local
isometries is described by a procedure called momentum map. We are going to present, in this
section, how the gauging affects the theory and the search for black holes, and we refer for a
detailed review to [18].

With respect to the ungauged theory, the connections of the relevant bundles are modified as:

TSM : tangent bundle Γi
j → Γ̂i

j = Γi
j +gAΛ ∂ jki

Λ

L : line bundle Q → Q̂= Q+gAΛP0
Λ

SU : SU(2) bundle ωx → ω̂x = ωx +gAΛPx
Λ

SU−1⊗THM : Sp(2m) bundle ∆αβ → ∆̂αβ = ∆αβ +gAΛ ∂ukv
Λ
Uu|αAU

β

v|A

(3.2)

thus, in presence of local isometries, the fields are charged under combinations of the gauge fields
defined by the function P0

Λ
(zi) and the SU(2) vector Px

Λ
(qu). These P’s functions are called respec-

tively holomorphic and triholomorphic momentum maps and define the Killing vectors associated
to the gauged isometries.

Apart from the modification of gauge connections, in order for the full Lagrangian to be in-
variant under supersymmetry variations, a scalar potential and fermionic mass terms have to be
added. Let us comment on how the new terms will affect the solutions, keeping in mind we are
looking for charged, possibly supersymmetric black holes in a zero fermion background.

• Scalars are charged

∂µzi→ ∇µzi , ∂µqu→ ∇µqu . (3.3)

5
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Simple derivatives are replaced with covariant derivatives, according to (3.2). The vector
fields now appear in the Langrangian whose field dependence becomes L(Fa,Aa,χ i,∂µ χ i),
meaning that the hypothesis of Gaillard and Zumino are no more satisfied: duality invari-
ance is broken3.

• A scalar potential appears in the Lagrangian, whose general form is

Vg = (gi j?ki
Λk j?

Σ
+4huvku

Λkv
Σ)L

ΛLΣ +(UΛΣ−3LΛLΣ)Px
ΛP

x
Σ . (3.4)

Two consequences arise

1. This term couples the dynamics of the scalar fields of the vector multiplets, parametrized
by the covariantly holomorphic sections V= (LΛ ,MΛ), to the scalars of the hypermul-
tiplets, qu, so that we cannot neglect hypermultiplets anymore when looking for
black hole geometries.

2. This potential can be nonvanishing at asymptotic infinity, so that a geometry that is a
solution of the gauged theory will asymptote in general to a curved space, according to
the particular value of the scalar fields at infinity. Depending on the model under con-
sideration and the choice of gauged isometries, it will be possible to find asymptotic
AdS4 geometries.

• For a generic gauging, the U(1)n fields AΛ
µ will be promoted to non abelian gauge fields of the

group G, depending on the choice of the momentum maps. In particular, P0
Λ

, which defines
the gauging of the isometries of the Special Kähler manifold, has an explicit expression in
terms of the symplectic sections

P0
Λ = eK/2

(
M∆ f ∆

ΛΣ LΣ
+ M∆ f ∆

ΛΣ LΣ

)
with f ∆

ΛΣ
being the structure constants of G. It is clear, then, that a nonzero P0

Λ
would

correspond to non abelian gaugings, and the black hole would acquire non abelian charge.

If we are looking for generalization of black holes solutions from the ungauged to gauged
theory, it is convenient to consider a minimal departure from the setup of the ungauged N = 2
Supergravity: scalars coupled to hypermultiplets, non abelian BPS black hole states and loss of
duality invariance cannot be handled in full generalization, yet. A way out exists, that allows us to
keep a nonvanishing potential in the Lagrangian (needed to study black holes in curved asymptotic
geometries), while leaving the scalars neutral and the gauge fields abelian: the so-called Fayet-
Iliopoulos gauging.

3.1 Fayet-Iliopoulos gauging

Consider the momentum maps

P0
Λ = 0 , Px

Λ = ξ
x
Λ , (3.5)

3Broken duality invariance in gauged Supergravities means that different choices of gauging may correspond to
physically inequivalent theories. This has been studied recently in the work [17], in the context of gauged N = 8
Supergravity, in which a classification of duality orbits for different gaugings has been discussed.

6
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where the ξΛ’s are constant parameters. Without loss of generality, it is possible to perform an
SU(2) rotation on the Px

Λ
vector to align the momentum map in one direction, that we can take

x = 2. This fixes the gauging parameters as ξ 2
Λ
≡ ξΛ. The choice (3.5) corresponds to an abelian

gauging of the isometries of the quaternionic scalar manifold QM, and precisely to the R-symmetry
subgroup

U(1)R ∈ SU(2)R ⊂ QM . (3.6)

The Killing vectors satisfy the following relations [18]

ki
Λ = igi

∂PΛ ,

Kx
uvku

Λkv
Σ =

1
2

f ∆
ΛΣP

x
∆ , (3.7)

and the Fayet-Iliopoulos gauging does not generate any Killing vector. The only contribution ap-
pearing in the scalar potential (3.4) is then

VFI = (UΛΣ−3LΛLΣ)ξΛξΣ , (3.8)

which does not introduce any mixing between the scalars of the vectors and those of the hyper-
multiplets. From (3.2), with this choice of gauging, the only fields that acquires a charge are the
sections of the SU(2) R-symmetry bundle, in particular gravitini. The black hole is no more the
only state of the theory carrying conserved charges, and a Dirac quantization condition has to be
imposed, among the black hole and the gravitini4.

Finally, the action for the bosonic sector of N = 2 U(1)-gauged Supergravity is

S =
∫

d4x
(
−R

2
+gi∂µzi

∂
µz+ ImNΛΣFΛ

µνFΛ µν +
1

2
√
−g

ReNΛΣε
µνρσ FΛ

µνFΣ
ρσ −Vg

)
, (3.9)

where the scalar potential

Vg = g2VFI (3.10)

is the only modification generated by the Fayet-Iliopoulos gauging.

4. Duality covariant derivation of BPS flow

It is possible to rewrite the scalar potential in a symplectic covariant form. Let us define from
now on the gravitini charges as gξΛ ≡ gΛ. If we introduce a set of magnetic charges gΛ, and a
symplectic vector

G=

(
gΛ

gΛ

)
, (4.1)

we can extend the form of the gauging potential to

Vg(G,V) = −3|L|2 + |DiL|2 . (4.2)
4For BPS solutions this condition is provided by supersymmetry, while for extremal non-BPS ones this has to be

imposed by hand, further constraining the parameters of the black hole solution [10, 11, 19]
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This is a symplectic covariant potential that reduces to (3.10) when gΛ ≡ 0. The scalar quantity
L= 〈G , V〉5 is a section of the line bundle of the scalar manifold, defined analogously to the central
charge Z= 〈Q,V〉.

We are interested in black hole geometries that are solutions of the equations of motion de-
rived from (3.9), static and spherically symmetric. The metric ansatz that capture solutions in
asymptotically locally Anti de Sitter spacetime is

ds2 =−e2U(r)dt2 + e−2U(r)
[
dr2 + e2ψ(r)(dθ

2 + sinθ
2dφ

2)
]
, (4.3)

which is however valid only for the extremal case. This ansatz allows to reduce the action (3.9) to
the one dimensional system

S1d =
∫

dr
{

e2ψ
[
U ′2−ψ

′2 +gizi′z′+ e2U−4ψVBH + e−2UVg
]
−1
}
+

+
∫

dr
d
dr

[
e2ψ(2ψ

′−U ′)
]
,

(4.4)

that yields the second order equations in terms of the τ parameter eψ∂τ ≡ ∂r:

− d2

dτ2U(τ) = e2UVBH(pΛ,qΛ,z,z) + e4ψ−2UVg(z,z)

d2

dτ2 ψ(τ) = e2ψ −2e4ψ−2UVg(z,z)

e−U d2

dτ2 eU(τ)− e−ψ d2

dτ2 eψ(τ) = gi∂τzi
∂τz . (4.5)

Supersymmetric solutions, however, solve first order equations corresponding to the requirement
that the supersymmetry variation of the fermionic fields remains zero

δεψ
A
µ = 0 , δελ

iA = 0 . (4.6)

Looking for a BPS solution, it is convenient to re-write the action (4.4) using a BPS-trick, i.e. as a
sum of squares. This is possible if we introduce an additional phase α , as

S1d =
∫

dr
{
−1

2
e2(U−ψ)E T ME − e2ψ

[
(α ′+Ar)+2e−U Re(e−iαL)

]2
−e2ψ

[
ψ
′−2e−U Im(e−iαL)

]2− (1+ 〈G,Q〉)

−2
d
dr

[
e2ψ−U Im(e−iαL)+ eU Re(e−iαZ)

]}
,

(4.7)

where M (ReNΛΣImNΛΣ) is the matrix defining the black hole potential in (2.13), and E is the
symplectic vector

E T ≡ 2e2ψ
(
e−U Im(e−iαV)

)′ T − e2(ψ−U)GT
ΩM−1 +4e−U(α ′+Ar)Re(e−iαV)T +QT . (4.8)

5We define symplectic product of two vectors A=
(
aΛ,aΛ

)
and B=

(
bΛ,bΛ

)
as 〈A ,B〉=AT ΩB= aΛbΛ−aΛbΛ,

being Ω =

(
0 −1
1 0

)
.
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Since the action is a sum of squares, the requirement that each of the squared quantity vanishes
ensures that the variation of the action is zero on shell. One can check that these equations are
equivalent to those obtained by Supersymmetry variations of the fermions, and they are, precisely

U ′ = −eU−2ψRe(e−iαZ)+ e−U Im(e−iαL)

ψ
′ = 2e−U Im(e−iαL)

żi = −eiαgi(eU−2ψDZ+ ie−U DL)

α
′+Ar = −2e−U Re(e−iαL) . (4.9)

They are supplemented by the constraint

e2U−2ψ Im(e−iαZ) = Re(e−iαL) . (4.10)

that identifies the phase as

e2iα =
Z− ie2(ψ−U)L

Z+ ie2(ψ−U)L
, (4.11)

in terms of the fields of the theory. It is easy to see that the BPS flow (4.9) can be derived from a
superpotential

W= eU |Z− ie2(ψ−U)L| , (4.12)

which interestingly reduces to the known superpotential of the ungauged N= 2 theory, Wg=0 = eU |Z|,
if we turn off G.

However, what has no analogue in the ungauged theory is the constraint

〈G ,Q〉=−1 , (4.13)

that has to be imposed for a Supersymmetric solution, as we see from (4.7). This constraint acts as a
quantization condition relating among them the black hole and the gravitino charges. It is analogous
to the quantization condition that Romans found for his monopole solutions [20]. Actually the
black holes, solutions of the BPS equations we presented above, have even more in common with
the Romans’ monopole: they are 1/4-BPS states. In order to solve the Supersymmetry variations
of the gravitino and gaugino fields in the Fajet-Iliopoulos theory, in fact, one has to impose two
projection conditions on the Killing spinor εA

γ
0
εA = ±i eiα

εABε
B ,

γ
1
εA = eiα

δABε
B , (4.14)

each one reducing by 1/2 the independent degrees of freedom of the four dimensional spinorThe
choice of + or− in (4.14) gives rise to two different BPS branches of solutions. The flow equations
obtained in this section, by squaring the action, refer to the choice of + sign. Solution of the other
branch are obtained by changing the sign of the vector of black hole charges Q→−Q, in the flow
equations and the constraints.

9
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4.1 Attractors in the gauged theory

Supersymmetric black holes in gauged Supergravities are geometries, described by a metric
ansatz of the form (4.3), that interpolates between an asymptotic AdS4 region and a near horizon
Bertotti-Robinson geometry AdS2× S2. This means that, in addition to the attractor condition at
the horizon (a consequence of the infinite throat of AdS2), in order for the geometry at infinity to
be supersymmetric a D-term condition has to be imposed:

DiL|∞ = 0 . (4.15)

This further constrains the dynamics of the scalars, and restricts the solutions that can be actually
found.

Given the superpotential (4.12), defining A = ψ−U , the attractor equations for the BPS black
hole are given by ∂iW|rh = 0, W|rh = 0, that translate to

Q+ e2A
ΩMG = −2Im(ZV)+2e2A Re(LV) ,

e2A =−i
Z

L
= R2

S . (4.16)

The first one reduces to the attractor equations of ungauged Supergravity as G→ 0, while the second
one is proper of gauged Supergravity and contains the information on the area of the horizon, i.e.
the entropy. By projecting the first equation on the symplectic scalar sections V one obtains two
interesting expressions for the area of the black hole

e−2A = 2
(
|DiL|2−|L|2

)
,

e2A = 2
(
|DiZ|2−|Z|2

)
. (4.17)

These correspond in fact to the second symplectic invariants I2(G) and I2(Q) of N= 2 Supergravity,
defined for a generic symplectic vector of charges as

I2(Γ) = |Z(Γ)|2−|DiZ(Γ)|2 , Z(Γ)≡ 〈Γ ,V〉 . (4.18)

Its absolute value gives the entropy of the Q-charged black hole solution in ungauged Supergravity,
so we interpret the appearence of the symplectic invariant in the gauged theory as the sign of an
underlying duality structure in the BPS spectrum, also in presence of gauging.

5. Constructing the black hole solution

Given the attractor equations and BPS flow, one can analyse the model of Fajet-Iliopoulos
gauged Supergravity in search of black holes solutions. In the rest of this section we discuss two
examples with running scalars. Solutions with constant scalars cannot be found [10].

5.1 Single modulus theory

The theory with prepotential F = iX0X1 has one complex modulus z and Kähler potential
K=−2log(z+z), defining the moduli space as Rez > 0. For general gauge charges (g0,g1,g0,g1),
the requirement of AdS4 vacuum at infinity fixes

z∞ =
g0g1 +g0g1 + i(g0g0−g1g1)

(g1)2 +(g0)2 , (5.1)

10
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which is a value allowed in the moduli space if g0g1 + g0g1 > 0. We have seen that the attractor
equations give the entropy as

e2A =−(2I2(G))
−1 , (5.2)

where I2(G) = |G|2−|DiG|2 = g0g1 + g0g1. Thus, it is impossible to have positive entropy and at
the same time asymptotic AdS4, and we can conclude that no supersymmetric regular solutions in
AdS4 can be found in the one-modulus theory with prepotential F = iX0X1.

5.2 Electric 1
4 -BPS black hole in the t3-model

As an example, consider the t3-model, with prepotential

F =
(X1)3

X0 . (5.3)

The theory has one complex modulus t and Kähler potential K = − log[−i(t− t)3]. We look for
solutions with zero axionic fields, meaning the modulus is purely imaginary t =−iλ , with λ > 0,
and we fix the charges for the abelian fields and the gauging to be

Q =


p0

0
0
q1

 , G=


0
g1

g0

0

 . (5.4)

The potential of the gauging is

Vg = −3g1
(g0

λ
+g1

λ

)
, (5.5)

it fixes the value of the scalar at infinity λ∞ =
√

g0
g1 , for a solution with Anti de Sitter asymptotics.

In order to construct the supersymmetric black hole, we have to solve the flow equations [10]

2e2ψ
(
e−U ReV

)′
+ e2(ψ−U)

ΩMG+Q = 0 ,

(eψ)′ = 2eψ−U ReL , (5.6)

and impose on the charges the constraint (4.13), which in this case is g0 p0− g1q1 = −1. It is
convenient to re-define the symplectic sections in terms of the positive functions

H0 = L0e−U , H1 =−
1
3

M1e−U , (5.7)

so that the equations of motion reduce to

2e2ψ

(
∂rH0 +4g0(H0)2

−3∂rH1−12g1(H1)
2

)
=

(
−p0

−q1

)
, ψ

′ = 2(g0H0 +3g1H1) . (5.8)

Notice that e−2U = 8
√

H0(H1)3, and λ =
√

H1
H0 . Following the assumptions of [9] we make the

following ansatz

H0 = e−ψ(α0r+β
0) , H1 = e−ψ(α1r+β1) , ψ = log(r2− r2

h) . (5.9)
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The equations (5.8) now become algebraic equations, that can be solved in terms of the coefficients
in the H’s and ψ ansatz as

p0 =
g1 q1−1

g0
β =−

√
1−4g1 q1/3

8g1 β
0 =

3
8g0

√
1−4g1 q1/3 rh =

√
1−4g1 q1

2
(5.10)

The solution is then parametrized by q1 < 0, g0 > 0 and g1 > 0, the scalar field and the warp factor
U(r) are

λ =

√
H1

H0 = λ∞

√
2r−

√
1−4g1 q1/3

2r+3
√

1−4g1 q1/3
, (5.11)

e2U =
2
√

g0(g1)3(r2− r2
h)

2(
r− 1

2

√
1−4g1 q1/3

)3/2(
r+ 3

2

√
1−4g1 q1/3

)1/2 . (5.12)

The entropy S = e2A|h = e2ψ(rh)−2U(rh) is

e2A(rh) =
1

8
√

g0(g1)3

(√
1−4g1q1−

√
1−4g1q1/3

)3/2
√√

1−4g1q1 +3
√

1−4g1q1/3 .

(5.13)

It is interesting how the duality invariant expression g0(g1)3 appears in the entropy. This however
multiplies a quantity whose relation to duality invariance has not yet been explained.

6. Conclusions

1/4-BPS solutions of N = 2 Supergravity with Fayet-Iliopoulos gauging are the first example
of regular, supersymmetric, spherical black holes in asymptotically AdS4 space. They represent a
new branch that does not reduce to the ungauged Supergravity black holes, as one can read from
the quantization condition that constrains the charges of the black hole and the gravitini.

It is possible to extend the study of black holes in Fayet-Iliopoulos gauged Supergravity de-
parting from the supersymmetric solutions. In fact, black holes at finite temperature have been
recently constructed [21, 22] as well as extremal non-supersymmetric ones [23, 19]. However, in
order to reach more realistic scenarios in the context of flux compactifications or applied holog-
raphy, it would be desirable to have an analogous derivation of black hole solutions in the case
where the hypermultiplets do not decouple, as well as for models of Supergravity with non-abelian
gauging.
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