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In this note we report on the analysis of the zero temperature spectra of glueballs and mesons
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1. Introduction

The gauge/gravity duality [1] is a powerful tool to study the dynamics of strongly coupled field
theories and thus it has been extensively used to try and describe the physics of Strong interactions.
Although a calculable string dual of QCD is far from our present understanding, it is possible
to build models describing strong coupling physics bearing many similarities with QCD. Indeed,
top-down models resulting from solutions of string theory describe qualitatively the low energy
dynamics of QCD. However, these models are plagued by Kaluza-Klein modes that make difficult
a quantitative matching to real QCD. A different approach is given by the bottom-up models, which
are ad hoc holographic models inspired by string theory that use some QCD features as inputs. (See
[2] and references therein for an overview on holographic duals of QCD). In this note we will be
working with a class of bottom-up holographic theories that has been proposed recently, under the
name of V-QCD [3], and has physics very close to QCD in the Veneziano limit.

The Veneziano limit [4] of QCD is given by:

Nc → ∞ , N f → ∞ , x =
N f

Nc
fixed , λ = g2

Y M Nc fixed . (1.1)

An interesting feature of the theory accessible in this limit is the conformal window in which the
theory has an IR fixed point. This window extends from x = 11/2 to lower values of x, and it
includes the Banks-Zaks weakly coupled region (as x → 11/2) [5]. At a critical value xc there is a
phase transition from the conformal window to theories with chiral symmetry breaking in the IR.
Interestingly, near and below xc there is a transition region where the theory is expected to exhibit
“walking” behavior. This “walking” regime has been conjectured to display Miransky scaling [6].

The dynamics of “walking” (or nearly conformal) quantum field theories, has been the subject
of intensive study. It has been argued to be an important ingredient [7, 8, 9] in providing viable
non-perturbative mechanisms for electroweak symmetry breaking like technicolor [10]. As we have
said, this regime is expected to appear in standard QCD just below the boundary of the conformal
window, x ≤ xc ' 4; as well as in other quantum field theories [11].

The transition between the conformal window and QCD-like IR behavior has been called
a conformal transition [12]. It has been suggested that in holographic theories this conformal
transition is associated with a violation of the BF bound in the dual bulk theory [13]. Moreover,
in QCD this correlates with the ψ̄ψ operators reaching a scaling dimension equal to two – another
prerequisite of viable extended technicolor.

Apart from Miransky scaling, other phenomena have often been associated with the “walking
regime” of QFT:

• The appearance of an anomalously light scalar state, the “dilaton”, due to the almost unbro-
ken scale invariance [8].

• The suppression of the electroweak S-parameter, a crucial ingredient for the viability of
technicolor theories [14].

Both issues are controversial, especially since “walking regimes” appear at strong coupling, and
therefore perturbative techniques do not apply. It is also difficult to study these phenomena on the
lattice due to sizable finite size effects.
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In recently studied holographic models with walking behavior, the lightest state is often a
scalar [15, 16]. Whether this state can be identified as the dilaton is, however, a difficult question,
and the answer appears to depend on the model. The S-parameter has been studied in popular
holographic bottom-up [17] as well as brane-antibrane models [18, 19] with a variety of answers
found.

In this letter, to look into these and related issues we will study the spectra of mesons and
glueballs for a bottom-up holographic model of QCD in the Veneziano limit (V-QCD [3]). This
letter summarizes the results presented by one of the authors in the “XVIII European Workshop on
String Theory”, and subsequently published in [20].

2. V-QCD

This model combines two sectors resulting from holographic models describing respectively
the glue and flavor dynamics of QCD. The first one is improved holographic QCD (IHQCD), which
is a holographic model for large-N Yang Mills in 4 dimensions [21]. The second one is a model
for flavor inspired by tachyon condensation in string theory [22]. The relevant fields that are kept
in these models in order to describe the vacuum structure are:

• The five-dimensional metric, the space-time components of which are dual to the energy-
momentum tensor,

• A scalar (the dilaton, φ ) that is dual to the YM ’t Hooft coupling constant,

• A complex N f ×N f matrix field (the tachyon, Ti j) transforming in the (N f , N̄ f ) of the U(N f )×
U(N f ) flavor group, and dual to the operator ψ̄ jψi.

The complete action for the V-QCD model can be written as

S = Sg +S f +Sa , (2.1)

where Sg, S f , and Sa are the actions for the glue, flavor and CP-odd sectors, respectively. As
discussed in [3], only the first two terms contribute to the vacuum structure of the theory. The CP-
odd sector, whose physics contains the U(1)A anomaly, contributes to some sectors of the spectrum
(flavor singlet pseudoscalars) that are not the subject of this letter; hence we will address its physics
in a future publication [23]. The full structure of the flavor sector action (S f ) was not detailed in
[3] since it is not necessary when studying the vacuum structure of the model. However, the extra
terms do contribute to the spectrum of fluctuations, and will be discussed below.

2.1 The glue sector

The glue action was introduced in [21, 24, 25],

Sg = M3N2
c

∫
d5x

√
−g

(
R− 4

3
(∂λ )2

λ 2 +Vg(λ )
)
. (2.2)

Here λ = eφ is the exponential of the dilaton. It is dual to the TrF2 operator, and its background
value is identified as the ’t Hooft coupling. Glue dynamics sets requirements on the dilaton poten-
tial: Vg asymptotes to a constant near λ = 0, and diverges as Vg ∼ λ 4/3

√
logλ as λ →∞, generating
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confinement, a mass gap, discrete spectrum and asymptotically linear glueball trajectories [21, 25].
The Ansatz for the vacuum solution for the metric is

ds2 = e2A(r)(dx2
1,3 +dr2) , (2.3)

where the warp factor A is identified as the logarithm of the energy scale in field theory. In our
conventions the UV boundary lies at r = 0, and the bulk coordinate runs from zero to infinity. The
metric will be close to the AdS one except near the IR singularity at r =∞, and thus A∼− log(r/`),
where ` is the AdS radius. Therefore, r is identified roughly as the inverse of the energy scale of
the dual field theory.

2.2 The flavor sector

The flavor sector consists of the generalized Sen’s action [26]

S f =−1
2

M3 NcTr
∫

d4xdr
(

Vf (λ ,T †T )
√

−detAL +Vf (λ ,T T †)
√

−detAR

)
. (2.4)

The quantities inside the square roots are defined as

ALMN = gMN +w(λ )F(L)
MN +

κ(λ )
2

[
(DMT )†(DNT )+(DNT )†(DMT )

]
,

ARMN = gMN +w(λ )F(R)
MN +

κ(λ )
2

[
(DMT )(DNT )† +(DNT )(DMT )†] , (2.5)

where the fields AL, AR, and T are N f ×N f matrices in the flavor space. It is not known in general
how the determinants over the Lorentz indices in (2.4) should be defined when the arguments (2.5)
contain non-Abelian matrices in flavor space. However, for our purposes such definition is not
required: our background solution will be proportional to the unit matrix 1N f , in which case the
fluctuations of the Lagrangian are unambiguous up to quadratic order. The covariant derivative of
the tachyon field is defined as

DMT = ∂MT + iTAL
M − iAR

MT . (2.6)

And the class of tachyon potentials that we will consider is

Vf (λ ,T T †) =Vf 0(λ )e−a(λ )T T †
. (2.7)

For the vacuum solutions (with flavor independent quark mass) we will have T = τ(r)1N f where
τ(r) is real, so that Vf (λ ,T T †) is replaced by

Vf (λ ,τ) =Vf 0(λ )e−a(λ )τ2
. (2.8)

The other undetermined functions in the flavor action must satisfy the requirements that we discuss
below.
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2.3 Background solutions and phase diagram

Agreement with the dynamics of QCD both in the IR and UV sets requirements on the un-
determined functions appearing in the action of V-QCD. In the UV, agreement with the two-loop
QCD beta-function and the one-loop anomalous dimension of the quark mass restricts the asymp-
totics of these potentials, [3]. Moreover, Vg(λ ) has already been fixed from glue dynamics [25],
and the other undetermined functions in the flavor action (Vf 0(λ ), κ(λ ), a(λ ), w(λ )) must satisfy
the following generic requirements:

• There should be two extrema in the potential for τ : an unstable maximum at τ = 0 (with
chiral symmetry intact) and a minimum at τ = ∞ (with chiral symmetry broken).

• The dilaton potential at τ = 0, namely Veff(λ ) =Vg(λ )−xVf 0(λ ), must have a nontrivial IR
extremum at λ = λ∗(x) that moves from λ∗ = 0 at x = 11/2 to large values as x is lowered.

Notice that the Ansatz (2.7) for Vf (λ ,τ) automatically satisfies the first requirement. On the
other hand, the second requirement is necessary for the phase diagram to have the required structure
as a function of x = N f /Nc. Different classes of potentials have been studied in [3, 27] where they
were classified according to the IR behavior of the tachyon as type I and type II models. These are
the potentials that will be used in the analysis presented in this letter. The potentials I and II in [27]
are completely determined up to a constant called W0 which controls the flavor dependence of the
UV AdS scale. We refer to [27] for the explicit form and a detailed explanation of the potentials
used in this analysis1.

The vacuum (zero temperature) solutions of [3] involve a Poincaré invariant metric, no vectors,
and radially dependent scalars:

ds2 = e2A(r)(dx2
1,3 +dr2) , λ (r) , T = τ(r) 1N f . (2.9)

The background solutions corresponding to the aforementioned potentials result in a zero tempera-
ture phase diagram that is essentially universal. As a function of 0 < x < 11/2, the standard phase
diagram at zero quark mass presents two phases separated by a phase transition at some x = xc ' 4
(the precise value depends on the potential chosen):

• In the region 0 < x < xc, the (massless) theory has chiral symmetry breaking, and flows to
a massless SU(N f ) pion theory in the IR. The IR dynamics is thus similar to the one of
ordinary QCD. The corresponding background solution has nontrivial λ (r), A(r) and τ(r),
with the tachyon diverging at the IR singularity of the geometry.

• In the conformal window, i.e., when xc < x < 11/2, the theory flows to a nontrivial IR fixed
point and there is no chiral symmetry breaking. The background solution has zero tachyon
τ(r)=0 and nontrivial λ (r) and A(r), giving rise to a geometry flowing to a nontrivial AdS
fixed point in the IR.

Remarkably, in the region just below the conformal window (x . xc) the theory exhibits a
“walking” behavior. The phase transition at x = xc (which is only present at zero quark mass)

1A thorough study of the potentials, taking into account the constraints arising from the meson spectra, will be
performed in [23].
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Figure 1: Qualitative behavior of the transition temperature between the low and high temperature phases
of V-QCD matter [27].

involves BKT [28] or Miransky [6] scaling. Indeed, the order parameter of the transition, the chiral
condensate σ ∼ 〈q̄q〉, vanishes exponentially:

σ ∼ exp
(
− 2K̂√

xc − x

)
, (2.10)

as x → xc from below. (The constant K̂ is positive [3]). And for xc ≥ x, σ is identically zero as
chiral symmetry is intact. The Miransky scaling is linked to the “walking” behavior of the coupling
constant: the field λ (r) takes an approximately constant value λ∗ for a wide range of r (the length
of this region scales as the square root of the condensate in (2.10)). Hence, the coupling stays
approximately constant for many decades in the RG time, until the deep IR where the non-zero
tachyon drives the theory away from the nontrivial fixed point and towards λ = ∞.

At finite temperature a rich structure of black holes, with one or two scalar hairs, was found
in [27]. The general structure of their phase diagram is depicted in figure 1. The chiral restoration
transition is first order at low values of x, but typically becomes second order as we approach
xc. When this happens, a separate first order deconfinement transition still exists, so that an extra
chirally broken phase appears for temperatures between the two transitions. There can also be two
first-order transitions, depending on the details of the potentials. The transition temperatures obey
Miransky scaling [27].

3. Quadratic fluctuations and spectra

In this section we present some results for the spectra of mesons and glueballs of V-QCD,
restricting to the case of zero quark mass.

In order to compute the spectrum of mesons and glueballs we need to study the fluctuations
of all the fields of V-QCD. In the glue sector the relevant fields are the metric gmn, the dilaton
φ and the QCD axion a (which belongs to the CP-odd sector). Their normalizable fluctuations
correspond to glueballs with JPC = 0++, 0−+, 2++, where J stands for the spin and P and C for
the field properties under parity and charge conjugation respectively. In the meson sector one has
the tachyon T , and the gauge fields AL/R

µ ; their normalizable fluctuations corresponding to mesons
with JPC = 1++, 1−−, 0++, 0−+.

6
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Figure 2: Nonsinglet meson spectra in the potential II class with Stefan-Boltzmann (SB) normalization for
W0 (see [27]), with xc ' 3.7001. Left: the lowest non-zero masses of all four towers of mesons, as a function
of x, in units of ΛUV, below the conformal window. Right, the ratios of masses of up to the fourth massive
states in the same theory as a function of x.
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Figure 3: Nonsinglet meson spectra in the potential I class (W0 = 3/11), with xc ' 4.0830. Left: the lowest
non-zero masses of all four towers of mesons, as a function of x, in units of ΛUV, below the conformal
window. Right, the ratios of masses of up to the fourth massive states in the same theory as a function of x.

The fluctuations fall into two classes according to their transformation properties under the
flavor group: flavor nonsinglet (transforming in the adjoint representation of SU(N f )) modes and
flavor singlet modes. The glue sector contains only flavor singlet modes, whereas each fluctuation
in the meson sector can be divided into flavor singlet and nonsinglet terms. Those (flavor singlet)
modes which are present in both sectors will mix. Since we are in the Veneziano limit the mixing
takes place at leading order in 1/Nc: the 0++ glueball mixes with the 0++ flavor singlet σ -meson,
and the pseudoscalar 0−+ flavor singlet meson mixes with the 0−+ glueball due to the axial anomaly
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Figure 4: Singlet scalar meson spectra for the potential II class with SB normalization for W0. They contain
the 0++ glueballs and the singlet 0++ mesons that mix here at leading order. Left: the four lowest masses as
a function of x in units of ΛUV. Right: the ratios of masses of up to the fourth massive states as a function of
x.

(realized by the CP-odd sector which we will not study here, see [23]). All classes, with various JPC

and tranformation properties under the U(N f ) group, contain an infinite discrete tower of excited
states.

We start by defining the vector and axial vector combinations of the gauge fields:

VM =
AL

M +AR
M

2
, AM =

AL
M −AR

M

2
, (3.1)

appearing both in the singlet and nonsinglet flavor sectors that we describe in the following.
We work in the axial gauge with Vr = 0 = Ar. We can take the vector fluctuation to be trans-
verse, ∂ µVµ = 0, and separate the axial vectors in transverse and longitudinal parts as Aµ(xµ ,r) =
A⊥

µ (x
µ ,r)+A‖

µ(xµ ,r) with ∂ µA⊥
µ = 0. We also write the complex tachyon field as

T (xµ ,r) = [τ(r)+ s(xµ ,r)+ sa(xµ ,r)ta] exp [iθ(xµ ,r)+ iπa(xµ ,r)ta] , (3.2)

where ta are the generators of SU(N f ), τ is the background solution, s (θ ) is the scalar (pseu-
doscalar) flavor singlet fluctuation, and sa (πa) are the scalar (pseudoscalar) flavor nonsinglet fluc-
tuations.

3.1 Nonsinglet fluctuations

The nonsinglet fluctuations include the vector and axial vector meson fluctuations (3.1), the
pseudoscalar mesons (including the massless pions), and the scalar mesons. Their second order
equations are relatively simple, and we present those of the vectors below. We use the standard
factorized Ansatz Vµ(xµ ,r) = ψV (r)Vµ(xµ). The radial wave function satisfies the following equa-
tion:

∂r
(
Vf (λ ,τ)w(λ )2eAG−1 ∂rψV

)
Vf (λ ,τ)w(λ )2eAG

+m2
V ψV = 0 , G ≡

√
1+ e−2Aκ(λ )(∂rτ)2 . (3.3)
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Figure 5: Left: A fit of the ρ mass to the Miransky scaling factor for Potentials II with SB normalization
for W0. Right: fπ as a function of x in units of ΛUV

√
NcN f . Again, it vanishes near xc following Miransky

scaling. The dashed blue curve is the result for potentials I with W0 = 3/11, while the continuous black
curve is for potentials II with SB normalized W0.

The radial wave function for the transverse axial fluctuations can be defined by A⊥
µ (x

µ ,r) =
ψA(r)Aµ(xµ) , and it satisfies

∂r
(
Vf (λ ,τ)w(λ )2eAG−1 ∂rψA

)
Vf (λ ,τ)w(λ )2eAG

− 4τ2e2Aκ(λ )
w(λ )2 ψA +m2

AψA = 0 . (3.4)

The nonsinglet scalar and pseudoscalar fluctuation equations are more complicated and we will
present them in [23].

The general behavior of the spectra in the nonsinglet sector is as follows:

• In the conformal window all spectra are continuous.

• Below the conformal window, x< xc, the spectra are discrete and gapped. The only exception
being the SU(N f ) pseudoscalar pions that are massless due to chiral symmetry breaking.

In the “walking regime”, i.e., xc − x � 1, we find the following specific features:

• All masses obey Miransky scaling: mn ∼ ΛUV exp(− κ√
xc−x). This is explicitly seen in the

case of the ρ mass in figure 5 left.

• All nonsinglet mass ratios asymptote to non-zero constants as x → xc.

We present the results of our numerical analysis of the nonsinglet meson spectra in figures 2
and 3 (note that the plots on the left of those figures are in logarithmic scale). These results reflect
the properties of the spectra listed above. The lowest masses of the mesons vary little with x until
we reach the walking region. There, Miransky scaling takes over and the lowest masses dip down
exponentially fast. The ΛUV scale is extracted as usual from the logarithmic running of λ in the
UV.
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√
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√
N f Nc (see section 4).

3.2 Singlet fluctuations

The singlet fluctuations consist of the 2++ glueballs, the 0++ glueballs and scalar mesons that
mix to leading order in 1/N in the Veneziano limit, the 0−+ glueballs, and the η ′ pseudoscalar
tower. The spin-two fluctuation equations are simple and can be summarized by the appropriate
Laplacian (see for instance [29]). The scalar and pseudoscalar equations are, however, very in-
volved and will be presented in detail in [23]. Here we show results of the numerical analysis for
the 0++ singlet scalars in figure 4.

The general properties of the singlet spectra are similar as in the nonsinglet sector: below the
conformal window, x < xc, the singlet spectra are discrete and gapped, and there is again Miransky
scaling as x → xc from below (see figure 4).

There are some specific properties related to the mixing of the glueball and meson states:

• The U(1)A anomaly appears at leading order in the Veneziano limit, and consequently the
mixture of the 0−+ glueball and the η ′ has a mass of O(1).

• In the scalar sector, for small x, where the mixing between glueballs and mesons is small,
the lightest state is a meson, the next lightest state is a glueball, the next a meson and so on.
However, with increasing x, nontrivial mixing sets in and level-crossing seems to be generic.
This can be seen in the right hand plot of figure 4.

All singlet mass ratios asymptote to constants as x → xc. The same holds for mass ratios
between the flavor singlet and nonsinglet sectors, as confirmed numerically in figure 6. There seems
to be no unusually light state (termed the “dilaton”) that reflects the nearly broken scale invariance
in the walking region. The reason is a posteriori simple: the nearly broken scale invariance is
reflected in the whole spectrum of bound states scaling exponentially to zero due to Miransky
scaling.
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Figure 7: Left: The S-parameter as a function of x for potential class I with W0 = 3/11. Right: The S-
parameter as a function of x for potential class II with SB normalization for W0. In both cases S asymptotes
to a finite value as x → xc.

3.3 Asymptotics of the spectra

The asymptotics of the spectra at high masses is in general a power-law with logarithmic cor-
rections, with the powers depending on the potentials. The trajectories are approximately linear
(m2

n ∼ cn) for type I potentials and quadratic (m2
n ∼ cn2) for type II potentials. There is the possi-

bility, first seen in [22] that the proportionality coefficient c in the linear case is different between
axial and vector mesons2. These possibilities do not affect substantially the issues of the dilaton
and the S-parameter.

Finally, let us comment on the possibility of using as background the nontrivial saddle points,
found in [3], where the tachyon solution has at least one zero (analogous to the Efimov minima).
We have verified explicitly that such saddle points are unstable, as the scalar meson equation has a
single mode with a negative mass squared, both in the singlet and nonsinglet channels. This mass
is small for small x, but becomes large as x → xc [16]. Therefore, the Efimov minima are strongly
unstable in the walking regime.

4. Two-point functions and the S-parameter

We have computed the two-point functions of several operators including the axial and vector
currents as well as the scalar mass operator. We will focus here on the two-point functions of the
vector and axial currents which can be written in momentum space as

〈V a
µ (q)V

b
ν (p)〉= Πab

µν ,V (q, p) =−(2π)4δ 4(p+q)δ ab (q2ηµν −qµqν
)

ΠV (q) , (4.1)

and similarly for the axial vector. Here we have used that

Vµ(x) =
∫ d4q

(2π)4 eiqx V a
µ (q) ta ψV (r) , (4.2)

where ta, a = 1, . . . ,N2
f −1 are the flavor group generators.

2A careful analysis of the effects of different potentials on the asymptotics of the spectra will be presented in [23].
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Next, using the expansions

ΠA =
f 2
π

q2 +∑
n

f 2
n

q2 +m2
n − iε

, ΠV = ∑
n

F2
n

q2 +M2
n − iε

, (4.3)

we determine fπ as

f 2
π =−

NcN f

12π2
∂rψA

r

∣∣∣∣
r=0,q=0

, (4.4)

where the normalization is fixed by matching the UV limit of the two point functions to QCD.
Here the normalization of the radial wave function was fixed in the UV by ψA(r = 0) = 1, and it is
required to be normalizable in the IR.

Typical results for fπ are plotted in figure 5, right. Notice that the pion scale changes smoothly
for most of the range of x, but as x → xc Miransky scaling sets in such that it vanishes exponentially.

Finally, we shall now compute the S-parameter for V-QCD. It is given by:

S = 4π
d

dq2

[
q2(ΠV −ΠA)

]
q=0 = −

NcN f

3π
d

dq2

(
∂rψV (r)

r
− ∂rψA(r)

r

)∣∣∣∣
r=0,q=0

= 4π ∑
n

(
F2

n

M2
n
− f 2

n

m2
n

)
. (4.5)

As both masses and decay constants in (4.5) obey Miransky scaling, the S-parameter is insen-
sitive to it. Therefore subleading terms determine its scaling behavior as x → xc. Our results show
that generically the S-parameter (in units of N f Nc) remains finite in the QCD regime, 0 < x < xc,
and asymptotes to a finite constant at xc (see figure 7). The S-parameter is identically zero inside
the conformal window (massless quarks) because of unbroken chiral symmetry. This suggests a
subtle discontinuity of correlators across the conformal transition, which will be analyzed in detail
in [23]. In [19] similar conclusions are reached in a different context (probe tachyon-flavor dynam-
ics in AdS). We find that in the walking region of V-QCD the backreaction of flavor to matter (that
is fully implemented here) is important, among other things, for the spectra, and therefore the two
results are not directly comparable.

This behavior of S is in qualitative agreement with recent estimates based on analysis of the BZ
limit in field theory [30]. We have also found choices of potentials where the S-parameter becomes
very large as we approach xc. Our most important result is that generically the S-parameter is an
increasing function of x, and reaches its highest value at or near xc contrary to previous expectations
[30].

5. Conclusions

In this letter we have studied the zero temperature spectra of glueballs and mesons in a class of
holographic theories (V-QCD) that is in the universality class of QCD in the Veneziano limit. This
model takes into account the backreaction of the flavor degrees of freedom and therefore allows us
to analyze the spectra as a function of x = N f /Nc.

V-QCD was formulated in [3] where the zero temperature phase diagram was studied and
shown to agree with expectations for QCD in the Veneziano limit. It is for these solutions that we
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have computed the spectra of fluctuations. We have found that the main features of the spectra
are shared by various choices of the potentials, although some important issues like the large mass
asymptotics do depend on their specific details. A thorough study of the spectra for a wider class
of potentials is underway and we expect to report its results in the near future [23]. The study
presented here has nevertheless allowed us to outline the main characteristics of the spectra of
fluctuations and also to address issues relevant for the use of this setup as a holographic model of
walking technicolor. We will now summarize our main results.

In the conformal window, xc < x < 11/2 where the theory flows to an IR nontrivial fixed point,
all the spectra are continuous. For x< xc the massless theory spontaneously breaks chiral symmetry
in the IR. The spectra in this region are discrete and gapped (except for the pions). For x . xc the
model is in its “walking region”, where the coupling stays almost constant for many decades of
energy and it only diverges in the deep IR. As for the spectra, in the “walking region” all masses
obey Miransky scaling: mn ∼ ΛUV exp(− κ√

xc−x), and the same applies to other mass parameters
like fπ .

Remarkably, as x → xc all flavor singlet and nonsinglet mass ratios asymptote to non-zero
constants. Therefore, there is no unusually light state (also called “dilaton”) in the spectrum. Such
a state was expected as a consequence of the approximate conformal symmetry in the “walking
region”. In this scenario this approximate conformal symmetry is instead correlated with Miransky
scaling of all masses. One should also notice that for finite values of x there is strong mixing
between singlet mesons and glueballs, and occasional level crossing as x is varied.

Finally, by computing the two-point functions of vector and axial vector mesons, we have been
able to determine the S-parameter for our setup. In units of N f Nc the S-parameter is generically of
O(1). Additionally, it is an increasing function of x and asymptotes to a finite constant as x → xc.
Inside the conformal window the S-parameter is identically zero and therefore it is discontinuous
at the conformal transition (at x = xc).

These results for the S-parameter suggest that making S arbitrarily small in a walking theory
may be more difficult than expected before. Moreover, our results indicate that this is probably not
the case for QCD in the Veneziano limit.
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