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Light pseudoscalar mesons are Janus-type particles: Within quantum chromodynamics, they must
be described as bound states of its fundamental degrees of freedom and as the (pseudo-) Goldstone
bosons of its spontaneously broken chiral symmetry. This janiform nature of pions and kaons may
be easily accommodated by the Bethe–Salpeter formalism in its instantaneous limit: Starting from
the general shape of the Bethe–Salpeter solutions for lightpseudoscalar mesons at large Euclidean
momenta, we provide the exact relationship between the solutions of our bound-state equation and
the underlying interactions, boiled down to potentialsV(r) depending on the interquark distancer.
For massless quarks,V(r) exhibits, at the origin, a (logarithmically softened) Coulomb singularity
crucial for counterbalancing all positive contributions to the bound-state mass but rises, for larger,
to infinity and can hence be regarded as confining. For massivequarks,V(r) still features a similar
(logarithmically softened) Coulomb singularity at the origin; for quark masses too large, however,
the potential’s confining character gets lost:V(r) approaches, for larger, a nonpositive finite limit.
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Introduction, Cursory Sketch of Basic Idea, Summary of Findings, and Conclusions

In principle, the homogeneousBethe–Salpeter equation[1] provides a quantum-field-theoretic
description of relativistic bound states in Minkowski space. In real life, practical or even conceptual
obstacles often prompt us to content ourselves withthree-dimensional reductionsof this formalism.
Most prominent among the resulting bound-state equations is theSalpeter equation[2], obtained by
assuming that all bound-state constituents interact instantaneously and propagate freely, cf. Ref. [3].
An astounding drawback of the Salpeter equation is that, depending on the nature of the interactions
involved, it predicts, even in situations where we expect toobtain just stable bound states, also states
that develop instabilities. This issue has been thoroughlyanalysed for the Salpeter equation without
negative-energy contributions and a generalization [4] thereof [5], and the full Salpeter equation [6].
As a by-product, such studies bore out the need forexact analytic solutionsof the Salpeter equation.

Examples of these may be found by inverting the procedure: Assuming spherical symmetry, all
interactions are encoded in configuration-space central potentials and Salpeter’s equation reduces to
systems of radial eigenvalue equations [7]. Then rigorous relations between the properties of bound
states and the interactions which their constituents experience can by established by determiningfor
pre-selected solutionsthose potentials for which the bound-state equation yieldsthese solutions [8].

Naturally, the question arises how that relation looks likefor light pseudoscalar mesonsviewed
as — due to (explicitly and) spontaneously broken global symmetries of quantum chromodynamics
(almost) massless — quark–antiquark bound states. In thechiral limit of quantum chromodynamics
with dynamically brokenchiral symmetry, pseudoscalar-meson Bethe–Salpeter solutions [9] fall off
(for large Euclidean momenta) like the inverse fourth powerof the quarks’ relative four-momentum.
Choosing our Salpeter model according to these insights andFierz-symmetric effective interactions
of the quarks then gives the central potentials for masslessand massive quarks in analytic form [10].
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