PROCEEDINGS OF SCIENCE

Direct constraints on the top-Higgs coupling from the 8 TeV LHC data

Sanjoy Biswas^{*a}, Emidio Gabrielli^{bc}, Fabrizio Margaroli^{ad} and Barbara Mele^a

"INFN, Sezione di Roma P.le Aldo Moro 2, I-00185 Rome, Italy ^bNICPB, Ravala 10, Tallinn 10143, Estonia ^cINFN, Sezione di Trieste Via Valerio 2, I-34127 Trieste, Italy ^dDipartimento di Fisica, Università di Roma "La Sapienza" P.le Aldo Moro 2, I-00185 Rome, Italy E-mail: sanjoy.biswas@romal.infn.it, emidio.gabrielli@cern.ch, Fabrizio.Margaroli@romal.infn.it, barbara.mele@romal.infn.it

The LHC experiments have analyzed the 7 and 8 TeV LHC data in the main Higgs production and decay modes. Current analyses show a near degeneracy in the relative sign of the $Ht\bar{t}$ and *HWW* couplings. In order to remove this degeneracy and strongly constrain these couplings we have consider single top production in association with a Higgs in the *t*-channel. This process can be very sensitive to both the magnitude and the sign of a non-standard top-Higgs coupling. We show that at 8 TeV center of mass energy and 50 fb⁻¹ integrated luminosity the combination of diphoton and multi-lepton signatures, originating from different combinations of the top and Higgs decay modes, can be a potential probe to constrain a large portion of the negative top-Higgs coupling space presently allowed by the ATLAS and CMS global fits. (EPS-HEP 2013)10

000

The European Physical Society Conference on High Energy Physics 18-24 July, 2013 Stockholm, Sweden

^{*}Speaker.

1. Introduction

The discovery of a Higgs-like resonance at the LHC [1] has started up a new phase in the experimental exploration of the electroweak symmetry-breaking (EWSB) mechanism of the standard model (SM). The observed resonance is, within present experimental errors, well compatible with the minimal structure of a Higgs sector. However, it is important to pin down its properties and couplings with other SM particles. With the present moderate statistics collected at 7 and 8 TeV (\sim 25 fb⁻¹ per experiment), where the main analyses are based on the $H \rightarrow \gamma\gamma$, ZZ^{*}, WW^{*} signatures, global fits for the Higgs-like particle couplings are made under simplified assumptions [2, 3] and show a near degeneracy in the relative sign of the *Htt* and *HWW* couplings.

To remove this degeneracy, we have analyzed *t*-channel single top production in association with a Higgs assuming a *universal* scale factor C_f (either positive or negative) for the Higgs Yukawa couplings to all fermion species f, $Y_f = C_f Y_f^{SM}$ (where Y_f^{SM} is the SM Yukawa coupling) and a *universal* (according to custodial symmetry) coupling scale factor C_V to W and Z bosons, $C_V = g_{HVV}/g_{HVV}^{SM}$. This channel is highly sensitive to the relative sign of the $Ht\bar{t}$ and HWW couplings. In fact, in the SM there is a strong destructive interference between the two diagrams shown in figure 1. The content of this presentation is based on the references [4, 5].

Figure 1: Feynman diagrams for the t-channel single top production in association with a Higgs.

2. Results

The potential of the $p p \rightarrow t q' H$ in the context of the LHC has been exploited in various search channels, depending on the possible combinations of various decay modes of the Higgs and the top. Figure 2 shows the enhancement in the production cross-section and in the signal strength (defined as the product of the cross-section times the branching function of respective channels) for a wide range of values of C_f (assuming $C_V = 1$). The final state considered are $2\gamma + b + 3j$, $2\gamma + b + \ell + j$, $\ell^{\pm}\ell^{\pm} \ell^{\pm} \ell^{\pm} \ell^{\mp} + b + j$ and $\ell^{\pm}_i \ell^{\pm}_j \ell^{\mp}_j + b + j$, where the last but one represents the two same sign same flavor leptons with the third one having different flavor and the last one represents 3ℓ signal complementary to the former one. We have also studied the potential SM backgrounds and prescribed some cuts based on the kinematics of the signal (see [4, 5]). The LHC reach of the combined search channels have been shown in figure 3.

3. Conclusion

We have shown that a combined search channels can potentially exclude the $C_f \leq 0$ region (as-

Figure 2: Cross-section and signal strength for difference Higgs decay modes at the LHC.

Figure 3: The 95% exclusion plot in the (C_V, C_f) plane with the currently allowed parameter regions by the ATLAS and CMS experiments, in the universal C_f scaling assumption with 50 fb⁻¹ of LHC data at 8 TeV.

suming universal C_f scaling) at 8 TeV center of mass energy and 50 fb⁻¹ of integrated luminosity. The corresponding significance can be more than 2.5 σ in this region.

References

- [1] G. Aad et al. [ATLAS Collaboration], Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [hep-ex/1207.7214]. S. Chatrchyan et al. [CMS Collaboration], Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [hep-ex/1207.7235].
- [2] ATLAS Collaboration, Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC, ATLAS-CONF-2012-127, September 2012; Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25fb⁻¹ of proton-proton collision data, ATLAS-CONF-2013-034, March 2013;
- [3] CMS Collaboration, *Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV*, CMS-PAS-HIG-12-045, November 2012.
- [4] S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, JHEP 1301 (2013) 088 [hep-ph/1211.0499].
- [5] S. Biswas, E. Gabrielli, F. Margaroli and B. Mele, Direct constraints on the top-Higgs coupling from the 8 TeV LHC data, JHEP 07 (2013) 073 [hep-ph/1304.1822].