Search for Single-Top Production in ep Collisions at HERA

S. Antonelli on behalf of the ZEUS Collaboration
CNAF-INFN - Viale Berti Pichat 6/2, 40127 Bologna, Italy
E-mail: stefano.antonelli@cnaf.infn.it

S. Antonelli*
CNAF-INFN, Italy
E-mail: stefano.antonelli@cnaf.infn.it

Results of a recent search for single-top production in $e^\pm p$ collisions at HERA are presented. The search for single-top production, $e p \rightarrow e t X$, has been performed with the ZEUS detector at HERA collider using data corresponding to an integrated luminosity of 0.37 fb$^{-1}$. No evidence for top production was found, consistent with the expectation from the Standard Model. Limits were computed for single-top production via flavour changing neutral current transitions. The result was combined with a previous ZEUS result yielding a total luminosity of 0.50 fb$^{-1}$. A 95% Credibility Level upper limit of 0.13 pb was obtained for the cross section at the centre-of-mass energy of $\sqrt{s} = 315$ GeV.
1. Introduction

In ep collisions at HERA, the production of single-top quark is possible due to the large centre-of-mass energy \(\sqrt{s} = 318 \text{ GeV} \). The dominant production process of single top quarks in the Standard Model (SM) is the charged current (CC) deep inelastic scattering (DIS) reaction \(ep \to \nu tX \) \([1, 2]\) which has a cross section of less than 1 fb.

No sizeable production is hence expected in our data sample and any excess can be attributed to new physics. In several extensions of the SM \([3]\), single-top production can happen via a flavour changing neutral current (FCNC) process mediated by an effective coupling which allows a \(u-t \) or \(c-t \) transition via a neutral vector boson (\(\gamma \) or \(Z \)), see Fig. 1.

Owing to the large \(Z \) mass, this process is more sensitive to a coupling of the type \(t\gamma \). Furthermore, large values of \(x \), the fraction of the proton momentum carried by the struck quark, are needed to produce a top quark. Since the \(u \)-quark parton distribution function (PDF) of the proton is dominant at large \(x \), the production of single top quark is most sensitive to the \(tu\gamma \) coupling.

The analysis has been performed with 0.37 fb\(^{-1}\) and extends the previously published ZEUS results \([4]\) corresponding to 0.13 fb\(^{-1}\). Limits for single-top production via FCNC were computed combining this result with the previous ZEUS one \([4]\) for a total luminosity of 0.50 fb\(^{-1}\).

2. Event selection

The event selection was optimised for single-top production via photon exchange, looking for the dominant decay \(t \to bW^+ \) and subsequent W decay to \(e \) and \(\mu \) and their respective neutrinos. The selection is based on requiring an isolated high-\(p_T \) lepton, large missing transverse momentum and high hadronic \(p_T \).

The main preselection cuts were the following:

- \(p_T,\text{miss} > 10 \text{ (12) GeV} \) \(\mu-\text{(e-)} \) channel;
- lepton \(p_T > 8 \text{ (10) GeV} \) \(\mu-\text{(e-)} \) channel;
- transverse mass \(M_T > 10 \text{ GeV} \) \(e \)-channel only;

The main final cuts where the following:

- hadronic \(p_T > 40 \text{ GeV} \) for both channels;
- \(p_T,\text{miss} > 15 \text{ GeV} \) \(e \)-channel.

\(^1\)Here and in the following, \(e \) denotes both the electron and the positron.
Figure 2 shows the preselection plots in the muon (left) and electron (right) channels. Black dots are data, green area is MC and the dark-shaded region is the W contribution; reasonable agreement is observed in all cases.

3. Systematic uncertainties

The main contribution to the systematical uncertainties on the predicted SM events is due to the following sources:

- the theoretical uncertainty on the W background normalisation; ±15%;
- the statistical uncertainty on the total SM prediction after the final selection; ±13% and ±9% for the e- and μ-channel respectively;
- the uncertainty on the NC DIS background; ±15% for the preselection and ±6% for the final selection in the e-channel and negligible in the μ-channel.

4. Limits evaluation

Since no excess of events above the SM expectations is observed, a further selection is made to evaluate the limit on FCNC cross section under the assumption of no signals. The 95% Credibility Level (C.L.) limit on the cross section is found to be: $\sigma < 0.24$ pb at $\sqrt{s} = 318$ GeV. The limit on the cross section is converted into a limit on the coupling $\kappa_\gamma < 0.18$ (95% C.L.). This limit has been combined with a previous ZEUS result [4] giving the following constraints: $\sigma < 0.13$ pb and $\kappa_\gamma < 0.13$ (95% C.L.) [5]. Constraints on the anomalous top branching ratios $t \rightarrow u\gamma$ ($Br_{u\gamma}$) and $t \rightarrow uZ$ (Br_{uZ}) were also evaluated assuming a non-zero v_Z. Figure 3 shows the ZEUS boundary in the ($Br_{u\gamma}$, Br_{uZ}) plane compared to limits from H1 [6], ALEPH [7], CDF [8], D0 [9]. For low values of v_Z, resulting in branching ratios of $t \rightarrow uZ$ of less than 4%, this paper provides the current best limits.
Search for Single-Top Production in ep Collisions at HERA
S. Antonelli

5. Conclusions

A search for possible deviations from the Standard Model predictions due to flavour-changing neutral current top production in events with high-\(p_T\) leptons and high missing transverse momentum was performed using an integrated luminosity of 0.37 fb\(^{-1}\), collected by the ZEUS detector in 2004-2007. Since no significant deviation from the expectation was observed, the results were used to set limits on the anomalous production of single top at HERA. A 95% C.L. upper limit on the cross section of \(\sigma < 0.24\) pb at a centre-of-mass energy of 318 GeV was obtained. The limit was combined with a previous ZEUS result [4], obtained using HERA I data, for a total integrated luminosity of 0.50 fb\(^{-1}\), giving a combined 95% credibility-level upper limit of \(\sigma < 0.13\) pb at \(\sqrt{s} = 315\) GeV. This limit, assuming a vanishing coupling of the top quark to the Z boson (\(v_Z\)), corresponds to a constraint on the coupling of the top to the \(\gamma\) of \(\kappa_\gamma < 0.13\). Constraints on the anomalous top branching ratios \(t \to u\gamma\) and \(t \to uZ\) were also evaluated assuming a non-zero \(v_Z\). For low values of \(v_Z\), resulting in branching ratios of \(t \to uZ\) of less than 4%, see Fig. 3, this paper provides the current best limits.

References