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1. Introduction

The anomalous magnetic moments of electron and muon have been measured with unrivaled

precision. In the case of the muon the experimental value

a
exp
µ = 1.16592080(54)(33)[63] ·10−3 (1.1)

has to be compared with the theory prediction

atheo
µ = 1.16591790(65) ·10−3 . (1.2)

The discrepancy between the two values of about 3 standard deviations is approximately of the

same order as the four-loop QED corrections. The four- and five-loop corrections have been cal-

culated in Ref. [2] and have not been verified by an independent calculation. In this paper we will

present first steps to such an independent calculation to verify the results in Ref. [2]. An technically

related object is the MS–on-shell relation for quark masses in QCD. One of the main motivations,

why it is of importance to know the MS–on-shell relation with four-loop accuracy, is the planned

determination of the top-quark mass at a future linear collider. The precision reached at such an

experiment requires an equally precise knowledge of the MS–on-shell relation.

In the following we will discuss recent results for the calculation of heavy-lepton induced

contributions to the anomalous magnetic moment of electron and muon. We will also briefly review

the status of calculations for the MS–on-shell relation and electronic contributions to the anomalous

magnetic moment of the muon.

2. Calculation and Results

The calculation is set up as follows, the Feynman diagrams are generated using QGRAF [12],

its output is then converted into FORM [15] input using q2e and exp [13, 4]. Suitable projectors

are applied, if necessary, an asymptotic expansion is performed, and the resulting scalar integrals

are reduced to master integrals using integration-by-parts identities implemented in CRUSHER [10]

and FIRE [14].

2.1 Heavy lepton contributions to the anomalous magnetic moment

The key to the calculation of the heavy-lepton contributions to the anomalous magnetic mo-

ment of electron and muon at four-loop order is the method of asymptotic expansion. The strong

hierarchy of the lepton masses allows for the expansion of the contributing diagrams in the mass

ratios me/mµ and me/mτ , mµ/mτ , respectively, the calculation can be much simplified. After the

expansion, instead of the calculation of complicated four-loop propagator diagrams only the cal-

culation of relatively simple four-loop vacuum diagrams is required. The method is illustrated in

Fig. 1.

Using an asymptotic expansion in Ref. [6] the four-loop corrections due to heavy-leptons were

obtained. In Tab.1 we show the separate contributions from several classes of diagrams for the case

of the muon anomalous magnetic moment. As can be seen a better accuracy has been achieved for

all diagram classes. Our improved result for the anomalous magnetic moment of the muon

A
(8)
2,µ(Mµ/Mτ) = 0.0421670+0.0003257+0.0000015 = 0.0424941(2)(53) (2.1)
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(a)

(b)

Figure 1: Graphical description of the method of asymptotic expansions.

is more precise than the results previously available and in full agreement with previous evalua-

tions [2]. The situation is similar for the electron case. Here our improved result reads

A
(8)
2,e(Me/Mµ) ≈ (9.161259603+0.000711078+2.2 ·10−8) ·10−4

≈ 9.161970703(2)(372) ·10−4 ,

A
(8)
2,e(Me/Mτ) ≈ (7.42923268609971+2.75209424 ·10−6 +3.2 ·10−13) ·10−6

≈ 7.42924(0)(118) ·10−6 , (2.2)

which is again in agreement with previous evaluations [3].

2.2 MS–on-shell relation

The MS–on-shell relation has only been calculated up to three-loop order in Refs. [11, 9] and

comprises a fundamental quantity of QCD. To take full advantage of the experimental precision

reached at a future linear collider it is mandatory to calculate it at four-loop order. Let us briefly

review the status of this calculation. It can be written as a power series in the strong coupling
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group 102
·A

(8)
2,µ(Mµ/Mτ)

[6] [2]

I(a) 0.00324281(2) 0.0032(0)

I(b) + I(c) + II(b) + II(c) −0.6292808(6) −0.6293(1)

I(d) 0.0367796(4) 0.0368(0)

III 4.5208986(6) 4.504(14)

II(a) + IV(d) −2.316756(5) −2.3197(37)

IV(a) 3.851967(3) 3.8513(11)

IV(b) 0.612661(5) 0.6106(31)

IV(c) −1.83010(1) −1.823(11)

Table 1: Mass-dependent corrections to aµ at four-loop order as obtained in this paper and the comparison

with Refs. [2]. The uncertainties assigned to our numbers correspond to 10% of the highest available expan-

sion terms, i.e., the ones of order (Mµ/Mτ)
6 and (Mµ/Mτ)

7. Uncertainties from the muon and tau lepton

mass are not shown.

constant αs

zOS
m (µ) =

m̄q(µ)

Mq

=
ZOS

m

ZMS
m

= 1+
αs(µ)

π
δ z

(1)
m +

(

αs(µ)

π

)2

δ z
(2)
m +

(

αs(µ)

π

)3

δ z
(3)
m +

(

αs(µ)

π

)4

δ z
(4)
m

+O
(

α5
s

)

(2.3)

and labeling contributions from massless and massive quark loops by nl and nh, respectively, we

obtain the result for contributions from diagrams with at least two massless quark loops [8]

zOS
m = 1−As1.333+A2

s (−14.229−0.104nh +1.041nl)

+A3
s

(

−197.816−0.827nh −0.064n2
h +26.946nl −0.022nhnl −0.653n2

l

)

+A4
s

(

−43.465n2
l −0.017nhn2

l +0.678n3
l + . . .

)

+O
(

A5
s

)

, (2.4)

with As = αs(µ)/π .

2.3 Light-lepton contributions to the anomalous magnetic moment

In the approximation of a massless electron only the leading term including the logarithms can

be obtained. For the sub-leading contributions a proper asymptotic expansion has to be performed.

Expanding aµ in a power series in the fine structure constant α

aµ = 1+
α

π
a
(1)
µ +

(α

π

)2

a
(2)
µ +

(α

π

)3

a
(3)
µ +

(α

π

)4

a
(4)
µ

+O
(

α5
)

(2.5)

and marking contributions from electron loops by nl

a
(4)
µ = n3

l a
(43)
µ +n2

l a
(42)
µ + · · · (2.6)
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we obtain the result for contributions with three electron loops

a
(43)
µ =

1

54
L3

µe−
25

108
L2

µe+

(

317

324
+

π2

27

)

Lµe−
2ζ3

9
−

25π2

162
−

8609

5832

≈ 7.19666 , (2.7)

where Lµe = ln(M2
µ/M2

e ). The result for diagrams with two electron loops can be further split into

a contribution with and without an additional muon loop, a
(42)b
µ and a

(42)a
µ , respectively,

a
(42)
µ = a

(42)a
µ +a

(42)b
µ ,

with

a
(42)a
µ = L2

µe

[

π2

(

5

36
−

a1

6

)

+
ζ3

4
−

13

24

]

+Lµe

[

−

a4
1

9
+π2

(

−

2a2
1

9
+

5a1

3
−

79

54

)

−

8a4

3
−3ζ3 +

11π4

216
+

23

6

]

−

2a5
1

45
+

5a4
1

9
+π2

(

−

4a3
1

27
+

10a2
1

9

−

235a1

54
−

ζ3

8
+

595

162

)

+π4

(

−

31a1

540
−

403

3240

)

+
40a4

3
+

16a5

3
−

37ζ5

6

+
11167ζ3

1152
−

6833

864
≈ −3.62427 , (2.8)

a
(42)b
µ =

(

119

108
−

π2

9

)

L2
µe+

(

π2

27
−

61

162

)

Lµe −
4π4

45
+

13π2

27
+

7627

1944

≈ 0.49405 . (2.9)

Our results for a
(43)
µ and a

(42)b
µ agree with the results given in Refs. [7, 1]. The result for a

(42)a
µ can

be compared with the result from Refs. [5, 2]

aµ =−3.64204(112) . (2.10)

Our new result confirms the previously obtained results, the small discrepancy is due to missing

terms in the expansion in me/mµ .

3. Conclusions

We presented results for both the MS–on-shell relation and the anomalous magnetic moment of

the muon at four-loop order. These result comprise a first step towards the full four-loop calculation

and confirm the results known in the literature.
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