

Search for Light Higgs and Dark Photons at BaBar and Belle

Ming-Chuan Chang*†

Department of Physics, Fu-Jen Catholic University, Taiwan E-mail: 068190@mail.fju.edu.tw

From supersymmetry to dark matter, many extensions of the Standard Model include the possibility of light new physics. The ideal tools to explore such theories are low-energy high-luminosity collider experiments such as *B* factories. This report summarizes recent searches for light new physics by the BaBar and Belle experiments.

The European Physical Society Conference on High Energy Physics -EPS-HEP2013 18-24 July 2013 Stockholm, Sweden

^{*}Speaker.

[†]On behalf of the Belle Collaboration

\sqrt{s}	BaBar	Belle	Total
$\Upsilon(5S)$	-	121	121
$\Upsilon(4S)$	433	711	1,144
$\Upsilon(3S)$	30	3	33
$\Upsilon(2S)$	15	25	40
$\Upsilon(1S)$	-	6	6
Off-resonance	54	94	138

Table 1: Integrated luminosities(fb⁻¹) collected by the *B* factories at different center-of-mass energies. The off-resonance data were collected about 40 MeV below the $\Upsilon(4S)$ resonance at BABAR and at a similar offset for the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances in the case of Belle.

1. Introduction

During the last decade, the BaBar Collaboration at PEP-II [1] and the Belle Collaboration at KEKB [2][3] have respectively collected about 550 fb⁻¹ and more than 1 ab⁻¹ of data at several Υ resonances, mostly the $\Upsilon(4S)$ resonance(see Table 1).

2. Search for Light CP-Odd Higgs boson in Υ decays

The Higgs mechanism attempts to explain the origin of mass within the Standard Model (SM) [4]. Recently, experimental evidence suggests a Higgs-like states with the mass of about 125 GeV [5]. Several extensions of SM, such as the next-to-minimal supersymmetric Model (nMSSM) predicts more Higgs-like state [6].

The nMSSM suggests a Higgs sector contains seven states, two charged Higgs bosons, three neutral CP-even bosons, and two CP-odd bosons. The lightest CP-odd state, A^0 , could be with the mass below the $b\bar{b}$ production threshold. Such a particle could be produced in $\Upsilon \to \gamma A^0$ decays [7] with a branching fraction as large as 10^{-4} for the narrow states $\Upsilon(nS)$ (where $n \le 3$). The predicted branching fraction depends on the A^0 mass and couplings [6]. The A^0 is accessible and well above the sensitivity of B-factories.

$$e^+e^- \rightarrow \Upsilon(1S, 2S, 3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+\tau^-$$

The two taus of the $\Upsilon(nS) \to \gamma A^0$, $A^0 \to \tau^+ \tau^-$ decays are identified through their leptonic decays, $\tau^+ \to \mu^+ \nu_\tau \bar{\nu}_\mu$ and $\tau^- \to e^- \nu_\tau \bar{\nu}_e$. The signal event should consist of exactly two oppositely-charged tracks, identified as muons or electrons. The signal yield is extracted as a function of m_{A^0} by a simultaneous fit to the photon energy distribution of the $ee\gamma$, $\mu\mu\gamma$ and $e\mu\gamma$ samples. No excess is seen. The 90% CL limits on the branching fraction are listed in Table 2 [8]. The Belle results are preliminary.

$$e^+e^- \rightarrow \Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-, \ \Upsilon(1S) \rightarrow \gamma A^0, \ A^0 \rightarrow \tau^+\tau^-$$

In this analysis, the $\Upsilon(1S)$ resonance is produced from the $\Upsilon(2S)$ resonance with the emission of two charged pions. The $\Upsilon(1S)$ is identified by the dipion transition. The signal events are

Mode	Mass range (GeV)	BF upper limit (90% CL)	
		BaBar	Belle
$\Upsilon(1S) ightarrow \gamma A^0, A^0 ightarrow au^+ au^-$	$3.6 < m_{A^0} < 9.3$	-	$(0.4-4.5)\times10^{-5}$
$\Upsilon(2S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-$	$4.16 < m_{A^0} < 9.19$	-	$(1.61 - 12.17) \times 10^{-5}$
$\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-$	$4.03 < m_{A^0} < 10.1$	$(1.5-16) \times 10^{-5}$	-

Table 2: Results of light Higgs boson searches, $e^+e^- \to \Upsilon(1S, 2S, 3S) \to \gamma A^0$, $A^0 \to \tau^+\tau^-$, studied by the BaBar [8] and Belle Collaboration. The Belle results are preliminary.

Mode	Mass range (GeV)	BF upper limit (90% CL)	
		BaBar	Belle
$\Upsilon(1S) o \gamma A^0, A^0 o au^+ au^-$	$3.5 < m_{A^0} < 9.2$	$(0.9-13)\times10^{-5}$	-
$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-$	$3.84 < m_{A^0} < 9.16$	-	$(0.91 - 45.37) \times 10^{-5}$

Table 3: Results of light Higgs boson searches, $e^+e^- \to \Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$, $\Upsilon(1S) \to \gamma A^0$, $A^0 \to \tau^+\tau^-$, studied by the BaBar [9] and Belle Collaboration. The Belle result is preliminary.

Mode	Mass range (GeV)	BF upper limit (90% CL)	
		BaBar	Belle
$\Upsilon(2S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$	$0.213 < m_{A^0} < 9.37$	-	$(0.19 - 8.26) \times 10^{-6}$
$\Upsilon(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$	$0.21 < m_{A^0} < 9.3$	$(0.3-8.3)\times10^{-6}$	-

Table 4: Results of light Higgs boson searches, $\Upsilon(2S,3S) \to \gamma A^0$, $A^0 \to \mu^+ \mu^-$, studied by the BaBar [10] and Belle Collaboration. The Belle result is preliminary.

identified by the photon and two charged tracks from one-prong decays of the two tau leptons. No excess is seen. The 90% CL limits on the branching fraction are listed in Table 3 [9]. The Belle result is preliminary.

$$e^+e^-
ightarrow \Upsilon(2S,3S)
ightarrow \gamma A^0,\, A^0
ightarrow \mu^+\mu^-$$

In this analysis, the signal events are reconstructed by combining a photon with a pair of oppositely-charged tracks. The charged tracks must be identified as muons by particle identification algorithms. A series of unbinned likelihood fits to the dimuon mass distribution is performed to extract the signal. No excess is seen. The 90% CL limits on the branching fraction are listed in Table 4 [10]. The Belle result is preliminary.

$$e^+e^- \rightarrow \Upsilon(2S,3S) \rightarrow \Upsilon(1S)\pi^+\pi^-, \ \Upsilon(1S) \rightarrow \gamma A^0, \ A^0 \rightarrow \mu^+\mu^-$$

In this analysis, the $\Upsilon(1S)$ resonance is produced from the $\Upsilon(2S,3S)$ resonance with the emission of two charged pions. The $\Upsilon(1S)$ is identified by the dipion transition. The signal events are identified by the photon and two charged tracks. The charged tracks must be identified as muons by particle identification algorithms. A series of unbinned likelihood fits to the dimuon mass dis-

Mode	Mass range (GeV)	BF upper limit (90% CL)	
		BaBar	Belle
$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$	$0.212 < m_{A^0} < 9.20$	$(0.28 - 9.7) \times 10^{-6}$	-
$\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$	$0.212 < m_{A^0} < 9.27$	-	$(0.01 - 11.86) \times 10^{-6}$

Table 5: Results of light Higgs boson searches, $e^+e^- \to \Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$, $\Upsilon(1S) \to \gamma A^0$, $A^0 \to \mu^+\mu^-$, studied by the BaBar [11] and Belle Collaboration. The BaBar result is formed by combining the $\Upsilon(2S,3S)$ dataset. The Belle result is preliminary.

tribution is performed to extract the signal. No excess is seen. The 90% CL limits on the branching fraction are listed in Table 5 [11]. The Belle result is preliminary.

Summary

The selected searches of A^0 decays into $\mu^+\mu^-$ and $\tau^+\tau^-$ final states have been studied by BaBar and Belle Collaboration. All studies show null results.

3. Search for low-mass dark-sector Higgs bosons

Recent results from terrestrial and satellite experiments have motivated the proposal of a new, hidden gauge sector under which WIMP-like dark matter particles are charged [12].

An Abelian gauge field, the dark photon A, couples this dark sector to Standard Model (SM) particles through its kinetic mixing with the SM hypercharge fields [13]. In this framework dark matter particles can annihilate into pairs of dark photons, which subsequently decay to SM particles. The dark photon mass is constrained to be at most a few GeV to be compatible with astrophysical constraints [14]. In a minimal model [15], the dark photon mass is generated via the Higgs mechanism, adding a dark Higgs boson h' to the theory. The mass hierarchy between these two particles is not constrained, and the dark Higgs boson could be light as well.

The Higgsstrahlung process, $e^+e^- \to Ah'$, $h' \to AA$, offers a gateway to the hidden gauge sector. This process is one of the few suppressed by only a single power of the mixing strength, and the background is expected to be almost negligible.

The BaBar [16] measurement is performed in the range $0.8 < m_{h'} < 10.0$ GeV and $0.25 < m_A < 3.0$ GeV, with the constraint $m_{h'} > 2m_A$. The signal is either fully reconstructed into $3(\ell^+\ell^-)$, $2(\ell^+\ell^-)(\pi^+\pi^-)$, $\ell^+\ell^-2(\pi^+\pi^-)$ final states $(\ell=e, \mu)$ or partially reconstructed in the $2(\mu^+\mu^- + X)$ and $\mu^+\mu^-e^+e^- + X$ channels, where X denotes any final state other than a pair of pions or leptons.

The Belle measurement is performed in the range $0.5 < m_{h'} < 10.5$ GeV and $0.25 < m_A < 3.5$ GeV, with the constraint $m_{h'} > 2m_A$. The signal is fully reconstructed into $3(\ell^+\ell^-)$, $(e^+e^-)2(\pi^+\pi^-)$, $2(\mu^+\mu^-)e^+e^-$ final states $(\ell=e, \mu)$.

In both BaBar and Belle studies, no significant signal is observed. Upper limits on the $e^+e^-\to Ah'$, $h'\to AA$ cross section are set as a function of the hidden Higgs and hidden photon masses. The limits on each channels are combined to extract 90% CL upper limits, which is at the level of 10 - 100 ab. Upper limits on the product of the mixing angle and the dark coupling constant in the case of a hidden sector with an Abelian Higgs boson have been set at the level of $10^{-10}-10^{-8}$ [17]. The Belle results are preliminary.

References

- [1] B. Aubert et al.(BABAR Collaboration), Nucl. Instrum. Meth. A 479, 1 (2002).
- [2] S. Kurokawa and E. Kikutani, Nucl. Instrum. Meth. A 499, 1 (2003), and other papers included in this Volume; T.Abe *et al.*, Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and following articles up to 03A011.
- [3] A. Abashian *et al.* (Belle Collaboration), Nucl. Instrum. Meth. A **479**, 117 (2002); also see detector section in J.Brodzicka *et al.*, Prog. Theor. Exp. Phys. **2012**, 04D001 (2012).
- [4] P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964).
- [5] G. Aad *et al.*(ATLAS Collaboration), Phys. Lett. B **716**, 1(2012); S. Chatrchyan *et al.* (CMS Collaboration), Phys. Lett. B **716**, 30 (2012).
- [6] R. Dermisek and J. F. Gunion, Phys. Rev. Lett. 95, 041801 (2005); R. Dermisek, J. F. Gunion, and B. McElrath, Phys. Rev. D 76, 051105 (2007).
- [7] F. Wilczek, Phys. Rev. Lett. 39, 1304 (1977).
- [8] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 181801 (2009).
- [9] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 88, 071102 (2013).
- [10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 081803 (2009).
- [11] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 87, 031102 (2013).
- [12] R. Bernabei *et al.*, Eur. Phys. J. C **56**: 333-355 (2008). M. Aguilar *et al.* (AMS Collaboration), Phys. Rev. Lett. **110**, 141102 (2013).
- [13] B. Holdom, Phys. Lett. B 166, 196 (1986).
- [14] O. Adriani *et al.* (PAMELA Collab.), Nature **458**, 607 (2009). M. Ackermann *et al.* (Fermi LAT Collab.), Phys. Rev. D **82**, 092004 (2010).
- [15] B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 79, 115008 (2009).
- [16] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. Lett. 108, 211801 (2012).
- [17] J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, Phys. Rev. D 80, 075018 (2009).