PROCEEDINGS OF SCIENCE

CP violation in charm decays at Belle

Byeong Rok Ko**

Korea University, SEOUL, Republic of Korea E-mail: brko@hep.korea.ac.kr

Using the full data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider, we present *CP* violation in charm decays. The $D^0 - \bar{D}^0$ mixing parameter y_{CP} and indirect *CP* violation parameter A_{Γ} in $D^0 \rightarrow h^+h^-$ decays are reported, where *h* denotes *K* and π . The preliminary results are $y_{CP} = (1.11 \pm 0.22 \pm 0.11)\%$ and $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%$. We also report searches for *CP* violation in $D^0 \rightarrow h^+h^-$ and $D^+ \rightarrow K_S^0K^+$ decays. No evidence for *CP* violation in $D^0 \rightarrow h^+h^-$ is observed with $A_{CP}^{KK} = (-0.32 \pm 0.21 \pm 0.09)\%$ and $A_{CP}^{\pi\pi} = (+0.55 \pm 0.36 \pm 0.09)\%$. The *CP* asymmetry difference between $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays is measured with $\Delta A_{CP}^{hh} = (-0.87 \pm 0.41 \pm 0.06)\%$. The *CP* asymmetry in $D^+ \rightarrow K_S^0K^+$ decay is measured to be $(-0.25 \pm 0.28 \pm 0.14)\%$. After subtracting *CP* violation due to $K^0 - \bar{K}^0$ mixing, the *CP* asymmetry in $D^+ \rightarrow \bar{K}^0K^+$ decay is found to be $(+0.08 \pm 0.28 \pm 0.14)\%$.

The European Physical Society Conference on High Energy Physics -EPS-HEP2013 18-24 July 2013 Stockholm, Sweden

^{*}Speaker.

[†]on behalf of the Belle Collaboration.

1. Introduction

Violation of the combined Charge-conjugation and Parity symmetries (*CP*) in the standard model (SM) is produced by a non-vanishing phase in the Cabibbo-Kobayashi-Maskawa flavormixing matrix [1] and that in charm decays is expected to be very small in the SM [2, 3], thus it provides a unique probe to search for beyond the SM.

2. y_{CP} and A_{Γ} measurements with $D^0 \rightarrow h^+h^-$ and $D^0 \rightarrow K^-\pi^+$ decays

The neutral charmed meson mixing and indirect *CP* violation (*CPV*) parameters, y_{CP} and A_{Γ} are defined as

$$y_{CP} = \frac{\hat{\Gamma}(D^0 \to h^+ h^-) + \hat{\Gamma}(\bar{D}^0 \to h^+ h^-)}{2\Gamma} - 1, \qquad (2.1)$$

$$A_{\Gamma} = \frac{\hat{\Gamma}(D^0 \to h^+ h^-) - \hat{\Gamma}(\bar{D}^0 \to h^+ h^-)}{2\Gamma},$$
(2.2)

where Γ is the average decay width of the two mass eigenstates of the neutral charmed mesons and $\hat{\Gamma}$ is the effective decay width of $D^0 \rightarrow h^+h^-$ that can be described with a single exponential form [4]. Under *CP* conservation, y_{CP} is y that is $\Delta\Gamma/2\Gamma$ and characterizes the charm mixing where $\Delta\Gamma$ is the decay width difference between the two mass eigenstates of the neutral charmed mesons. Therefore, any large deviation between y_{CP} and y strongly indicates *CPV* in charm decays.

The experimental observable for y_{CP} is the lifetime difference between $D^0 \to h^+h^-$ and $D^0 \to K^-\pi^+$ states, where the former is CP-even and the latter is an equal mixture of CP-even and CP-odd under CP conservation. The CPV parameter A_{Γ} can be measured from lifetime difference between the two CP conjugate decays. From Eq. (2.1) the lifetime of $D^0 \to h^+h^-$ can be expressed as $\tau(D^0 \to h^+h^-) = \tau/(1+y_{CP})$ and from (2.2) that of $D^0 \to h^+h^-$ and $\bar{D}^0 \to h^+h^-$ can be described with $\tau(D^0 \to h^+h^-) = \tau(1-A_{\Gamma})$ and $\tau(\bar{D}^0 \to h^+h^-) = \tau(1+A_{\Gamma})$, respectively, where τ is the lifetime of $D^0 \to K^-\pi^+$. Therefore, the lifetimes of $D^0 \to h^+h^-$ and $\bar{D}^0 \to h^+h^-$ can be parameterized in terms of y_{CP} , A_{Γ} , and τ as shown in Eq. (2.3).

$$\tau(D^{0} \to h^{+}h^{-}) = \tau(1 - A_{\Gamma})/(1 + y_{CP}),$$

$$\tau(\bar{D}^{0} \to h^{+}h^{-}) = \tau(1 + A_{\Gamma})/(1 + y_{CP}).$$
(2.3)

In order to extract y_{CP} , A_{Γ} , and τ , we perform simultaneous fit to the five proper decay time distributions from $D^0 \to K^+ K^-$, $\bar{D}^0 \to K^+ K^-$, $D^0 \to K^- \pi^+ + \text{c.c.}$, $D^0 \to \pi^+ \pi^-$, and $\bar{D}^0 \to \pi^+ \pi^-$.

Since the experimental data were taken with two different silicon vertex detector configurations [5], we treat them separately with the two different proper decay time resolution functions. Figure 1 shows the simultaneous fits to the five proper decay time distributions. To reduce systematic effects due to the resolution function dependence on $\cos \theta^*$, where θ^* is the polar angle of the D^0 momentum at the center-of-mass system (c.m.s.), the simultaneous fits are actually performed in bins of $\cos \theta^*$ to extract y_{CP} , A_{Γ} and τ . Figure 2 shows the results of the simultaneous fits, y_{CP} , A_{Γ} , and τ as a function of the $\cos \theta^*$. The averages of the fit results shown in Fig. 2 are $y_{CP} = (1.11 \pm 0.22 \pm 0.11)\%$, $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%$, and $\tau = (408.56 \pm 0.54)$ fs, where the last is consistent with world average [6].

To conclude, we observe y_{CP} with 4.5 σ significance and find no indirect CPV in $D^0 \rightarrow h^+h^-$ decays.

Figure 1: Simultaneous fits to the proper decay time distributions that are integrated over the $\cos \theta^*$. Top (bottom) plots are obtained with 3-layer (4-layer) silicon vertex detector. The distributions of signal and sideband regions are shown as error bars and the hatched, respectively. The "(+)" and "(-)" denote the charge of the tagging soft pion.

3. Direct *CPV* measurements in $D^0 \rightarrow h^+h^-$ and $D^+ \rightarrow K_S^0 K^+$ decays

The direct *CP* asymmetry of $D \rightarrow f$ decays is defined as

$$A_{CP}^{D \to f} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})},$$
(3.1)

where Γ is the partial decay width. Experimental determination of $A_{CP}^{D \to f}$ can be done with the asymmetry in the signal yield

$$A_{\rm rec}^{D \to f} = \frac{N_{\rm rec}^{D \to f} - N_{\rm rec}^{\bar{D} \to \bar{f}}}{N_{\rm rec}^{D \to f} + N_{\rm rec}^{\bar{D} \to \bar{f}}} = A_{CP}^{D \to f} + A_{\rm others},$$
(3.2)

where N_{rec} is the number of reconstructed decays and A_{others} are asymmetries other than $A_{CP}^{D \to f}$, production and particle detection asymmetries. The methods developed in Refs. [7] and [8] are used to correct for charged kaon and soft pion detection asymmetries, respectively. To correct for asymmetry caused by neutral kaons, we rely on the method in Ref. [9]. Once we correct for asymmetries due to particle detection, then we extract $A_{CP}^{D \to f}$ using the antisymmetry of the production asymmetry which is the forward-backward asymmetry at Belle.

The $D^0 \rightarrow h^+h^-$ final states are singly Cabibbo-suppressed (SCS) decays in which both direct and indirect *CPV* are expected in the SM [2, 3], while the *CP* asymmetry difference between the

Belle preliminary using 976/fb

Figure 2: y_{CP} , A_{Γ} , and τ as a function of the $\cos \theta^*$. Top (bottom) three plots are obtained with 3-layer (4-layer) silicon vertex detector.

two decays, $\Delta A_{CP}^{hh} = A_{CP}^{KK} - A_{CP}^{\pi\pi}$ reveals approximately direct *CPV* with the universality of indirect *CPV* in charm decays [3]. Figure 3 shows reconstructed signal distributions showing 14.7M $D^0 \rightarrow K^-\pi^+$, 3.1M D^{*+} tagged $D^0 \rightarrow K^-\pi^+$, 282k D^{*+} tagged $D^0 \rightarrow K^+K^-$, and 123k D^{*+} tagged $D^0 \rightarrow \pi^+\pi^-$, respectively, and the measured A_{CP} in bins of $|\cos\theta_{D^{*+}}^*|$. From the bottom plots in Fig. 3, we obtain $A_{CP}^{KK} = (-0.32 \pm 0.21 \pm 0.09)\%$ and $A_{CP}^{\pi\pi} = (+0.55 \pm 0.36 \pm 0.09)\%$ where the former shows the best sensitivity to date. From the two measurements, we obtain $\Delta A_{CP}^{hh} = (-0.87 \pm 0.41 \pm 0.06)\%$.

The D^+ decaying to the final state $K_S^0 K^+$ proceeds from $D^+ \to \bar{K}^0 K^+$ decay which is SCS, where direct *CPV* is predicted to occur [2, 3]. With a K_S^0 in the final state, $D^+ \to K_S^0 K^+$ decay is also expected to generate *CPV* due to $K^0 - \bar{K}^0$ mixing, referred to as $A_{CP}^{\bar{K}^0}$. The decay $D^+ \to \bar{K}^0 K^+$ shares the same decay diagrams with $D^0 \to K^+ K^-$ by exchanging the spectator quarks, $d \leftrightarrow u$. Therefore, neglecting the helicity and color suppressed contributions in $D^+ \to \bar{K}^0 K^+$ and $D^0 \to K^+ K^-$ decays, the direct *CPV* in the two decays is expected to be effectively the same. Thus, as a complementary test of the ΔA_{CP}^{hh} measurement¹, the precise measurement of A_{CP} in $D^+ \to \bar{K}^0 K^+$ helps to pin down the origin of ΔA_{CP}^{hh} [12]. Figure 4 shows invariant masses of $D^{\pm} \to K_S^0 K^{\pm}$ together with the fits that result in ~277k reconstructed decays and the measured A_{CP} in bins of $|\cos \theta_{D^+}^{c.m.s.}|$. From the right plot in Fig. 4, we obtain $A_{CP}^{D^+} \to (-0.25 \pm 0.28 \pm 0.14)\%$. After

¹Now the tension is rather released [10], but was strong [11].

Belle preliminary using 976/fb

Figure 3: Top four plots show reconstructed signal distributions described in the text and bottom two plots show preliminary results of A_{CP} as a function of the polar angle of D^{*+} momentum at the c.m.s.

subtracting experiment dependent $A_{CP}^{\bar{K}^0}$ [13], the *CPV* in charm decay, $A_{CP}^{D^+ \to \bar{K}^0 K^+}$, is measured to be $(+0.08 \pm 0.28 \pm 0.14)\%$ [14].

4. Summary

In summary, using the full data sample collected with the Belle detector at the KEKB asymmetricenergy e^+e^- collider, we report the charm mixing parameter y_{CP} and indirect *CPV* parameter A_{Γ} using $D^0 \rightarrow h^+h^-$ and $D^0 \rightarrow K^-\pi^+$ decays. The preliminary results are:

$$y_{CP} = (1.11 \pm 0.22 \pm 0.11)\%,$$

 $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%.$

Figure 4: Left two plots show $M(K_S^0K^+)$ and $M(K_S^0K^-)$ distributions, respectively, and right plot shows A_{CP} in the decay as a function of the polar angle of D^+ momentum at the c.m.s.

We also report searches for *CP* violation in $D^0 \rightarrow h^+h^-$ and $D^+ \rightarrow K_S^0 K^+$ decays. The preliminary results of A_{CP} in $D^0 \rightarrow h^+h^-$ decays and the difference between the two A_{CP} results are:

$$\begin{split} A_{CP}^{KK} &= (-0.32 \pm 0.21 \pm 0.09)\%, \\ A_{CP}^{\pi\pi} &= (+0.55 \pm 0.36 \pm 0.09)\%, \\ \Delta A_{CP}^{hh} &= (-0.87 \pm 0.41 \pm 0.06)\%, \end{split}$$

and the results of A_{CP} in $D^+ \rightarrow K_S^0 K^+$ decays are:

$$\begin{split} A_{CP}^{D^+ \to K_S^0 K^+} &= (-0.25 \pm 0.28 \pm 0.14)\%, \\ A_{CP}^{D^+ \to \bar{K}^0 K^+} &= (+0.08 \pm 0.28 \pm 0.14)\%. \end{split}$$

References

- [1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys., 49, 652 (1973).
- [2] F. Buccella et al., Phys. Rev. D 51, 3478 (1995).
- [3] Y. Grossman, A. L. Kagan, and Y. Nir, Phys. Rev. D 75, 036008 (2007).
- [4] S. Bergmann et al., Phys. Lett. B 486, 418 (2000).
- [5] Z. Natkaniec *et al.* (Belle SVD2 Group), Nucl. Instr. and Meth. A 560, 1 (2006); Y. Ushiroda (Belle SVD2 Group), Nucl. Instr. and Meth. A 511, 6 (2003).
- [6] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
- [7] B. R. Ko et al. (Belle collaboration), Phys. Rev. Lett. 104, 181602 (2010).
- [8] M. Starič et al. (Belle collaboration), Phys. Lett. B 670, 190 (2008).
- [9] B. R. Ko, E. Won, B. Golob, and P. Pakhlov, Phys. Rev. D 84 111501 (2011).
- [10] http://www.slac.stanford.edu/xorg/hfag/charm/March13/DCPV/direct_ indirect_cpv.html.
- [11] http://www.slac.stanford.edu/xorg/hfag/charm/ICHEP12/DCPV/direct_ indirect_cpv.html.
- [12] B. Bhattacharya, M. Gronau, and J. L. Rosner, Phys. Rev. D 85, 054104 (2012).
- [13] Y. Grossman and Y. Nir, JHEP. 04 (2012) 002.
- [14] B. R. Ko et al. (Belle Collaboration), JHEP. 02 (2013) 098.