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1. Introduction

The strong coupling is one of the most important parameters of the Standard Model. Its precise

determination at various scales is crucial for testing the asymptotic freedom of QCD, the modern

theory of strong interactions. The inclusive hadronic decay width of the τ lepton provides a clean

way to determine αs at low energies [1, 2, 3, 4]. The R ratio for the τ decays is defined as:

Rτ ≡
Γ[τ− → hadronsντ ]

Γ[τ− → e−νeντ ]
. (1.1)

Here we are interested in the τ decay rate into the lightest (u and d) quarks, which proceeds either

through the vector (V ) or axial-vector current (A). This quantity can be expressed theoretically in

the form

Rτ,V/A =
Nc

2
SEW |Vud|

2

[
1+δ (0)+δ ′

EW + ∑
D≥2

δ
(D)
ud

]
, (1.2)

where SEW = 1.0198± 0.0006 and δ ′
EW = 0.0010± 0.0010 are electroweak corrections, and δ

(D)
ud

is the contribution from the higher D-dimensional operators which arise in the operator product

expansion. Our main interest is in the perturbative correction δ (0) which can be written as [5]

δ (0) =
1

2πi

∮

|s|=M2
τ

ds

s

(
1−

s

M2
τ

)3(
1+

s

M2
τ

)
D̂pert(a,L), (1.3)

where a ≡ a(µ2)≡ αs(µ
2)/π , L ≡ ln −s

µ2 and D̂pert(a,L), is the perturbation expansion of the Adler

function. In the ‘fixed-order perturbation theory’ (FOPT) this expansion has the form [6]

D̂FOPT(a,L) =
∞

∑
n=1

an
n

∑
k=1

k cn,k Lk−1 , (1.4)

while in renormalization-group-improved or ‘contour-improved perturbation theory’ (CIPT) the

series is written as [7, 8]

D̂CIPT(αs(−s)/π,0) =
∞

∑
n=1

cn,1

(
αs(−s)

π

)n

. (1.5)

In the above expansions the coefficients cn,1 are known for n ≤ 4 from perturbative calculations in

the MS-renormalization scheme (see [9] and references therein). The numerical values for n f = 3

flavours are:

c1,1 = 1, c2,1 = 1.640, c3,1 = 6.371, c4,1 = 49.076.

For the next coefficient c5,1 estimates are given in [6, 10, 11, 12].

The coefficients cn, j for j > 1 are determined in terms of cn,1 and the coefficients β j of the

β -function of the renormalization group equation (RGE). At present this function is calculated to

four loops in the MS-renormalization scheme (see [13, 14] and references therein), where the first

coefficients are:

β0 = 9/4, β1 = 4, β2 = 10.0599, β3 = 47.228.
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2. Renormalization-Group-Summed Perturbation Theory

We use a method based on the explicit summation of all renormalization group accessible

logarithms [15, 16, 17], which was recently applied to the hadronic width of the τ lepton [18, 19,

20, 21]. In this method, the Adler function is written as

D̂RGSPT(a,L) =
∞

∑
n=1

anDn(aL), (2.1)

where

Dn(aL)≡
∞

∑
k=n

(k−n+1)ck,k−n+1(aL)k−n. (2.2)

We now exploit the fact that the Adler function defined by the expansion (1.4) is scale independent

µ2 d

dµ2
[D̂FOPT(a,L)] = 0 ⇒ β (a)

∂ D̂FOPT

∂a
−

∂ D̂FOPT

∂L
= 0. (2.3)

The relevant renormalization group equation (RGE) is written as:

0 =−
∞

∑
n=1

n

∑
k=2

k(k−1)cn,kanLk−2

−
(

β0a2 +β1a3 +β2a4 + . . .+βla
l+2 + . . .

)
×

∞

∑
n=1

n

∑
k=1

nkcn,kan−1Lk−1. (2.4)

By extracting the aggregate coefficient of anLn−p we obtain the recursion formula (n ≥ p)

0 = (n− p+2)cn,n−p+2 +
p−2

∑
ℓ=0

(n− ℓ−1)βℓcn−ℓ−1,n−p+1. (2.5)

Multiplying both sides of (2.5) by (n− p+1)(aL)n−p and summing from n = p to ∞, we obtain a

system of first-order linear differential equation for the functions defined in (2.2), written as

dDn

d(aL)
+

n−1

∑
ℓ=0

βℓ

(
(aL)

d

d(aL)
+n− ℓ

)
Dn−ℓ = 0, (2.6)

for n ≥ 1, with the initial conditions Dn(0) = cn,1 which follow from (2.2). The solution of the

above equations can be found iteratively in an analytical closed form. The first two solutions are

D1(aL) =
c1,1

y
, D2(aL) =

c2,1

y2
−

β1c1,1 lny

β0y2
, y = 1+β0aL. (2.7)

By inserting in the integral (1.3) the RGSPT expansion (2.1) of the Adler function we obtain the

expansion of δ (0)

δ
(0)
RGSPT =

∞

∑
n=1

a(M2
τ )

ndn , where dn =
1

2πi

∮

|s|=M2
τ

ds

s

(
1−

s

M2
τ

)3(
1+

s

M2
τ

)
Dn(aL). (2.8)

In Table 1 we show the behaviour of the FOPT, CIPT and RGSPT as functions of the truncation

order N of the series. For N = 4, the difference between the results of the RGSPT and the standard

FOPT is 0.01754, and the difference from the RGSPT and CIPT is 0.0039, which confirms that the

RGSPT gives results close to those of the CIPT.
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δ
(0)
FOPT δ

(0)
CIPT δ

(0)
RGSPT

N = 1 0.1082 0.1479 0.1455

N = 2 0.1691 0.1776 0.1797

N = 3 0.2025 0.1898 0.1931

N = 4 0.2199 0.1984 0.2024

N = 5 0.2287 0.2022 0.2056

Table 1: Predictions of δ (0) in the standard FOPT, CIPT and the RGSPT, for various truncation orders N

using αs(M
2
τ ) = 0.34.

3. Determination of αs from RGSPT expansion

We adopt as input the recent phenomenological value [6, 12]

δ
(0)
phen = 0.2037±0.0040exp ±0.0037PC. (3.1)

Using the expansion (2.8) truncated at N = 5, with the known coefficients cn,1 from (1.6) and the

conservative choice c5,1 = 283±283 as in [6], we obtain [18]

αs(M
2
τ ) = 0.3378±0.0046exp ±0.0042PC

+0.0062
−0.0072(c5,1)

+0.0005
−0.0004(scale) +0.000085

−0.000082(β4), (3.2)

where the errors from various sources are indicated separately (in the last term we used the estimate

β4 = ±β 2
3 /β2 for next coefficient in the expansion of the β function). Combining the errors in

quadrature

αs(M
2
τ ) = 0.338±0.010. (3.3)

4. RGS Non-Power Perturbation Theory

One of the ambiguites in the extraction of αs from the hadronic τ decays arises from the

large-order behaviour of the QCD perturbative series. The large-order behaviour of the RGSPT

expansion was investigated in [19] in a model of the Adler function proposed in [6]. In this model,

the RGS expansion of the QCD Adler function has a behaviour which is similar to that of CIPT and

eventually exhibits large oscillations, thereby showing the divergent character of the QCD pertur-

bative series. We improve this behaviour of the RGSPT expansion by the analytical continuation in

the Borel plane. The method was applied to FOPT and CIPT by Caprini and Fischer [22, 23, 24].

The large-order behaviour of the perturbation theory is encoded in the singularities of the Borel

transform B(u), defined starting from the expansion (1.5) as

B(u) =
∞

∑
n=0

cn+1,1
un

β n
0 n!

. (4.1)

The function B(u) has singularities placed on the real axis along the lines u ≤ −1 and u ≥ 2.

Therefore, the Taylor expansion (4.1) converges only in the disk |u| < 1, limited by the nearest

singularity at u = −1 of the expanded function. The region of convergence can be enlarged if
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the series in powers of u is replaced by a series in powers of an “optimal" variable w̃(u) that

conformally maps the holomorphy domain of B(u), i.e. the u-plane with cut along u ≥ 2 and u ≤

−1, onto the unit disk |w|< 1 of the complex plane w≡ w̃(u). This also accelerates the convergence

rate at all points in the holomorphy domain [24, 25].

The Borel transform of the RGSPT expansion (2.1) is written as [19]

BRGSPT(u,y) = B(u)+
∞

∑
n=0

un

β n
0 n!

n

∑
j=1

c j,1dn+1, j(y), (4.2)

where y = 1+β0aL. We consider a general class of conformal mappings

w̃lm(u) =

√
1+u/l −

√
1−u/m√

1+u/l +
√

1−u/m
, l ≥ 1,m ≥ 2 (4.3)

where l,m are positive integers satisfying l ≥ 1 and m ≥ 2. The function w̃lm(u) maps the u-plane

cut along u ≤ −l and u ≥ m onto the disk |wlm| < 1 in the plane wlm ≡ w̃lm(u). We define further

the class of compensating factors of the simple form

Slm(u) =

(
1−

w̃lm(u)

w̃lm(−1)

)γ
(l)
1
(

1−
w̃lm(u)

w̃lm(2)

)γ
(m)
2

, (4.4)

where the exponents

γ
(l)
1 = γ1(1+δl1), γ

(m)
2 = γ2(1+δm2),

γ1 = 1.21, γ2 = 2.58 , (4.5)

are chosen such that Slm(u) cancels the dominant singularities of BRGSPT(u,y), situated at u = −1

and u = 2. We further expand the product Slm(u)BRGSPT(u,y) in powers of the variable w̃lm(u), as

Slm(u)BRGSPT(u,y) = ∑
n≥0

c
(lm)
n,RGSPT(y)(w̃lm(u))

n. (4.6)

We are thus led to the class of RGSNPPT expansions

D̂RGSNPPT(s) = ∑
n≥0

c
(lm)
n,RGSPT(y)W

(lm)
n,RGSPT(s), (4.7)

where

W
(lm)

n,RGSPT(s) =
1

β0

PV

∞∫

0

exp

(
−u

β0ãs(−s)

)
(w̃lm(u))

n

Slm(u)
du. (4.8)

The coefficients c
(lm)
n,RGSPT(y) are defined by the expansion (4.6) and the coupling ãs(−s) appearing

in the Laplace-Borel integral is the one-loop solution of the RGE.

5. High-order behaviour of RGSNPPT expansions

In Table 2 we record the remarkable supression of the divergent behaviour of the RGSPT

expansion through analytic continuation in the Borel plane.

5
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N CIPT FOPT RGSPT RGSNPPT w12 RGSNPPT w13 RGSNPPT w1∞ RGSNPPT w23

2 -0.0595 -0.0679 -0.0574 -0.0347 -0.0239 -0.0417 -0.0177

3 -0.0473 -0.0345 -0.0440 -0.0333 -0.0301 -0.0349 -0.0303

4 -0.0388 -0.0171 -0.0347 -0.0089 -0.0142 -0.0067 -0.0132

5 -0.0349 -0.0083 -0.0315 -0.0070 -0.0086 -0.0058 -0.0070

6 -0.0325 -0.0043 -0.0284 -0.0073 -0.0071 -0.0064 -0.0072

7 -0.0325 -0.0029 -0.0298 -0.0059 -0.0057 -0.0056 -0.0044

8 -0.0354 -0.0018 -0.0309 -0.0041 -0.0035 -0.0041 -0.0011

9 -0.0367 -0.0004 -0.0363 -0.0023 -0.0019 -0.0028 -0.0010

10 -0.0529 0.0019 -0.0483 0.0014 -0.0012 -0.0020 0.0004

11 -0.0409 0.0031 -0.0458 0.0036 -0.0008 -0.0016 -0.0009

12 -0.1248 0.0065 -0.1335 0.0031 -0.0006 -0.0015 0.0005

13 0.0258 0.0037 0.0534 0.0026 -0.0004 -0.0015 -0.0005

14 -0.5286 0.0204 -0.7850 0.0018 -0.0003 -0.0015 -0.0011

15 0.8640 -0.0201 1.7734 0.0006 -0.0002 -0.0015 0.0044

16 -3.5991 0.1447 -7.7043 0.0001 −7 ·10−6 -0.0015 -0.0131

17 9.3560 -0.4252 24.8586 -0.0004 4 ·10−6 -0.0014 0.0238

18 -31.76 1.907 -94.26 -0.0013 -0.0001 -0.0013 -0.0310

Table 2: The difference δ (0)-δ
(0)
exact for the model proposed in [6] for αs(M

2
τ ) = 0.34 with the standard CIPT,

FOPT and RGSPT expansions, and the new RGSNPPT expansions for various conformal mappings wlm,

truncated at order N. The exact value δ
(0)
exact = 0.2371.

6. Determination of αs from RGSNPPT expansions

Using the phenomenological input (3.1) and the RGSNPPT expansions (4.7) we obtain [19]

αs(M
2
τ ) = 0.3189±0.0034exp ±0.0031PC

+0.0138
−0.0105(c5,1) ±0.0010β4

, (6.1)

and after combining the errors in quadrature

αs(M
2
τ ) = 0.3189 +0.0145

−0.0115 . (6.2)

By evolving to the scale of MZ our prediction reads

αs(M
2
Z) = 0.1184 +0.0018

−0.0015 . (6.3)

7. Conclusion

This work is motivated by the well-known discrepancy between the predictions of αs(M
2
τ )

from the standard FOPT and CIPT expansions. We have shown that the summation of all the

logarithms accesible by renormalization group invariance provides a systematic expansion of the

Adler function with a good behaviour in the complex energy plane [18]. The results of the new

RGSPT expansion are similar to those obtained with CIPT. We further tamed the divergent char-

acter of the perturbative series by the method of conformal mappings of the Borel plane, defining

the RGS non-power expansions [19], similar to the FONPPT and CINPPT defined in [22, 24]. The

RGSNPPT expansions lead to a prediction for αs(M
2
τ ) similar to that obtained with standard FOPT

and with CINPPT. As shown recently [26], the good large-order properties of the renormalization-

group improved non-power expansions are valid also for a large class of moments of the spectral

functions (the one associated with the hadronic width being a special one). Therefore, CINPPT

and RGSNPPT provide a solid theoretical framework in moment analyses for the simultaneous

determination of the strong coupling and other parameters of QCD from hadronic τ decays.

6



P
o
S
(
E
P
S
-
H
E
P
 
2
0
1
3
)
4
1
3

Strong coupling from the tau-lepton hadronic width Gauhar Abbas

References

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

[2] A. Pich, PoS ConfinementX (2012) 022, arXiv:1303.2262 [hep-ph].

[3] M. Jamin, PoS ConfinementX (2012) 098, arXiv:1302.2425 [hep-ph].

[4] G. Altarelli, PoS Corfu2012 (2013) 002, arXiv:1303.6065 [hep-ph].

[5] E. Braaten, S. Narison and A. Pich, Nucl. Phys. B 373, 581 (1992).

[6] M. Beneke and M. Jamin, JHEP 09, 044 (2008), arXiv:0806.3156 [hep-ph].

[7] A.A.Pivovarov, Z. Phys. C 53, 461 (1992), [Sov. J. Nucl. Phys. 54, 676 (1991)], hep-ph/0302003.

[8] F. Le Diberder and A. Pich, Phys. Lett. B 289, 165 (1992).

[9] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Phys. Rev. Lett. 101, 012002 (2008), arXiv:0801.1821

[hep-ph].

[10] M. Davier, S. Descotes-Genon, A. H ocker, B. Malaescu and Z. Zhang, Eur. Phys. J. C56, 305 (2008),

arXiv:0803.0979 [hep-ph].

[11] A. Pich, Tau decay determination of the QCD coupling, in Workshop on Precision Measurements of

αs, ed. S. Bethke et al, page 21, arXiv:1110.0016 [hep-ph].

[12] M. Beneke and M. Jamin, Fixed-order analysis of the hadronic τ decay width, in Workshop on

Precision Measurements of αs, ed. S. Bethke et al, page 25, arXiv:1110.0016 [hep-ph].

[13] S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, Phys. Lett. B400, 379 (1997), hep-ph/9701390;

S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, Phys. Lett. B404, 153 (1997), hep-ph/9702435.

[14] M. Czakon, Nucl. Phys. B710, 485 (2005), hep-ph/0411261.

[15] C.J. Maxwell and A. Mirjalili, Nucl. Phys. B 577, 209 (2000), hep-ph/0002204; Nucl. Phys. B 611,

423 (2001), hep-ph/0103164.

[16] M.R. Ahmady, F. A. Chishtie, V. Elias, A. H. Fariboz, N. Fattahi, D. G. C. McKoen, T. N. Sherry, and

T.G. Steele, Phys. Rev. D 66, 014010 (2002), hep-ph/0203183.

[17] M.R. Ahmady, , F. A. Chishtie, V. Elias, A. H. Fariboz, D. G. C. McKoen, T. N. Sherry, A. Sqires, and

T.G. Steele, Phys. Rev. D 67, 034017 (2003), hep-ph/0208025.

[18] G. Abbas, B. Ananthanarayan and I. Caprini, Phys. Rev. D 85, 094018 (2012), arXiv:1202.2672

[hep-ph].

[19] G. Abbas, B. Ananthanarayan, I. Caprini and J. Fischer, Phys. Rev. D 87, 014008 (2013),

arXiv:1211.4316 [hep-ph].

[20] I. Caprini, Mod. Phys. Lett. A 28, 1360003 (2013), arXiv:1306.0985 [hep-ph].

[21] G. Abbas, B. Ananthanarayan and I. Caprini, Mod. Phys. Lett. A 28, 1360004 (2013),

arXiv:1306.1095 [hep-ph].

[22] I. Caprini and J. Fischer, Eur. Phys. J. C64, 35 (2009), arXiv:0906.5211 [hep-ph].

[23] I. Caprini and J. Fischer, Nucl. Phys. B Proc. Suppl., 218, 128 (2011), arXiv:1011.6480 [hep-ph].

[24] I. Caprini and J. Fischer, Phys. Rev. D 84, 054019 (2011), arXiv:1106.5336 [hep-ph].

[25] S. Ciulli and J. Fischer, Nucl. Phys. 24, 465 (1961).

[26] G. Abbas, B. Ananthanarayan, I. Caprini and J. Fischer, Phys. Rev. D 88, 034026 (2013),

arXiv:1307.6323 [hep-ph].

7


