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The covariant quark model is introduced and some of its key features are briefly discussed. The
model is then used for prediction of partial decay widths and branching fractions of B mesons
in reactions Bs → J/ψ +η(′) and B→ K(∗)+ 2ν [1]. Our results stand: B (Bs→ J/ψ +η) =

4.67×10−4, B (Bs→ J/ψ +η ′) = 4.04×10−4, Γ(Bs→ J/ψ +η ′)/Γ(Bs→ J/ψ +η) = 0.86,
B (B→ Kνν̄) = 0.63× 10−5 and B (B→ K∗νν̄) = 7.9× 10−5. The most of them are in good
agreement with experimental results [2, 3, 4, 5].
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B(s) meson decays in the framework of the covariant quark model Andrej LIPTAJ

1. Introduction

Physics of hadrons is nowadays an extensively studied field of particle physics. This is mainly
due to new and ongoing colliding experiments, especially so-called heavy quark factories. The
results are excellent: many new data, whose precision and amount is continuously increasing.
Thanks to results from mass spectroscopy, lifetime measurements and branching fraction analysis
we learn still more about hadrons and their constituents.

These results represent a challenge for theoretical physics. The low energy domain of quantum
chromodynamics (QCD) remains a puzzling area for what concerns the first-principle calculations:
perturbative approach looses its applicability and the enormous progress in lattice QCD is still not
at the level to satisfactorily explain all measured data with an appropriate precision.

A model-dependent approach thus still remains the most adopted way of describing hadron
dynamics. Here we present the covariant quark model (CQM), a model with many appealing
features which has, till now, provided convincing results. It is based on a non-local Lagrangian
density from which follows its full Lorentz invariance. In addition, standard techniques of quantum
field theory (QFT) can by used for computation of physical observables. Further, besides mesons,
the model is also able to incorporate higher-quark states (baryons, tetraquarks, ...) and has only one
free parameter per hadron 1.

2. Covariant quark model

The CQM introduces quark-hadron (in this case meson) interaction via the non-local La-
grangian (density)

Lint = gM ·M(x) · JM(x), (2.1)

where JM(x) is the quark current

JM(x) =
∫

dx1

∫
dx2 FM(x;x1,x2) · q̄a

1(x1)ΓM qa
2(x2). (2.2)

We assume the function FM(x;x1,x2) to have the form

FM(x,x1,x2) = δ
(4) (x−w1x1−w2x2) ΦM

[
(x1−x2)

2] , (2.3)

where the δ -function expresses the intuitive expectations about relative quark-hadron positions,
i.e., for the choice we adopt

wi =
mi

m1 +m2
, i = 1,2 (2.4)

the hadron is situated in the barycenter of the quark system. The interaction strength ΦM is sup-
posed to have a Gaussian form, which can be, in the momentum space, expressed as

Φ̃M
(
−p2)= exp

(
p2

Λ2
M

)
(2.5)

with one free so-called size parameter ΛM.

1In the limit of large number of hadrons.
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(a) (b)

Figure 1: Diagrams representing a) a meson decay constant and b) a transition form factor.

In addition to size parameters (e.g. Λπ = 0.87 GeV, ΛK = 0.87 GeV, ...), the other free pa-
rameters of the model are the constituent quark masses (in GeV): mu,d = 0.235, ms = 0.424, mc =

2.16, mb = 5.09 and one additional cut-off parameter λcut−o f f = 0.181 related to the infrared con-
finement. So, to describe the dynamics of N hadrons, the model uses N+5 free parameters in total.
The coupling constants gM can be related to these parameter thanks to the so-called compositeness
condition.

The compositeness condition concerns the question of a correct description of composite par-
ticles. This question was addressed already many years ago and reflects the fact, that the hadron
and the quark fields appear in the Lagrangian (2.1) as elementary, although, in nature, the hadrons
are made up of quarks. A. Salam [6] and S. Weinberg [7] argue, that the renormalization constant
Z1/2

M can be interpreted as the matrix element between a physical state and the corresponding bare
state. The condition ZM = 0 then implies, that the physical state does not contain the bare state and
is therefore properly described as a bound state. In the framework of the CQM this translates into
the equation

ZM = 1− 3g2
M

4π2 Π̃
′
M
(
m2

M
)
= 0, (2.6)

where Π̃
′
M is the derivative of the meson mass operator.

The observable quantities, when calculated within the CQM, are usually expressed via form
factors and decay constants. These basic objects are calculated through evaluation of corresponding
Feynman diagrams (see Fig. 1). The Schwinger representation of the quark propagator

S̃q(k) =
(
m+ k̂

)∫ ∞

0
dα e[−α(m2−k2)] (2.7)

is used, which leads to an expression of the Feynman graph, generally written as

Π =

∞∫
0

dn
α

∫
[d4k]` Φ exp[−

n

∑
i=1

αi

[
m2

i − (Ki +Pi)
2)
]
, (2.8)

where Φ corresponds to numerator product of propagators and vertex functions, Pi refers to the
linear combination of external momenta and Ki stands for the linear combination of loop momenta.

The evaluation of these graphs can be facilitated if done in a smart way. The operator identity∫
d4k P(k)e2kr =

∫
d4k P

(
1
2

∂

∂ r

)
e2kr = P

(
1
2

∂

∂ r

)∫
d4k e2kr (2.9)
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allows for an elegant integration over loop momenta. The loop momentum k is removed from the
polynomial P (which comes from the trace evaluation) so that the polynomial can be taken outside
the integration. The resulting expression is further simplified using the identity

∞∫
0

dn
α P

(
1
2

∂

∂ r

)
e−

r2
a =

∞∫
0

dn
α e−

r2
a P
(

1
2

∂

∂ r
− r

a

)
1; r = r(αi) , a = a(ΛH,αi) , (2.10)

so that the derivative operator does not act on an exponential function but on an identity.
The last important point to be discussed when describing the general features of the CQM

is the infrared confinement, which needs to be implemented to prevent decays of heavy baryons
to constituent quarks. It is achieved by introducing a cut-off in the integration over Schwinger
parameters. The integration is improper in several dimensions. To overcome this difficulty we
introduce a δ -function form of the identity

1=

∞∫
0

dt δ (t−
n

∑
i=1

αi). (2.11)

The initial integral can be then transformed into an integral over simplex convoluted with only one
dimensional improper integral

∞∫
0

dn
α F (α1, · · · ,αn) =

∞∫
0

dttn−1
1∫

0

dn
α δ

(
1−

n

∑
i=1

αi

)
F(tα1, . . . , tαn). (2.12)

The cut-off is then naturally implemented as

∞∫
0

dt tn−1 · · · →
1/λ 2∫
0

dt tn−1 · · · . (2.13)

This procedure makes the integral a smooth function, where thresholds in the quark loop diagrams
and corresponding branch points are removed. The value of the cut-off parameter is considered to
be universal and was settled by fitting the model to experimental data.

3. Decay Bs→ J/ψ +η(′)

The quark content of η and η ′ mesons can be written as

η :
1√
2

sinδ (uū+dd̄)− cosδ (ss̄), (3.1)

η
′ :

1√
2

cosδ (uū+dd̄)+ sinδ (ss̄), (3.2)

where δ = θI +θP = arctan 1√
2
+θP and θP =−13.34◦ [8]. The corresponding interaction La-

grangian takes this mixing into account

Lη (x) =gηη (x)
∫∫

dx1dx2δ

(
x− 1

2
x1−

1
2

x2

)
×φη

[
(x1−x2)

2
]

×
{

1√
2

cos(δ )
[
ū(x1) iγ5u(x2)+ d̄(x1) iγ5d(x2)

]
− sin(δ )

[
s̄(x1) iγ5s(x2)

]}
. (3.3)
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(a) (b) (c)

Figure 2: a) Diagram of the Bs → J/ψ + η(′) decay and b) its factorization. c) Diagram of the decay
B→ K(∗)+2ν .

Bs meson does not contain light constituent quarks, the dominant contribution to the decay thus
comes from the s-quark channel (Fig. 2a).

The b̄ → s̄ transition is treated in the framework of an effective theory with four-fermion
interaction and Wilson coefficients

Leff =
GF√

2
VcbV∗cs ∑

i
CiQi, (3.4)

where Qi is an appropriate four-fermion operator 2 and Ci are Wilson coefficients.
Within the CQM the diagram of decay process actually factorizes into two parts: one pro-

portional to the transition form factor and the other to the decay constant (Fig. 2b). The diagram
factorization is a general feature of the model when describing this type of processes and allows
for reusing previously calculated objects (form factors) for different reactions.

The calculation of decay widths is achieved by standard techniques of QFTs. Before the
numerical results could be carried out, we had to fix free parameters (size parameters Λ

q̄q
η , Λs̄s

η , Λ
q̄q
η ′

and Λs̄s
η ′), because our aim was a prediction and not a parameter fitting. We used a set of processes

η→ γγ , η ′→ γγ , ρ→ ηγ , ϕ→ ηγ , ϕ→ η ′γ , Bd→ J/ψ η , Bd→ J/ψ η ′, ω→ ηγ and η ′→ ωγ

for that purpose. Each of them corresponds to a decay that has been previously studied within the
CQM and could be straightforwardly included into the fit.

The braching fractions of the Bs→ J/ψ +η(′) decay as predicted by the CQM are

BCQM (Bs→ J/ψ η) = 4.67×10−4, (3.5)

BCQM
(
Bs→ J/ψ η

′)= 4.04×10−4. (3.6)

The corresponding experimental values [2] stand

B (Bs→ J/ψ η) = 5.10±1.12×10−4, (3.7)

B
(
Bs→ J/ψ η

′)= 3.71±0.95×10−4. (3.8)

Interesting is the prediction of the relative branching fraction

R =
Γ(J/ψ +η ′)

Γ(J/ψ +η)
=
|qη ′ |3

|qη |3
tan2

δ︸ ︷︷ ︸
≈1.04

×

(
FBsη

′

+

FBsη
+

)2

︸ ︷︷ ︸
≈0.83

≈ 0.86, (3.9)

2E. g. Q1 = (c̄a1 ba2)V−A (s̄a2 ca1)V−A, Q2 = . . . with (ψ̄ψ)V−A = ψ̄γµ
(
1− γ5)ψ and (ψ̄ψ)V+A = ψ̄γµ

(
1+ γ5)ψ
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where one observes the importance of the model-dependent form factor ratio. The experiment gives

R =

{
0.73±0.14±0.02 [2],

0.90±0.09+0.06
−0.02 [3].

(3.10)

4. Decay B→ K(∗)+2ν

The evaluation of the B→ K(∗)+ 2ν decay diagram (Fig. 2c) has many similarities with the
previous case: an effective theory with four fermion interaction is used to describe b̄→ s̄ transition
and a factorization of the diagram makes appear the appropriate form factors. These differ for K
and K∗ particles. The K meson is spinless particle and is therefore characterized by three form
factors F+, F− and FT:〈

P′[q̄3,q2]
(p2) |q̄2Oµq1|P′[q̄3,q1]

(p1)
〉
= F+

(
q2)Pµ +F−

(
q2)qµ , (4.1)〈

P′[q̄3,q2]
(p2) |q̄2 (σ

µνqν)q1|P′[q̄3,q1]
(p1)

〉
=

i
m1 +m2

(
q2Pµ −q ·Pqµ

)
FT
(
q2) . (4.2)

The vector particle K∗ is in total described by seven form factors:〈
V[q̄3,q2] (p2,ε2) |q̄2Oµq1|P[q̄3,q1] (p1)

〉
=

=
ε

†
ν

m1 +m2

[
−gµνP ·qA0

(
q2)+PµPνA+

(
q2)+qµPνA−

(
q2)+ iεµναβ Pαqβ V

(
q2)] , (4.3)

〈
V[q̄3,q2] (p2,ε2) |q̄2

[
σ

µνqν

(
1+ γ

5)]q1|P[q̄3,q1] (p1)
〉
=

= ε
†
ν

[
−
(

gµν −
qµqν

q2

)
P ·q a0

(
q2)+(PµPν −qµPν p ·q

q2

)
a+
(
q2)+ iεµναβ Pαqβ g

(
q2)] .

(4.4)

The (subset of these) form factors can be related to differential decay widths as a function of
s = q2/m2

P through formulas [9]

dΓ [P→ P′νν̄ ]

ds
=

G2
Fm5

P|λt |2α2
em|D(xt)|2

28π5 sin4
θW

|F+|2Φ
3
2

P′ , (4.5)

dΓ [P→V νν̄ ]

ds
=

3G2
Fm5

P|λt |2α2
em|D(xt)|2

28π5 sin4
θW

Φ
1
2

V

[
sα1 (A0,V )+

ΦV

3
β1 (A0,A+,V )

]
. (4.6)

Before getting results, we had to determine the K∗ meson size parameter. We did it using τ→K∗+
ντ decay, which can be easily described by the model. The differential decay width distributions
were integrated numerically to arrive to our results:

BCQM (B→ K+2ν) = 0.63×10−5,

BCQM (B→ K∗+2ν) = 7.9×10−5,

which are to be compared with limits established by Belle [4] and BaBar [5]

BBelle (B→ K+2ν)< 5.5×10−5,

BBelle (B→ K∗+2ν)< 4.0×10−5,
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and

BBaBar (B→ K+2ν)< 3.2×10−5,

BBaBar (B→ K∗+2ν)< 7.9×10−5.

We observe a good agreement, except the Belle result for K∗. This experimental limit however
does not have any uncertainty, and we prefer not to draw preliminary conclusions. A final result
with uncertainty will provide a better apprehension of our number.

5. Summary and outlook

We have calculated widths of selected decays of B and B(s) mesons within the covariant quark
model. The results are nicely describing the recent experimental measurements and favor the model
as an appropriate framework for studying hadron dynamics. The model has several appealing
features and its predictions are heavily over-constrained. More details about the CQM can be
found in Refs. [10, 11].

In a near future we plan to continue this work and predict observable quantities for the decay
B→K(∗)+ ll, which is very similar to what is described in this text. Furthermore, many interesting
and rare reactions were recently measured or are about to by measured, such as Bs→ J/Ψ f0(980),
B0

s → π+π−, B0→ K+K−, B0
(s)→ µ+µ− or B0

s → J/ΨK0
S . These processes are very well suited to

by studied within the CQM and we will certainly provide our predictions for them.
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