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The integrand-level methods for the reduction of scattering amplitudes are powerful techniques
for the analysis and the computation of loop integrals, which have already been successfully
applied and automated at one-loop. Moreover, some very interesting progress has recently been
made towards the higher-loop extension of such techniques. In this presentation, we review the
basics principles of integrand-reduction methods within a coherent framework we developed,
which can be applied to any integrand at any number of loops and is based on simple concepts
of algebraic geometry, such as multivariate polynomial division. We particularly focus on semi-
analytic and algebraic techniques, such as the Laurent series expansion which we exploited to
improve the one-loop reduction with the library NINJA, and the multi-loop divide-and-conquer
approach which can always be used to find the integrand decomposition of any Feynman graph in
a finite number of algebraic operations.
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1. Overview

Scattering amplitudes are analytic functions of the momenta of the particles involved and
they can be studied by exploring their singularity structure [1,2]. The integrand reduction methods,
originally developed for one-loop diagrams [3,4] and more recently extended to higher loops [5–9],
use the singularity structure of the integrands to decompose the (integrated) amplitudes in terms of
Master Integrals (MI’s). They rely on the existence of a relation between the numerator and the
denominators of each Feynman integral. A generic numerator can be expressed as a combination
of (products of) denominators, multiplied by polynomial coefficients, which correspond to the
residues at the multiple cuts of the diagrams. The multiple-cut conditions, applied to the loop-
momenta, can be viewed as projectors isolating each residue.

In Ref. [10] a new method for the integrand reduction of one-loop amplitudes has been pro-
posed. It exploits the knowledge of the analytic structure of the integrand on the multiple cuts in
order to simplify the evaluation of the coefficients of the MI’s by performing a Laurent expansion
with respect to the variables which are not constrained by the cut conditions. The algorithm has
been implemented in the semi-numerical C++ library NINJA, which showed significant improve-
ments both in performance and stability with respect to the original integrand-reduction approach.
The library has recently been used for the computation of NLO QCD corrections to Higgs boson
production in association with a top quark pair and a jet [13].

In Refs. [7, 8] the determination of the residues at the multiple cuts has been formulated as
a problem of multivariate polynomial division, and solved using algebraic geometry techniques.
These techniques allowed one to prove that the integrand decomposition is valid and applicable at
any order in perturbation theory.

Within this framework, the residues of unitarity cuts can be interpreted as classes of an equiv-
alence relation which identifies polynomials whose difference can be written as a combination of
cut loop propagators. These residues, within what we call the fit-on-the-cut approach, can indeed
be found by evaluating the integrand on values of the loop momenta where these denominators
are put on-shell, as traditionally done in the one-loop case. The most general form of the residue,
which only depends on the topology of the diagram, can be found as the most general remainder
of the multivariate polynomial division modulo the Gröbner basis of the ideal generated by the
cut denominators. The polynomial division also allows to carry out the integrand decomposition
with purely algebraic operations, within what we call the divide-and-conquer approach [9]. In this
case, the decomposition of the amplitude is obtained by successive polynomial divisions, which at
each step generate the actual residues. In this way, the decomposition of any integrand is obtained
analytically, with a finite number of algebraic operations. Therefore we may consider the latter a
more general method for the integrand decomposition of loop integrals.

2. Integrand reduction formula

An arbitrary `-loop graph represents a d-dimensional integral of the form∫
dd q̄1 · · ·dd q̄` Ii1 · · · i1︸ ︷︷ ︸

a1

... in · · · in︸ ︷︷ ︸
an

, Ii1 · · · i1︸ ︷︷ ︸
a1

... in · · · in︸ ︷︷ ︸
an

≡ Ni1···i1 ··· in···in
Da1

i1 · · ·D
an
in

, (2.1)
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where i1, . . . , in are distinct indices. The numerator N and the denominators Di are polynomials
in a set of coordinates z. Let P[z] be the ring of all polynomials in such coordinates. Every set of
indices {i1, . . . , in} defines the ideal

Ji1 · · · i1︸ ︷︷ ︸
a1

... in · · · in︸ ︷︷ ︸
an

= Ji1i2···in ≡ 〈Di1 , . . . ,Din〉 =

{
n

∑
k=1

hk(z) Dik(z) : hk(z) ∈ P[z]

}
. (2.2)

The goal of the integrand reduction is to find a decomposition of the integrand of the form

Ii1 · · · i1︸ ︷︷ ︸
a1

... in · · · in︸ ︷︷ ︸
an

≡ Ni1···i1 ··· in···in
Da1

i1 · · ·D
an
in

=
a1

∑
b1=0

. . .
an

∑
bn=0

1

Db1
i1 · · ·D

bn
in

∆i1 · · · i1︸ ︷︷ ︸
b1

... in · · · in︸ ︷︷ ︸
bn

where the residues ∆i1···i1···in···in are irreducible polynomials, i.e. polynomials which contain no con-
tribution belonging in the corresponding ideal Ji1···i1 ··· in···in .

The numerator N of the integrand can be decomposed by performing the multivariate poly-
nomial division modulo a Gröbner basis Gi1···in of Ji1···in as

Ni1···i1 ··· in···in = Γi1···i1 ··· in···in +∆i1···i1 ··· in···in , (2.3)

in terms of a quotient Γi1···i1 ··· in···in and the remainder ∆i1···i1 ··· in···in . The properties of Gröbner bases
ensure that the remainder is irreducible, therefore it is identified with the residue of the multiple
cut Da1

i1 = · · ·= Dan
in = 0, as suggested by the notation. The quotient Γ, instead, belongs to the ideal

J , thus it can be written as

Γi1···i1 ··· in···in =
n

∑
k=1

Ni1 · · · i1︸ ︷︷ ︸
a1

... ik · · · ik︸ ︷︷ ︸
ak−1

... in · · · in︸ ︷︷ ︸
an

Dik . (2.4)

Substituting Eqs. (2.3) and (2.4) in Eq. (2.1), we obtain the recursive formula [8, 9]

Ii1 · · · i1︸ ︷︷ ︸
a1

... in · · · in︸ ︷︷ ︸
an

=
n

∑
k=1

Ii1 · · · i1︸ ︷︷ ︸
a1

... ik · · · ik︸ ︷︷ ︸
ak−1

... in · · · in︸ ︷︷ ︸
an

+
∆i1···i1 ··· in···in
Da1

i1 · · ·D
ak
in

. (2.5)

Eq. (2.5) expresses a given integrand in terms of an irreducible residue sitting over its denomi-
nators and a sum integrands with fewer denominators. Hence, the recursive application of this
formula ultimately yields the full decomposition of any integrand in terms of irreducible residues
and denominators, as in Eq. (2).

In Ref. [8], we applied the recursive formula in Eq. (2.5) to the most general one-loop in-
tegrand. This allowed to easily derive the well know OPP decomposition for dimensionally-
regulated one-loop amplitudes [3,4], as well as its higher-rank generalization for effective and non-
renormalizable theories [10], where every integrand is expressed in terms of irreducible residues
with five or less denominators. Such parametrization of higher-rank residues has been used in the
computation of NLO QCD corrections to Higgs boson production plus two [14] and three jets [15]
in gluon fusion, in the infinite top-mass approximation.

Within the divide-and-conquer approach, the application of the integrand reduction formula
allows to perform the decomposition algebraically. The latter consists in the application of Eq. (2.5)
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Figure 1: In (a), (b) and (c) are depicted the diagrams leading to the two-loop QED corrections to the photon
self energy. In (d), (e) and (f) we show three two-loop diagrams entering the QCD corrections to gg→ H in
the heavy top mass approximation.

to the numerator of a given graph, which is used to obtain the decomposition of the amplitude by
successive polynomial divisions. At each step, the remainders of the divisions are identified with
the residues of the corresponding set of denominators, while the quotients become the numerators
of the lower-point integrands appearing on the r.h.s. of the formula, allowing thus to iterate the
procedure. In this way, the decomposition of any integrand is obtained analytically, with a finite
number of algebraic operations, without requiring the knowledge of the varieties of solutions of the
multiple cuts, nor the one of the parametric form of the residues.

This algorithm has been applied in [9] to the two-loop diagrams contributing to the NNLO
corrections to the photon self-energy in massive QED as well as to two-loop diagrams for Higgs
boson production via gluon fusion at NNLO in the heavy top limit (see Fig. 1). Despite their
simplicity, these examples show the broadness of applicability of the method which is not affected
by the presence of massive propagators, non planar diagrams, higher powers of loop denominators
or higher-rank contributions in the numerator.

3. Integrand-Reduction via Laurent Expansion with GOSAM and NINJA

An improved version of integrand-reduction method for one-loop amplitudes was presented
in [10], elaborating on the the techniques proposed in [16, 17]. Whenever the analytic dependence
of the integrand on the loop momentum is known, this method allows to extract the unknown
coefficients of the residues by performing a Laurent expansion.

The on-shell solutions of a generic cut are parametrized by those components of the loop mo-
mentum which are not completely determined by the multiple-cut conditions. Within the original
integrand reduction algorithm [18–20], the fit of the unknown coefficients which parametrize the
residue of a multiple cut is performed by sampling the numerator on a finite subset of the corre-
sponding on-shell solutions and subtracting from the integrand all the non-vanishing contributions
coming from higher-point residues. This yields a linear system of equations for the unknown coef-
ficients.

This algorithm can be simplified by exploiting the knowledge of the asymptotic behaviour of
the integrand on the multiple cuts. Indeed, by performing a Laurent expansion with respect to one
of the free parameters which appear in the on-shell solutions, both the integrand and the higher-
point subtractions exhibit the same polynomial behavior as the residue. Hence, the unknown coef-
ficients of the polynomial residues can be simply identified with the ones of the Laurent expansion
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Figure 2: The eight- and sevenpole unitarity cut of the pentabox graph, which can be used to determine the
corresponding residues.

of the integrand, corrected by the contributions coming from higher-point residues. In other words,
with this approach the system of equations for the coefficients becomes diagonal and the subtrac-
tions of higher-point contributions can be implemented as corrections at the coefficient level which
replace the subtractions at the integrand level of the original algorithm. The parametric form of this
corrections can be computed once and for all, in terms of a subset of the higher-point coefficients.
This also allows to significantly reduce the number of coefficients entering in each subtraction. For
instance, box and pentagons do not affect at all the computation of lower-points residues.

This reduction algorithm has been implemented in the semi-numerical C++ library NINJA,
which has been interfaced with the package GOSAM [11, 12] for automated one-loop computa-
tions. Since the integrand of a loop amplitude is a rational function, its semi-numerical Laurent
expansion has been implemented as a simplified polynomial division between the numerator and
the denominators. The simplified fit of the coefficients and the subtractions at coefficient level
make the algorithm implemented in NINJA significantly lighter, faster and more stable than the
original. Moreover the extension of this approach to higher-rank integrands is particularly easy,
and indeed the library can also be used for the reduction of higher-rank integrands where the rank
of a numerator can exceed the number of denominators by one.

The first new phenomenological application of NINJA has been the computation of NLO QCD
corrections to Higgs boson production in association with a top quark pair and a jet [13]. The pos-
sibility of exploiting the improved stability of the new algorithm has been especially important for
the computation of the corresponding six-point virtual amplitude, given the presence of two mass
scales as well as massive loop propagators which make traditional integrand reduction algorithms
numerically unstable. Indeed, for the highly non-trivial process under consideration, only a num-
ber of phase-space points of the order of one per mill were detected as unstable. All these points
have been recovered using the tensorial reduction provided by GOLEM95 [21, 22], thus avoiding
the necessity of higher precision routines, which are extremely time consuming.

4. Application to Two-Loop Scattering Amplitudes in N = 4 SYM

The integrand reduction within the fit-on-the-cut approach has been combined with the color-
kinematic duality [25] to construct the two-loop five-point amplitude for N =4 super Yang-Mills
(sYM) [26].

5
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Figure 3: Graph representation of the Jacobi Identity at four points
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Figure 4: Each seven-pole unitarity cut is split into two contributions as indicated by the colors. The green
diagram represents the new seven-denominator topology arising from the BCJ equations.

The input for the integrand decomposition are, on the one-side, the products of the trees to
be sewn along the multiple-cuts, and on the others the parametric residues and solutions of the
multiple-cuts. The former can be computed by adopting the super-amplitude formalism [28], while
the latter were classified in [27].

The reduction of the amplitude, in this case, begins from the eight-pole cuts, which is a
maximum-cut [8], and terminates after determining the residues at the sevenpole-cuts. The ab-
sence of lower cuts is compatible with the properties that N = 4 sYM integrands are linear in the
loop-momenta. Representative steps of the reduction are given in Fig. 2.

Once the reduction is completed, one can equivalenty construct a numerator function for the
parent eight-denominator topologies, which capture the whole structure of the scattering ampli-
tude. These numerators can be rearranged in a color-kinematic dual form by imposing additional
constraints, referred to as BCJ equations, derived from the the kinematical equivalent of the Jacobi
Identity portrayed in Fig. 3. BCJ identities, beyond one-loop, imply a relation between the inte-
grands of the planar and of the non-planar topologies. The color-kinematic dual numerator for the
eight-denominator planar diagram is represented in the first line of Fig.5. The key equations for
the determination of the new numerators of the planar diagrams are depicted in Figs. 4, where one
may notice the rising of a seven-denominator diagram, whose identification was not needed in the
unitarity decomposition. In order to disentangle the contributions to the sevenpole cuts we use the
BCJ equations which only involve the planar topologies displayed in the last two lines of Fig. 5.
The obtained results are in agreement with [29].

5. Conclusions

We described a coherent framework for the decomposition of Feynman integrals, which can
be applied at any loop order, regardless of the complexity of the integrand, the number of external
legs or the presence of higher powers of loop denominators. This framework allows to easily derive
well known results at one-loop order and extend them to higher loops.

In the one-loop case, we showed how the knowledge of the analytic structure of the integrands
on the multiple cuts, and in particular their asymptotic behaviour on the on-shell solutions, can
be used to improve the analytic reduction with the Laurent expansion method. Its implementation
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Figure 5: The first line shows the decomposition of the numerator N of the planar topology, in terms of
an eight-pole-cut residue and the seven-pole-cut residues multiplied by the corresponding denominators Di.
The last two lines show the BCJ equations which can be used to disentangle the sevenpole unitarity cuts.

in the C++ library NINJA provided a considerable gain in the speed and in the stability of the
reduction.

At higher loops, we showed the application of the integrand decomposition both within the
fit-on-the-cut approach and the divide-and-conquer approach. With the former the residues are
evaluated on the corresponding multiple cuts and we showed an application in N = 4 SYM using
the super-amplitude formalism. Using the latter we can instead perform the full decomposition with
purely algebraic operations on the numerator and the set of denominators of a given integrand. We
applied it to simple examples, some of which cannot be addressed with other unitarity-based and
integrand-reduction methods, due to the presence of higher powers of loop denominators in the
integrands. The algebraic reduction also allows to avoid the determination of the algebraic variety
defined by the on-shell solutions, which is a non-trivial task especially for those multiple cuts which
leave several unconstrained variables.
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