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Correlators of primordial perturbations could provide us with the signatures of physics at earlier
times/higher momentum scales than inflation. The key-mechanisms are the interference and cu-
mulation in time related to the interplay of negative- and positive-frequency components of the
energy density generated by the high-momentum scale physics. Here, I discuss which signatures
are universal for such scenarios, and which ones instead would distinguish the specific cases (for
example modified initial states for inflationary perturbations or modified dispersion relations). I
also discuss the scale dependence of the correlators in presence of these signatures, especially for
some scenarios, and how it could be interesting for observations.
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1. Introduction

One of the main successes of the inflationary paradigm is the prediction of “seeds” for struc-
ture formation, represented by (quantum) fluctuations of the fields during inflation. Several obser-
vations, present and soon-to-be, are sensitive to the these fluctuations already at the perturbative
level, opening a window of opportunity to investigate the physics during inflation. However, as I
will discuss in this short communication, cosmological observables can be used as a diagnostic of
the physics at even higher momentum scales/ earlier times.

Research into these topics is of great importance nowadays, and not only for cosmology. In-
deed, cosmological phenomena could be the only reliable way to investigate very high-energy
physics, providing the arena to test theories and connect them with observations. This is even
more significant now that the LHC has confirmed the missing elements of the Standard Model of
particle physics, but not given hints so far of new physics, while astrophysical and cosmological
observations present many challenges to our understanding.

In recent times there has been a large body of works on the topic of high-energy signatures
in inflationary perturbation theory [1–7]. In this brief communication I will mainly deal with the
general results after [1, 2], and discuss universality and specificity of the possible signatures.

2. Cosmological observations and quantum theory of perturbations.

Cosmological observations agree well with a description of the early universe in terms of a
homogeneous isotropic background with a Friedman-Robertson-Walker metric (in conformal time)

ds2 = a(η)2(−dη
2 +d~x2), (2.1)

and an inflationary sector driving an early accelerated expansion, plus small perturbations. The
latter ones are the seeds for structure formation and are strongly constrained by observations (initial
energy density contrast of only δρ

ρ
∼ 10−5).

Observations and consistency of the theory require a quantum description of the perturbations.
In fact, due to the strong redshift, classical perturbations would need an initial energy density larger
than the background one, thus invalidating the perturbative approach well supported by data. In
the quantum theory this issue becomes just an indication that the initial state of the perturbations
is the vacuum or nearly so1. Moreover, the inflationary redshift of physical scales is so strong that
the perturbations that we observe today had a wavelength during inflation smaller than the Planck
scale (transPlanckian initial conditions [7]): this should require a quantum treatment. Finally, the
quantum theory explains the origin of the seeds themselves, as quantum fluctuations always appear
due to the uncertainty principle and do not need to be postulated.

The cosmological observables are gauge invariant expectation values of operators in some
initial state |Ωin〉. Using the interaction picture formalism:

〈Ωin|Ô(η)|Ωin〉= 〈Ωin|T̄
(

ei
∫

η

ηin
dηĤI

)
ÔI(η)T

(
e−i

∫
η

ηin
dηĤI

)
|Ωin〉 , (2.2)

1Actually, quantum fluctuations have a non-zero vacuum energy density, which is in fact related to the cosmolog-
ical constant issue. The usual attitude adopted when discussing inflationary perturbations is to ignore this zero-point
contribution, even though this is questionable in principle.
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where (T̄ )T is (anti)time-ordering, and, given the quadratic Hamiltonian of perturbations Ĥ0(η),

i∂ηÔI(η) = [ÔI(η),Ĥ0(η)]. (2.3)

3. High-energy effects in cosmological perturbations.

As we see from (2.2), observables are revealing of the physics during inflation, in particular
interactions, background potential and universe expansion (via ĤI and Ĥ0). However, they are
also good diagnostic of earlier/higher momentum scale physics.

There are two ways to study the effects of new physics. A top-down one where the high-
energy theory is modeled and the signatures are derived, and a bottom-up one, which I will adopt,
where the high-energy physics is parametrized and its effects studied in terms of the parameters. In
particular I will focus on 1) the dependence of observables on the initial state |Ωin〉, 2) the effects
of corrections to the kinetic terms at momentum scales higher than inflation. As we will see, the
signatures of these features are not irremediably washed out by the redshift during inflation.

I will deal with purely adiabatic perturbations, which are well-supported by observations as
possible leading seeds of structure. Remarkably, adiabatic perturbations are conserved when their
physical wavelength exceeds the Hubble scale, inverse of the Hubble rate H ≡ ∂t a

a (∂t is the cosmic
time derivative). I will focus on scalar perturbations described by the gauge invariant comoving
curvature perturbation R̂(~x,η), see [8] and reference there for its precise definition, and consider
observables (2.2) given by correlators of this field.

The solution to the field equation (2.3) for R̂ (dropping the label “I”) is of the form

R̂(~x,η) =
∫ d3k

(2π)3

[ fk(η)

z
â†

k +
f ∗k (η)

z
âk
]
. (3.1)

where (primes stand for conformal time derivatives and φ is the background inflaton)

f ′′~k (η)+(ω(~k,η)2− z′′

z
) f~k(η) = 0 z≡ a∂tφ

H
. (3.2)

The initial state |Ωin〉 in (2.3) and the form of the dispersion relation ω(~k,η) derived from H0

dictate the high-momentum form of the mode functions f~k. The standard choices are the adiabatic
(also called Bunch-Davies) vacuum and the Lorentzian dispersion relation, defined as

âk(η →−∞)|ΩBD〉= 0, ω(~k,η)2 = k2. (3.3)

The choice of the adiabatic vacuum is motivated by its similarity with the Minkowski one at
very small scales and by the demand for a certain behaviour of the two-point functions (no antipodal
poles).

However, the choices (3.3) can be questioned [7]. In fact, pre-inflation physics might have
generated an excited initial state for inflationary perturbations (still satisfying backreaction con-
straints). Furthermore, from an effective theory viewpoint the states definition should not refer to
scales way beyond the cutoff of the theory, as it is instead when η →−∞.

Similarly, Lorentz invariance has been tested only up to certain scales. Moreover, there exist
theoretical scenarios where that symmetry is broken at short scales (for example Hořava’s theory).
This motivates investigating high-energy modifications to the dispersion relations. [1–3, 7]

I will now discuss general effects on observables from modifications parametrizing new physics.

3



P
o
S
(
E
P
S
-
H
E
P
 
2
0
1
3
)
4
7
8

High-energy physics and cosmological perturbations: observing new physics at large scales.
Diego CHIALVA

4. Power spectrum

Observations of the CMBR depict a nearly Gaussian statistics of perturbations. An important
observable is then the power spectrum2 after horizon exit (η → 0)

Pk = lim
η→0
〈Rk(η)Rk(η)〉. (4.1)

Standard scenario (labelled s) (adiabatic vacuum, Lorentzian dispersion, see (3.3)). In a nearly
de Sitter background, where ε ≡− Ḣ

H � 1, typical of slow-roll and chaotic models, one finds

Ps(k) ∼
k→0

H2

4M2
Planck

εk3

( k
aH

)1−ns , (4.2)

with ns ∼ 0.96 to comply with CMBR observations. MPlanck is the reduced Planck mass.

Modified initial state (labelled mis). If at the initial time ηin some new physics above a momen-
tum scale Λ� H sets different initial conditions than the adiabatic vacuum, the mode functions
have the form

f (mis)
k (η) = α

mis(k,Λ,ηin) f (s)
k (η)+β

mis(k,Λ,ηin) f (s)∗
k (η) , (4.3)

in terms of those found in the standard scenario, here indicated as f (s)
k (η). This leads to [7]

Pmis(k) ∼k→0

H2

4M2
Planck

εk3

( k
aH

)1−ns

(
1+2Re(β mis

k e
iArg(αmis

k )
)

)
(4.4)

Modified dispersion relations (labelled mdr). A dispersion relation with corrections at a mo-
mentum scale Λ� H can be written in general as

ω(η ,k) = k Q
(

H
Λ

kη

)
, with Q(x→ 0)→ 1 . (4.5)

It is found that the field correlators are quite different from the standard scenario only if the adi-
abatic condition ω ′

ω2 � 1 is violated at some early time [2, 3]. Then, even choosing initially the
adiabatic vacuum, the field dynamics lead to a spectrum (see [2] for the precise result for the mode
functions)

Pmdr(k) ∼k→0

H2

4M2
Planck

εk3

(
1+2Re(β

mdr

k )

)
. (4.6)

with β
mdr

k depending on k and the interval of time ∆ where WKB is violated (constrained by back-
reaction). Expanding for small ∆, in full generality β

mdr

k is proportional to ∆, with coefficient given
by the parameter signalling the violation of adiabaticity [2, 7].

4.1 Universal and specific signatures

Both modified initial states and modified dispersion relations lead to a distinctive signature:
a modulation of the spectrum. The bottom-up approach I have been using is not able to further
constrain the aspect of the modulation. Detailed scenarios and models, with their specific β coeffi-
cients, can be distinguished by the different pattern of modulation and their amplitudes.

From the point of view of the observer these signatures are interpreted as the creation of parti-
cles3 with an average number density of quanta Npart ∼

∫
k |βk|2 leading to a pattern of interference

due to “positive” and “negative energy” modes.
2Some authors define the spectrum rescaling the two-point function in our definition by k3

2π2 .
3I recall that the “particle" concept is not well-defined on time-evolving backgrounds, and neither is energy in

absence of a global timelike Killing vector, but it is still useful as it relates easily to observations.
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5. Non-Gaussianity

The term non-Gaussianity indicates non-zero three- and higher-point correlators. The leading
perturbative one is the bispectrum B(~k1,~k2,~k3)≡〈R(~k1)R(~k2)R(~k3)〉|η∼0 traditionally parametrized
in terms of an amplitude fNL and a shape function with the momentum dependence. I write it as

B(~k1,~k2,~k3,η)≡ (2π)
3
δ (∑

i

~ki)
(
−3

5
fNL

)( H2

4εM2
Planck

)2 4∑i k−2
i

kt ∏ j 2k j
F(~k1,~k2,~k3); kt ≡∑

i
ki (5.1)

Clearly the bispectrum depends on the specific cubic couplings in the theory. In the case of the
Einstein-Hilbert theory the leading one in derivative expansion is H(eh)

I = -
∫
d3xa3( φ̇

H )4 H
M2

Planck
R ′2~∂−2R ′.

I take it as an example in the following, and consider again a quasi de Sitter background.

Standard scenario. For single field slow roll/chaotic models one finds [9]

fNL ≈−
Ḣ
H2 � 1, Fs(k1,k2,k3,η)BD = 1 (5.2)

Modified initial state at a time ηin. 4 The bispectrum has on oscillating shape function, peaked
on “folded configurations" k j = ∑h6= j kh, where the leading correction in β -expansion reads [6]

δFmis(k1,k2,k3)∼ −∑
j

Re
[

β
mis∗
k j

kt
1− ei(∑h 6= j kh−k j)ηin

∑h6= j kh− k j

] k j= ∑
h 6= j

kh

−−−−−→∼ |β mis
k j
||ktηin|; |ktηin| � 1 (5.3)

Modified dispersion relations. Obviously a Lorentz-violating theory presents new cubic cou-
plings, but, more importantly, the modified mode functions lead to a shape function with a more
complicated oscillating piece, and peaked on those momenta configurations for which there is an n
and a time η∗ such that ∂ m

η ω(k j,η∗) = ∑h6= j ∂ m
η ω(kh,η∗) ∀m < n [2]. For these configurations

δFmdr(k1,k2,k3)→∑
j

(
Λ

H

)1− 1
n 1

|Oki,η∗ |
1
n
|β mdr∗
~k j
| ,

where Oki,η∗ is an order-one function fully specified in [2].

5.1 Universal and specific signatures

We can identify some generic types of signatures in the bispectrum from modified initial states
and dispersion relations. Some are common to the two scenarios: an oscillating shape function, the
possible presence of enhancements (depending on the smallness of β ), and greater enhancements
for interactions that scale with more powers of 1

a , which means a stronger sensitivity to higher
derivative couplings.

Other features distinguish the two cases: different patterns of oscillations and magnitude of
“enhancements", and non-Gaussianities peaking for different configurations (in the case of modi-
fied dispersion relations they are strictly tied to the specific pattern of Lorentz violation [2]).

The physical interpretation of the signatures follows from three general points. In the standard
scenario the largest contribution to non-Gaussianities is at late times (∼ horizon crossing), but in
modified high-energy physics scenarios particle creation makes non-Gaussianities sizable also at
early times. Furthermore, interference effects from “negative/positive-energy” components and cu-
mulative ones from time integration (consequence of time evolution) enhance these contributions.

4If different modes have different initial times η
k1,2,3
in , the relevant one for equations (5.3), (5.4) is the latest one.
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5.2 Squeezed limit and modified consistency relations

Certain observations are sensitive to specific limits of the bispectrum B(~k1,~k2,~k3). For in-
stance, the power spectrum of peaks in the matter distributions at large scale is related to the
squeezed limit, where one of the wavenumber is much smaller than the others: say, k1�k2∼k3≡ kS.

Such limit is also relevant theoretically, because various consistency relations link the different
correlators in such soft limits. The form of the relations distinguishes types of models. However,
[1,4] showed that the relations do not depend only on the couplings and on the background model,
but also on the initial state of the perturbations and on their dispersion relations.

For example, for adiabatic perturbations one of these relations connects the bispectrum to the
spectrum. In the standard scenario the relation is determined by powerful “generic” features: non-
Gaussianities peak at late times (horizon crossing), the “squeezed" Rk1 is superhorizon (|k1η |� 1)
at peak time and acts as background for the other perturbations shifting their exit-of-horizon times.
Thus, the limit is determined by the spectral index ns:

〈R~k1
R~k2

R~k3
〉standard 'k1�kS

(2π)3
δ (∑

i

~ki)(1−ns)︸ ︷︷ ︸
O(ε)

Ps(k1)︸ ︷︷ ︸
∼k−3

1

Ps(kS)

But in the cases of modified initial state (≡ mis) or modified dispersion relations (≡ mdr) the
new physics leads to new general features [1]: 1) particle creation makes non-Gaussianities sizable
already at earlier time ηng ∼ − Λ

HkS
, enhanced by interference and cumulation in time, 2) although

k1 is small (but non-zero), it can be both |k1ηng| ≷ 1, so Rk1 may be subhorizon at the time of
non-Gaussianities production. Therefore, the squeezed limit need not be fully determined by ns.

For example, for the Einstein-Hilbert cubic coupling H(eh)
I , see previous section, the standard

result gets corrected by a term (leading in β ) [1]

δβ 〈R~k1
R~k2

R~k3
〉 '

k1�kS
(2π)3

δ (∑
i

~ki) 4εB Ps(k1)Ps(kS) , (5.4)

B
mis
=

3

∑
j=2

- kS
k1

v−1
θ j

Re
[
β

mis*

kS

]
if |k1ηinv

θ j
|�1

-kSηin Im
[
β

mis*

kS

]
if |k1ηinv

θ j
|�1

B
mdr
=

3

∑
j=2


- kS

k1
v−1

θ j
Re
[
β

mdr*

kS

]
if~k1 ∦~k j(Λ

H
k1

kS

) κ

κ+1
kS

k1
Im
[
β

mdr*

kS
O(1)

]
if~k1 ‖~k j

 if Λ

H
k1
kS
�1

4ε
Λ

H Im
[
β

mdr*

kS
O(1)

]
if Λ

H
k1
kS
�1

where κ is the power of the leading correction in ωphys(p) ∼ p(1+ c
κ

( p
Λ

)κ
+ . . .), and v

θ j
= (1+

cos(θ j)) with θ j the angle between~k1 and~k j.

5.3 Universal and distinctive features in the squeezed limit

It is possible to make an analysis for all couplings using the effective theory for single-field
inflation [1], to study universal and distinctive signatures in the squeezed limit, say, k1� k2,3 ∼ kS.

In the standard scenario (adiabatic vacuum, Lorentz unbroken at all scales) the bispectrum is
local (∼ k−3

1 ) in the squeezed limit, and has negligible amplitude fNL ∼ 1−ns = O(ε) determined
by the spectral index.

With a modified initial state, the bispectrum has a non-local form (∼ k−n
1 ,n= 4), if |k1ηinv

θ j
|�1.

In fact, one finds a local behaviour for a “new squeezed limit” |k1ηinv
θ j
|�1 [1], but with a possibly

enhanced amplitude (depending on the magnitude of |βkS |).
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With a modified dispersion relation, we also find a new, stronger squeezed limit. For Λ

H
k1
kS
� 1

the leading contribution is local and the amplitude enhanced (depending on the magnitude of β ) as
fNL ∼ ε

Λ

H |βk|, while higher derivative couplings, including Lorentz-breaking ones, are suppressed
by additional powers of k1

kS
. For Λ

H
k1
kS
� 1, the bispectrum is non-local, growing as ∼ k−4

1 for
k1� kS. Higher-derivative couplings can grow as k−n

1 n > 4, but are suppressed by
(H

Λ

)m, m≥ n.

6. Observations, comments and conclusions

We have seen that primordial perturbations could provide us with a window on physics at a
very high-momentum scale. The PLANCK collaboration has made a partial analysis [10] search-
ing for indications of modified initial states at the level of spectrum and bispectrum, utilizing some
templates. The results indicate that the templates for the modified states scenarios give good fit to
the spectrum data (even better than the standard scenario), but the favoured part of the parameter
space is fine tuned for the present sensitivity of the data. The analysis of non-Gaussianity (bispec-
trum) instead has not covered the whole (or large representative samples of) parameter space, but
only four specific exemplary templates. The signal however has only a 1σ significance.

What about future Planck and after Planck? The search for scale-dependent non-Gaussian
signals hidden in the huge amount of data could benefit from the type of bispectrum with modified
initial states or dispersion relations. In particular, modified dispersion relations lead to a scale
dependence tied to the pattern of Lorentz violations. Resonances could occur for example for light
massive fields. It is however necessary to reduce the parameter space, using a more top-down
studies. Finally, LSS missions could tighten the constraints on these high-energy modifications.
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