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We investigate the behaviour of various correlators in N = 4 super Yang Mills theory, taking
finite coupling corrections into account. In the thermal limit we investigate the flow of the quasi-
normal modes as a function of the ’t Hooft coupling. Then by using a specific model of holo-
graphic thermalization we investigate the deviation of the spectral densities from their thermal
limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with
which the various plasma constituents of different energies approach their final thermal distribu-
tion as the coupling constant decreases from the infinite coupling limit. All results point towards
the weakening of the usual top down thermalization pattern.
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1. Introduction

Understanding the processes behind the complicated field dynamics in a relativistic heavy
ion collision presents a complicated challenge to QCD theorists. Experiments at RHIC and the
LHC, together with the early onset of hydrodynamical behaviour, indicate that the produced state
of matter behaves as a strongly coupled ideal fluid with very low shear viscosity over entropy
ratio. The strongly coupled nature of the quark gluon plasma (QGP) has led the gauge/gravity
duality to become one of the standard tools to investigate its properties [1, 2]. The duality has
proven particularly useful in investigating time dependent out-of-equilibrium phenomena and the
approach to thermal equilibrium by mapping the strongly coupled field dynamics to black hole
formation in asymptotically anti-deSitter (AdS) space time in one higher dimension. This has
led to the insight that the early applicability of hydrodynamics, sometimes called hydroization or
hydrodynamization, does not mean that the system is isotropic, let alone thermal.

Another important question in a thermalizing system concerns the thermalization pattern with
which the plasma constituents of different energies approach their final thermal distribution. On
the weakly coupled side classical calculations have shown that the thermalization process is of
the bottom-up type, i.e. low energetic modes reach their thermal distribution first, with inelastic
scattering processes being the driving mechanism behind it [3]. In the early stages of the collision
many soft gluons are emitted which form a thermal bath rather quickly, which then draws energy
from the hard modes. Recently this picture got supported by numerical simulations [4]. In [5] an
alternative proposal was made: the thermalization process is driven by instabilities which isotropize
the momentum distributions more rapidly than scattering processes. On the contrary, holographic
calculations in the infinite coupling limit always point towards top-down thermalization where the
high energetic modes reach thermal equilibrium first, indicating a probable transition at intermedi-
ate coupling.

In this proceedings we are going to investigate the thermalization patterns in N = 4 super-
Yang Mills (SYM) plasma and its dependence on the coupling constant. This is done through
the determination of the off-equilibrium retarded Greens functions whose evolution gives direct
information about how plasma constituents of different energies approach their thermal distribu-
tion. On the one hand we will investigate the plasma constituents themselves by looking at energy
momentum tensor correlators [6]. On the other hand we will also use photons as probes for the
thermalization process, which provide an observational window into the thermalization process,
because once emitted they stream through the plasma almost unaltered [8, 7, 9, 10].

2. The setup

2.1 the collapsing shell model

We work within one of the simplest models of holographic thermalization, using the radial
collapse of a spherical shell of matter and the subsequent formation of a black hole [11]. Due to
Birkhoff’s theorem, outside the shell the metric is given by a black hole solution, whereas inside it
is given by its zero temperature counterpart

ds2 =
r2

h
L2u

[
f (u)dt2 +dx2 +dy2 +dz2]+ L2

4u2 f (u)
du2 , (2.1)
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where

f (u) =

{
f+(u) = 1−u2 , for u > us

f−(u) = 1 , for u < us
, (2.2)

and u≡ r2
h/r2 is a dimensionless coordinate where the boundary is located at u = 0 and the horizon

at u = 1. From now on the index ’–’ denotes the inside and ’+’ the outside space-time of the shell
and we set the curvature radius of the AdS space to L = 1.

The shell can be described by the action for a membrane

Sm =−p
∫

d4
σ
√
−detgi j , (2.3)

where gi j is the induced metric on the brane and p is the only parameter that characterizes the
membrane. Due to the discontinuity of the time coordinate, fields living in the above background
have to be matched across the shell using the Israel matching conditions given by

[Ki j] =
κ2

5 p
3

gi j , (2.4)

where [Ki j] = K+
i j −K−i j is the extrinsic curvature and κ5 denotes the gravitational constant. From

the above equation the trajectory of the shell is determined. We however are not going to treat the
full dynamical process but work in the quasi static approximation, where the motion of the shell
is slow compared to the other scales of interest and take snapshots at different positions of the
shell 1. In the quasi static approximation the matching conditions for the different fields φi we are
considering simplify considerably and can be written in the uniform way [13]

φ
−
i |us =

√
fsφ

+
i |us , ∂uφ

−
i +

κ2
5 p
3u

φ
−
i |us = fs∂uφ

+
i |us . (2.5)

In what follows we set κ2
5 p = 1, which was set to zero in previous studies for photons [8, 7, 9, 10].

2.2 Finite coupling corrections

In order to go beyond the usual λ = ∞ limit the type IIB supergravity action has to be supple-
mented by the first order string corrections of order α ′3 in the inverse string tension [14]

SIIB =
1

2κ10

∫
d10x
√
−g
[

R10−
1
2
(∂ϕ)2− 1

4.5!
(F5)

2 + γ e
−3
2 ϕ

(
C+T

)4
]
. (2.6)

R10 denotes the Ricci scalar, γ ≡ 1
8 ζ (3)λ−

3
2 , ϕ the dilaton field and F5 the five-form field strength,

while C stands for the Weyl tensor and the tensor T is given by

Tabcde f = i∇aF+
bcde f +

1
16

(
F+

abcmnF+ mn
de f −3F+

ab f mnF+ mn
dec

)
. (2.7)

The index triplets {a,b,c} and {d,e, f} are understood to be first antisymmetrized with respect to
all permutations, and the two triplets then symmetrized with respect to the interchange abc↔ de f .

1Note that the quasi static approximation is not applicable at the latest stages of the collapse [12].
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One should also note that our notation for the various contractions in equ. (2.6) is only schematic,
and e.g. the C4 term in fact denotes the combination

ChmnkCpmnqC rsp
h Cq

rsk +
1
2

ChkmnCpqmnC rsp
h Cq

rsk . (2.8)

For further details of this construction, see e.g. [15] and references therein.
From the above action the γ-corrected metric is obtained from which one can then obtain the

γ-corrected equations of motion (EoM) for a transverse U(1) vector field E and metric perturbations
of the form gµν → gµν +hµν .

Following [16] the metric perturbations can be combined into three gauge invariant fields
Zi representing the three symmetry channels, namely the spin 0 (sound channel), spin 1 (shear
channel) and the spin 2 (scalar channel). The EoMs are solved using standard AdS/CFT techniques.
However, due to the presence of the shell the outside solution is a linear combination of the ingoing
and outgoing modes, (φa = E,Zi),

φ
+
a = c+φa,in + c−φa,out . (2.9)

where the coefficients c± are solved from the matching conditions (2.5). The spectral densities of
the electric field and the gauge invariants are obtained from

χE(ω,q,us,γ) =
N2

c T 2

2
Im
[

E ′+(u)
E+(u)

]
, χZi(ω,q,us,γ) =

N2
c T 4

2
Im
[

Z′′i,+(u)
Zi,+(u)

]∣∣∣∣∣
u=0

(2.10)

which need to be expanded to linear order in γ . For the thermalization processes it is useful to study
the relative deviation of the spectral densities from their thermal limit (denoted by ’th’ below)

Ra(ω,q,usγ) =
χa(ω,q,usγ)−χa,th(ω,q,γ)

χa,th(ω,q,γ)
. (2.11)

3. Results

Having outlined the main steps of our computation, we will now present the results, which
are divided into two parts. We start from the thermal limit and inspect the effect of infinitesimal
perturbations on the system by solving the quasinormal mode (QNM) spectrum and by analyzing
the flow of the poles as functions of λ . Then we use the collapsing shell model to study the
behaviour of various spectral densities and their approach to thermal equilibrium taking the leading
order string corrections into account. In the case of photons we also study the virtuality dependence.

3.1 Quasi normal modes

Quasinormal modes characterize the response of the system to infinitesimal external perturba-
tions and are the strong coupling equivalent to the quasiparticle picture of the weakly coupled field
theory. They are solutions to linearized fluctuations of some bulk field obeying incoming boundary
conditions at the horizon and Dirichlet boundary conditions at the boundary. They appear as poles
of the corresponding retarded Green’s function and have the generic form

ωn(q) = Mn(q)− iΓn(q), (3.1)
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Figure 1: The flow of the QNM in the scalar channel for q = 0 (left) and q = 2πT (right) as a function of
λ . The dashed lines are drawn to illustrate the bending of the tower of QNM towards the real axis as the
coupling constant decreases.

where q is the three momentum of the mode, Mn and Γn correspond to the mass and the decay rate
of the excitation, respectively.

In fig. 1 we show the flow of the tower of QNM obtained from the photon and scalar channel
correlator. In both cases a clear trend is visible. As the coupling constant is decreased from the
infinite coupling limit the imaginary part of ωn increases rapidly. Also note that higher energetic
modes show a stronger dependence on the coupling constant, with a larger shift towards the real
axis. From equ.(3.1) one deduces that finite coupling corrections extend the lifetimes of the exci-
tations. It should be noted though that the strong coupling expansion can only be trusted when the
deviation from the infinite coupling limit is small, which clearly is not the case for all displayed
poles.

3.2 Thermalization of the spectral density

In order to study the thermalization pattern of the different plasma constituents it is most
instructive to look at the relative deviation of the spectral density from its thermal limit given in
(2.11). Starting with the infinite coupling limit we display in fig. 2 how the relative deviation of the
scalar channel behaves for different positions of the shell. As the shell moves towards the horizon
the amplitude of R decreases while the frequency increases, showing that the system thermalizes2.
From this figure one can also see that high energetic modes are closer to equilibrium than the low
energetic ones, showing the usual top-down thermalization pattern. The same conclusion holds
for all other modes as well, and in the case of photons an analytic calculation [10] reveals that
R∼ 1/ω .

As a next step we look at the virtuality dependence of R in the λ = ∞ case by letting the
virtuality v = (ω2− q2)/ω2 be a free parameter. We parameterize q = cω and plot in fig. 3 the
relative deviation, R, for c = 0, 0.8 and 1. The most important effect of the virtuality is that the
larger the virtuality of the photon is, the smaller is the amplitude of the oscillations. This implies
that on shell photons are last to thermalize while maximal virtual photons, i.e. dileptons at rest,
thermalize first.

2Since the effects of the shell location are very minor, in all of our plots we set the parameter of the shell location
to rather arbitrary values which display the effect in the clearest way.
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Figure 2: R in the scalar channel using q= 0 and
λ = ∞ for us = 0.1, 0,4, 0.7, 0.9 (from large to
small amplitudes).
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Figure 3: R for photons for different virtualities
c= 1, 0.8, 0 (from large to small amplitudes) for
us = 0.6.
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Figure 4: Left: The relative deviation R photons for λ = 100 and us = 0.8 and different values of c =

1, 0.8, 0 (from large to small amplitudes). Right: The same values as before in the scalar channel but for
c = 8/9, 6/9, 0 (from large to small amplitudes). The rise of R at some critical value points towards a
weakening of the usual top down thermalization pattern.

We are now ready to move on and study finite coupling effects on the the relative deviation of
the spectral density, shown in fig. 4 for photons and the scalar channel for three different values of
c at a fixed position of the shell and λ = 100. For small frequencies the usual top down pattern per-
sists, which however changes for larger values of ω/T . For c = 0, the relative deviation approaches
a constant. As c is increased R starts to rise again at some critical value. First of all this shows that
finite coupling corrections have a larger impact on the high energetic modes, in accordance with the
QNM analysis. Second, at large frequencies the relative deviation strongly depends on the value of
c (in the case of photons on the virtuality). The larger the value of c the bigger is the deviation from
the thermal limit. We interpret this as a weakening of the usual top-down thermalization pattern
moving towards bottom-up at smaller coupling.

4. Conclusions

In the paper at hand we studied holographic thermalization patterns of N = 4 SYM theory
and their dependence on the coupling constant. First, we investigated the flow of the tower of QNM
as a function of the ’t Hooft coupling. As the coupling decreases from the infinite coupling limit the

6



P
o
S
(
E
P
S
-
H
E
P
 
2
0
1
3
)
5
4
7

Holographic thermalization patterns Stefan STRICKER

imaginary part of the quasinormal modes increases, extending the lifetime of the excitation. Higher
energetic modes show a stronger dependence on the finite coupling corrections. This analysis is
particularly useful since it is independent of the thermalization model being used.

Second, we analyzed the relative deviation of spectral densities from their thermal limit using
the collapse of a thin shell of matter and the subsequent formation of a black hole working within
the quasi static approximation. At infinite coupling the usual top-down pattern is observed. In
the case of photons there is a strong dependence on the virtuality. On shell photons are last to
thermalize, whereas dileptons at rest thermalize first.

Going away from the infinite coupling limit changes the top-down pattern. At a critical value
of the frequency the relative deviation starts rising again, being further away from its equilibrium
value compared to smaller frequencies. All observed behaviours point towards that the usual top-
down thermalization pattern at infinite coupling moves towards bottom-up as the coupling constant
decreases. The effect of finite coupling corrections on thermalizing geometric probes can be found
in [17].
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