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1. Introduction to Lattice QCD

Kaon physics has historically been the source of many important discoveries that have shaped

our understanding of particle physics, and it is possible that more may be in store. A number of

precision measurements in kaon physics are available that further constrain physics beyond the

Standard Model, but the reach of these constraints could be improved if the theory errors were

reduced. Most of these uncertainties are due to hadronic physics that is difficult to calculate due

to the nonperturbative nature of QCD at long distance scales. These uncertainties can be reduced

by further improvements to the primary nonperturbative method used to evaluate the effects of

the strong interactions on weak decays, namely Lattice QCD. Lattice QCD is a nonperturbative

definition of QCD that allows for a direct numerical evaluation of the Feynman path integral that

defines the field theory.

In Lattice QCD, Euclidean space-time is discretized, and the continuum limit is reached by

tuning the bare coupling to zero. The only parameters that enter the theory are fundamental pa-

rameters of the Standard Model: the quark masses and the strong coupling constant. When weak

interactions are included, one makes use of the operator product expansion to separate low and high

energy scales. Long-distance weak matrix elements are then multiplied by Wilson coefficients that

encode the short distance physics where heavier scales (e.g. the W and Z boson masses) have been

integrated out; these coefficients can be calculated perturbatively. A Standard Model prediction for

a typical observable then takes the form

Γ = (known factor)(CKM factor)(non-perturbative QCD factor), (1.1)

where the known factor is a combination of kinematic factors and well-known constants, the CKM

factor comes from the CKM quark mixing matrix that determines the amplitude for flavor changing

between quarks, and the QCD factor parameterizes the nonperturbative hadronic physics.

The continuum path integral that defines QCD is

〈O〉= 1

Z

∫

DU DψseaDψseae−SQCD[U ,ψsea,ψsea]O[U ,ψval,ψval], (1.2)

where SQCD is the Euclidean QCD action, U represents the gauge fields, ψsea (ψsea) is the sea

valence quark (anti-quark) field, and ψval (ψval) is the valence quark (anti-quark) field. The oper-

ator O is the operator whose expectation value is being taken, and Z is the partition function that

normalizes the operator expectation value so that 〈1〉 = 1. Lattice calculations reduce this path

integral to a multi-dimensional integral. The integral is still very large, with dimension equal to

N3
s ×Nt × 12×N f , where Ns and Nt are the length of the lattice in the space and time directions,

respectively, N f is the number of flavors of quarks, and 12 is the number of colors times the number

of spinor degrees of freedom.

The only practical way to evaluate such a large integral is through Monte Carlo importance

sampling. The errors that one encounters in interpreting lattice calculations are a result of the

approximations made when evaluating this integral. The finite box-size leads to finite volume

errors, the finite lattice spacing leads to continuum extrapolation errors. It is expensive to simulate

with the u and d quarks at their physical values. Usually, calculations are done for heavier values of

these quark masses and an extrapolation is made to the physical values, often with the help of chiral
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Figure 1: Left panel: The strange quark mass mMS
s (2GeV) from many groups, including the world average

[6]. Right panel: The results for the average of the u and d quark masses mMS
ud (2GeV) from many groups

with world average. Results in both figures are taken from Refs. [3, 4, 7, 8, 10, 11].

perturbation theory. Thus, many calculations also have a chiral extrapolation error [1], though some

groups now have results from calculations done directly at physical light quark masses. Another

error appears for scheme-dependent quantities like quark masses, where a conversion must be made

from the lattice regulator scheme to a continuum scheme like MS. Such conversions are typically

done using non-perturbative methods that make contact with a perturbative expansion, ideally at

a high scale where perturbation theory works well. Such matching factors come with their own

systematic errors, including a perturbative truncation error.

For a more in depth review of Lattice QCD and additional references, see Ref. [2].

2. Quark masses

The quark masses are fundamental parameters of the Standard Model, but due to confinement

the quarks do not appear as free particles in nature. One must tune the lattice quark masses so

that one reproduces the experimentally known hadron spectrum, with three experimental inputs

needed to determine the three light quark masses and a fourth experimental input to fix the scale.

An additional input is also needed if the charm quark is included in the calculation. The bare

lattice quark masses are then known in the regularization scheme defined by the lattice action of

any particular calculation, but to compare to results using other lattice actions or to be used as input

in continuum calculations, must be converted to a standard continuum regularization scheme like

MS. This matching is the most difficult part of the calculation, and it is only in the last few years

that it has been brought under control by different groups using various improved nonperturbative

methods (see e.g., Refs. [3, 4, 5]).

Recent results for the strange quark mass and for the averaged up and down quark mass mud

are shown in Fig. 1. The agreement between the different results for quark masses is striking,

especially given the long history of disagreement between various ms determinations1 .

1This can be seen in the FLAG lattice review [12], which shows the history of determinations of ms.
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Figure 2: Results for fK/ fπ . The results are quoted from Refs. [10, 14, 15, 16, 17].

3. Decay constants

The light pseudoscalar decay constants fK and fπ are useful benchmarks for lattice calcula-

tions, and their ratio is interesting because it allows for the determination of the ratio of CKM

matrix elements |Vus|/|Vud | from kaon and pion leptonic branching fractions,

Γ(K → ℓνℓ)

Γ(π → ℓνℓ)
=

( |Vus|
|Vud |

)2(
fK

fπ

)2 mK

(

1− m2
ℓ

m2
K

)2

mπ

(

1− m2
ℓ

m2
π

)2

[

1+
α

π
(CK −Cπ)

]

, (3.1)

where mi is the mass of a lepton or meson, α is the QED coupling, and CK and Cπ are perturbative

factors encoding short distance electroweak corrections [13].

A relatively recent average of fK/ fπ is shown in Fig. 2. Since this average was done there

have been two additional precision lattice determinations of fK/ fπ . One is from the MILC Collab-

oration, who quote fK/ fπ = 1.1947(26)(37), where the first error is statistical and the second is the

total systematic [18]. The second is from HPQCD, who quote 1.1916(21) [19]. For more details

see Ref. [20].

4. K → πℓν semileptonic decay

The semileptonic K → πℓν decay can be used to obtain the CKM matrix element Vus from the

experimental branching fraction using [21]

ΓKℓ3 =
G2

Fm5
K

192π2
C2

KSEW (|Vus| f+)2IKℓ(1+δ Kℓ
EM +δ Kπ

SU(2))
2, (4.1)

where SEW = 1.0232(3) is the short-distance electroweak correction, CK is a Clebsch-Gordan co-

efficeint, f+(0) is the form factor at zero momentum transfer, and IKℓ is a phase-space integral that

is sensitive to the momentum dependence of the form factors. The quantities δ Kℓ
EM and δ Kπ

SU(2) are

long-distance EM corrections and isospin corrections, respectively. The value

|Vus| f+(0) = 0.2163(5) (4.2)
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Figure 3: Results for f+(0). The results are quoted from Refs. [25, 26].

has been determined from experimental measurements of K → πℓν decays and non-lattice theory

for the other inputs to Eq. (4.1) [21]. The non-perturbative information is encoded in the form

factor f+(0), and once this is known from lattice QCD, a value for Vus can be determined. The

value of f+(0) is already rather well constrained by SU(3) chiral perturbation theory, an expansion

in powers of m2
K/(8π2 f 2

π ) [22]. One can write f+(0) = 1+ f2+ f4+ ..., where the first term is equal

to one due to current conservation in the SU(3) limit. The correction f2 does not contain any new

unknown low energy constants, as required by the Ademollo-Gatto theorem [23], and is predicted

in terms of pion and kaon masses and the pion decay constant to be f2 = −0.0226. One needs to

know f4, if one is to do better, but this requires the determination of new higher order unknown

low energy constants. The value for f4 was estimated by Leutwyler and Roos in 1984 [24] using a

quark model; they obtained f4 =−0.016(8), which gives f+(0) = 0.961(8).

An average of results for f+(0) with full systematic error budgets as of 2011 is shown in

Fig. 3. In addition to these results by the RBC/UKQCD and ETM Collaborations [25, 26], there

is a more recent published result from FNAL/MILC, where the value f+(0) = 0.9667(23)(33) is

quoted [27]. The first error is statistical and the second is the total systematic error. There is

also a preliminary result from JLQCD, where they quote f+(0) = 0.959(6)(5), and the errors are

statistical and systematic [28]. RBC/UKQCD and FNAL/MILC are working on calculations that

improve upon previous results [29, 30]. For more details see Ref. [20].

5. Kaon mixing

The constraint on the unitarity triangle coming from kaon mixing can be expressed as

|εK |=Cεκε BKA2η{−η1S0(xc)(1−λ 2/2)+η3S0(xc,xt)+η2S0(xt)A
2λ 2(1−ρ)}, (5.1)

where Cε is a collection of experimentally determined parameters, κε represents long-distance

contributions and a correction due to the fact that the quantity φε 6= 45 degrees [31], BK is the kaon

bag parameter, the ηiS0 are perturbative coefficients, and λ , A, ρ , η are CKM matrix elements in

Wolfenstein parameterization. The experimental determination of |εK | leads to a constraint on the

unitarity triangle in the shape of a hyperbolic band in the ρ-η plane. The main non-perturbative

input needed from the lattice to implement this constraint on the CKM unitarity triangle is the kaon

bag parameter BK . The world average for B̂K is shown in Fig. 4. All of the results are in good

agreement, which is impressive given the different discretizations and methods employed in the

various calculations.
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Figure 4: Results for B̂K . The results are quoted from Refs. [10, 11, 32, 33, 34].

6. K → ππ

Lattice calculations of non-leptonic K → ππ decays are challenging because of the two-hadron

final state, but they are important for phenomenology. Lattice calculations of K → ππ matrix

elements have the potential to give us a first principles determination of the decades old ∆I =

1/2 rule, and would finally allow us to use the experimental measurement of ε ′/ε as a precision

constraint on the Standard Model [35]. The Standard Model prediction for ε ′/ε is

Re

(

ε ′
K

εK

)

≈ ω√
2|εK |

[

Im(A2)

Re(A2)
− Im(A0)

Re(A0)

]

, (6.1)

where A0 and A2 are the amplitudes for K → ππ decays into definite isospin states, and real and

imaginary refer only to the part of the amplitude that becomes complex due to the presence of the

weak phase. The smallness of the parameter ω = Re(A2)/Re(A0)≈ 0.05 is a manifestation of the

∆I = 1/2 rule.

K → ππ matrix elements are difficult to calculate on the lattice because the Maiani-Testa no-

go theorem [36] tells us that we cannot extract physical matrix elements from Euclidean correlation

functions with multi-hadronic final states. Due to the restriction of working in Euclidean time, the

most straightforward lattice implementation of calculating K → ππ matrix elements only works

if the final state pions are at rest, or at some other set of unphysical kinematics. Two general

strategies have emerged for getting around this problem. One strategy is to construct K → ππ

matrix elements indirectly using the low energy constants (LEC’s) of chiral perturbation theory as

determined from simpler lattice matrix elements such as K → 0 and K → π [37]. It was shown in

Refs. [38, 39, 40, 41] that all LEC’s through next-to-leading order could be obtained from relatively

simple lattice quantities. However, this method has the disadvantage that the convergence of SU(3)

chiral perturbation theory at the physical kaon mass is slow, and it is not clear whether K → ππ

matrix elements can be computed in this way to a useful precision [42, 43].

A method for calculating K → ππ matrix elements directly at physical kinematics was in-

troduced by Lellouch and Lüscher [44]. The Lellouch-Lüscher method exploits the finite lattice

volume to obtain the matrix elements directly by tuning the volume so that the first excited state

of the two pion state matches the kaon mass. The direct method is straightforward to implement,
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Table 1: Estimated total error budget for Re(A2) from RBC/UKQCD [50]. Each source of uncertainty is

given as a percentage.

uncertainty Re(A2) Im(A2)

statistics 4.3% 7.5%

finite lattice spacing 15% 15%

finite volume errors 6.0% 6.5%

Partial quenching effect 3.5% 1.7%

operator renormalization 1.8% 5.6%

unphysical kinematics 0.4% 0.8%

derivative of the phase shift 0.97% 0.97%

Wilson coefficient 6.6% 6.6%

total 18% 19%

though it is computationally demanding because it requires large lattice volumes (∼ 6 fm) and phys-

ical light quark masses. Improvements to the method have been introduced so that the non-zero

momentum pion state becomes the ground state and smaller volumes can be used [45, 46, 47, 48].

The RBC/UKQCD Collaborations have made significant progress using the direct method, with

results at nearly the physical quark masses and physical kinematics for the ∆I = 3/2 decay channel

[49]; this is discussed below.

The calculation of K → ππ decays from RBC/UKQCD uses the direct Lellouch-Lüscher ap-

proach, and they have made significant progress, completing a calculation of matrix elements in

the ∆I = 3/2 channel with around 20% errors [50]. This required a large box size (around 4.5 fm)

and physical light quark masses. The lightest unitary pion mass is 180 MeV, and a lighter valence

pion with mass around 140 MeV is used for the central value. The main errors contributing to

the RBC/UKQCD calculation of Re(A2) are given in Table 1. The largest error is the estimate of

scaling violations due to the use of somewhat coarse lattices at a single lattice spacing and the fact

that K → ππ matrix elements scale as the lattice spacing cubed.

The calculation of the ∆I = 1/2 rule is more difficult for a number of reasons. One is the

presence of power divergent contributions arising from mixing under renormalization with lower

dimensional operators. This problem has been addressed by the use of chiral fermions, where

the operator subtraction is straightforward [51, 52]. Another problem is the presence of enhanced

finite-volume effects that afflict the calculation when the light valence quark masses are not the

same as in the sea [53, 54]. This was an especially serious problem for quenched attempts to

calculate ∆I = 1/2 kaon matrix elements [55], but is under control when sea quarks of the correct

masses are included in the calculation. Another difficulty comes from the fact that the physical

amplitude is not the ground state when using the Lellouch-Luscher approach; this can be cured

by implementing G-parity boundary conditions [45]. Yet another difficulty is the appearance of

disconnected quark flow diagrams, leading to the need for very high statistics [56]. The contractions

at the level of quark flow are shown in Fig. 5 for the ∆I = 1/2 channel. The red circle is the insertion

of the four-quark operator. Additional diagrams with a quark current insertion are not shown, but

7
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Figure 5: Quark flow diagrams for K → ππ in the ∆I = 1/2 channel.

are needed to perform the power divergent operator subtraction. Figure 5(d) shows the disconnected

diagram that is problematic due to the need for high statistics. This problem will likely be solved

by more computing power and better inversion algorithms, both of which are now available, and a

calculation is currently underway by RBC/UKQCD.

7. Conclusion

Lattice QCD is indispensable for the nonperturbative input needed to maximize constraints on

new physics from kaon phenomenology. Quantities like kaon decay constants and semileptonic

form-factors are now known at the sub-percent level. More difficult quantities like K → ππ matrix

elements in the ∆I = 3/2 channel are known at the 20% [50]. The ∆I = 1/2 channel is more difficult

but may be attainable in the next few years. Other difficult-to-compute quantities, such as the long

distance contributions to kaon mixing [57] and rare kaon decays [58], may become available on a

slightly longer time scale.
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