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We report on recent work [1, 2] concerning isospin breaking in the Kℓ4 form factors induced

by the difference between charged and neutral pion masses. Starting from suitably subtracted

dispersion representations, the form factors can be constructed in an iterative way up to two loops

in the low-energy expansion by implementing analyticity, crossing, and unitarity due to two-

meson intermediate states. This provides a connection between the phases of the two-loop form

factors of theK± → π+π−e±νe channel measured experimentally (out of the isospin limit)and

the difference ofS- andP-waveππ phase shifts studied theoretically (in the isospin limit).The

isospin-breaking correction consists of the sum of a universal part, involving onlyππ rescattering,

and a process-dependent contribution, involving the form factors in the coupled channels. The

dependence on the twoS-wave scattering lengthsa0
0 anda2

0 in the isospin limit is worked out

in a general way, in contrast to previous analyses based on one-loop chiral perturbation theory.

The two-loop universal and process-dependent contributions are estimated and cancel partially to

yield an isospin-breaking correction close to the one-loopcase. The recent results on the phases

of K± → π+π−e±νe form factors obtained by the NA48/2 collaboration at the CERN SPS are

reanalysed including this isospin-breaking correction toextract values for the scattering lengths

a0
0 anda2

0, as well as for low-energy constants and order parameters oftwo-flavourχPT.
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1. Introduction

One of the best tests of our understanding of low-energy QCD comes fromππ scattering, as it
probes the spontaneous breaking of chiral symmetry, responsible for the existence of light pions as
Goldstone Bosons. It provides a very stringent test ofNf = 2 Chiral Perturbation Theory (χPT), the
effective theory for low-energy pion dynamics built on the chiral limit mu = md = 0, of its structure
and of its range of validity [3, 4]. A particularly clean probe of ππ (re)scattering consists in the
angular analysis ofK → ππℓν (Kℓ4) decays, yielding information on the interference betweenthe
SandP waves [5]. Dispersive methods, i.e. Roy equations, can thenbe used to reconstruct the low-
energyππ amplitude using unitarity, analyticity, and data at higherenergies, with two subtraction
parameters chosen as the scattering lengthsa0

0 and a2
0 [6]. The reconstructed amplitude can be

checked against the prediction fromNf = 2 χPT. In order to match higher-energy data onππ
phase shifts, Roy equations require the values of(a0

0,a
2
0) to lie within a large so-called Universal

Band, out of which the domain favoured byχPT represents only a small region.

Until 2001, the only available data onKℓ4 decay into two charged pions came from the old
Geneva-Saclay and more recent BNL-E865 experiments [7]. A first analysis using the Roy equa-
tions together with a theoretical estimate of the scalar radius of the pion led to a determination of
the scattering lengths in close agreement with the predictions from two-loopχPT [8]. Another
analysis of the data available at that time (includingI = 2 low-energy phase shifts) favoured a
slightly larger value fora2

0, 1 σ away from the two-loopχPT prediction [9]. Recently, the NA48/2
collaboration has collected high-statisticsK±

e4 data at the CERN SPS [10]. After the announcement
of the preliminary results of NA48/2 [11], it was pointed outthat the high level of accuracy reached
by the experiments in extracting theππ phase shifts required taking into account isospin-breaking
effects [12]. These effects stem from different sources. First, the contributions from real and virtual
photons can be removed, estimating the Coulomb exchanges and incorporating radiative processes
through a Monte-Carlo treatment [13]. Second, the effect ofthe mass difference between charged
and neutral pions on the one hand, which is also dominantly ofelectromagnetic origin, and between
up anddownquarks on the other hand, must be determined from a theoretical analysis.

These remaining corrections will be called "isospin-breaking" for simplicity, being understood
that the other photon effects mentioned above have been taken care of beforehand by appropriate
means, or can otherwise be considered to be negligible. A computation of these corrections was
performed using next-to-leading-orderχPT [14], leading to a significant energy-dependent correc-
tion in the phase shifts, restoring the agreement between the NA48/2 results and two-loopχPT.
However, this correction was evaluated in the framework ofχPT, with a given set of counterterms
with values corresponding to a rather narrow range of scattering lengthsa0

0 anda2
0. The underlying

assumption is that the correction remains the same even for values of(a0
0,a

2
0) that are reasonable

from the dispersive point of view, i.e. consistent with Roy equations and higher-energy data, but
cannot be accommodated from the chiral point of view, because they differ too much from the
current-algebra results. If the correction had a strong dependence ona0

0 anda2
0, the latter would not

be exhibited by the one-loop computation performed in the framework ofχPT, but it could affect
the outcome of the analysis of the data provided by the NA48/2experiment.

We report here on a dispersive computational framework of isospin-breaking corrections in
the phases of the form factors where the values of the scattering lengths are not unnecessarily
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restricted from the outset, recently developed in Refs. [1,2] and overcoming this potential issue. In
presence of isospin breaking, severalππ channels can rescatter into a given final state, contributing
to isospin-breaking effects in direct link with the structure of theππ amplitude itself. As shown
in Refs. [15, 16] in the isospin limit1, the use of analyticity, unitarity and crossing is sufficient to
reconstruct theππ amplitude up to two loops in terms of a limited number of subtraction constants
(subthreshold or threshold parameters). Refs. [1, 2] has used the same approach to derive a general
expression for the isospin-breaking correction in the phases of the two-loop form factors, where
the values ofa0

0 anda2
0 remain as free parameters and are not fixed from the outset as in Ref. [14].

2. Properties of the Kℓ4 form factors

Crossing.In the Standard Model, the amplitudes corresponding toKℓ4 decays are defined from
the matrix elements of the type〈πa(pa)πb(pb)|iA4−i5

µ (0)|K(k)〉 involving the∆S= ∆Q = +1 axial
current. Through crossing, this amplitudes can be related to 〈πa(pa)K̄(k)|iA4−i5

µ (0)|π̄b(pb)〉 and
〈K̄(k)πb(pb)|iA4−i5

µ (0)|π̄a(pa)〉, which can be all treated with common notation:

A
ab

µ (pa, pb; pc) = 〈a(pa)b(pb)|iAµ(0)|c̄(pc)〉. (2.1)

In practice the sets of interest are{a,b,c} = {π+,π−,K−}, {π0,π0,K−} or {π0,π−, K̄0}. This
matrix element possesses the general decomposition into invariant form factors

A
ab

µ (pa, pb; pc) = (pa + pb)µFab(s, t,u)+ (pa− pb)µGab(s, t,u)+ (pc− pa− pb)µRab(s, t,u).

(2.2)
They depend on the variabless= (pa + pb)

2, t = (pc− pa)
2, u = (pc− pb)

2, obeying the “mass-
shell” conditions+ t +u = M2

a +M2
b +M2

c +sℓ ≡ Σℓ, with sℓ ≡ (pc− pa− pb)
2 being the square

of the dilepton invariant mass. The decomposition (2.2) leads to form factors which are free from
kinematical singularities, but which do not have simple decompositions into partial waves. For
the latter, it is more convenient to introduce another set ofform factorsF ab,G ab,Rab, which
are linear combinations of the former, with projections onππ partial waves denotedf ab

l (s,sl ),
gab

l (s,sl ), rab
l (s,sl ). It turns out that crossing provides relations amongF andG -type form factors

on one side, and amongR-type form factors on the other hand (R form factors are linked to the
divergence of the matrix elements of the currentAµ(x), so that they cannot mix under crossing with
the other form factors, related to transverse components ofthe same current).

Chiral counting. The low-energy behaviour of the partial waves [17] is based on the chiral
countingMP ∼ O(E), s, t,u,sℓ ∼ O(E2), whereMP stands for the mass of any of the light pseu-
doscalar states.SandP waves are dominant at low energies:

Ref ab
0 , Ref ab

1 , Regab
1 ∼ O(E0)), Im f ab

0 , Im f ab
1 , Imgab

1 ∼ O(E2) ,

Ref ab
l≥2(s,sℓ), Regab

l≥2(s,sℓ) ∼ O(E2), Im f ab
l≥2(s,sℓ), Imgab

l≥2(s,sℓ) ∼ O(E6) . (2.3)

The chiral counting of the partial waves translates into thedecompositions

Fab(s, t,u) = Fab
S (s,sℓ) + Fab

P (s,sℓ)cosθab + Fab
> (s,cosθab,sℓ),

Gab(s, t,u) = Gab
P (s,sℓ) + Gab

> (s,cosθab,sℓ). (2.4)
1The isospin limit is defined as the limit in which the values ofthe neutral pion and kaon masses tend towards the

charged ones,Mπ0 → Mπ± , MK0 → MK± , while keeping the latter fixed.
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whereθab denotes the angle made by the line of flight of particlea in the (a,b) rest frame with
the direction of~pa +~pb in the rest frame of particle ¯c, The contributions ofℓ ≥ 2 partial waves are
collected inFab

> and inGab
> , with the counting ReFab

> , ReGab
> ∼O(E2) and ImFab

> , ImGab
> ∼O(E6),

while SandP waves are collected in

Fab
S (s,sℓ) = f ab

0 (s,sℓ) −
M2

a −M2
b

s
gab

1 (s,sℓ),

Fab
P (s,sℓ) = f ab

1 (s,sℓ) −
M2

c −s−sℓ

s

λ
1
2

ab(s)

λ
1
2
ℓc(s)

gab
1 (s,sℓ) , Gab

P (s,sℓ) = gab
1 (s,sℓ). (2.5)

involving the Källen’s functionλ (x,y,z) = x2+y2+z2−2xy−2xz−2yzwith λab(s) = λ (s,M2
a,M2

b)

andλℓc(s) = λ (s,sℓ,M2
c),

Analyticity. The form factorsFab(s, t,u) andGab(s, t,u) are assumed to have the usual analyt-
icity properties with respect to the variables, for fixed values oft and ofu (and ofsℓ ≥ 0), with
a cut on the positives-axis (fixed by unitarity) and a cut on the negatives-axis (unitarity in the
crossed channel). Up to and including two loops, the discontinuities along the positives-axis at
low energies (at a fixedsℓ) originate from mesonic two-particle intermediate states

Im f ab
l (s,sℓ) = ∑

{a′,b′}

1
Sa′b′

λ
1
2

a′b′(s)

s
Re
{

ta′b′;ab
l (s)

[
f a′b′
l (s,sℓ)

]⋆}
θ(s−sa′b′)+O(E8), (2.6)

Imgab
l (s,sℓ) = ∑

{a′,b′}

1
Sa′b′

λ
1
2

a′b′(s)

s

λ
1
2

a′b′(s)

λ
1
2

ab(s)
Re
{

ta′b′;ab
l (s)

[
ga′b′

l (s,sℓ)
]⋆}

θ(s−sa′b′)+O(E8),

wherel = 0,1 andsa′b′ = (Ma′ + Mb′)
2 stands for the lowest invariant mass squared of the corre-

sponding intermediate state. The symmetry factor readsSa′b′ = 1 except for{a′,b′} = {π0,π0}
or {η ,η}, whereSa′b′ = 2. The partial wavesta′b′;ab

l (s) of the mesonic scattering amplitudes
Aa′b′;ab(s, t̂), t̂ = (pa− pa′)

2, are defined as usual with the chiral counting [15]

Reta′b′;ab
l (s) ∼ O(E2), l = 0,1, Reta′b′;ab

l (s) ∼ O(E4), l ≥ 2,

Im ta′b′;ab
l (s) ∼ O(E4), l = 0,1, Im ta′b′;ab

l (s) ∼ O(E8), l ≥ 2. (2.7)

An important observation is that the scattering amplitudesstart at least at∼ O(E2), so that the
unitarity condition requires the imaginary part of the formfactors to arise one higher order (in the
chiral counting) compared to their real part.

3. Phases of the form factors

We are eventually interested in the phases of theFS, FP, andGP components of theF andG
form factors corresponding to the decay channelK+ → π+π−ℓ+νℓ as defined in Eq. (2.5) and more
precisely, in the differences of these phases that are observable in the interferences occurring in the
differential decay distribution. These form factors have the generic low-energy structure

F+−(s, t,u) = F̂+−
S (s,sℓ)e

iδS(s,sℓ) + F̂+−
P (s,sℓ)e

iδP(s,sℓ) cosθ +ReF+−
> (s,cosθ ,sℓ)+O(E6),

G(s, t,u) = Ĝ+−
P (s,sℓ)e

iδP(s,sℓ) +ReG+−
> (s,cosθ ,sℓ)+O(E6), (3.1)
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Figure 1: K+
e4 form factors: tree-level representation (left) and typical rescattering diagrams involved in the

reconstruction of theK+
e4 form factors in thes-channel (center) and in thet- andu-channels (right).

where the real functionŝF+−
S (s,sℓ), F̂+−

P (s,sℓ), andĜ+−
P (s,sℓ) correspond to the quantities appearing

in Eq. (2.4), but with their phases removed,F̂+−
S (s,sℓ) = e−iδS(s,sℓ)F+−

S (s+ i0,sℓ), etc. Order by
order, the phases are related to the chiral expansion of the real parts of the partial-wave projections

Reta′b′;+−
l (s) = ϕa′b′;+−

l (s)+ ψa′b′;+−
l (s)+O(E6), (3.2)

for l = 0,1, with the shorthand notation+− denotingπ+π−. We haveϕa′b′;+−
0,1 (s) ∼ O(E2) and

ψa′b′;+−
0,1 (s) ∼ O(E4). We write a similar expansion for the form factors themselves, e.g.

ReF+−
S (s,sℓ) = F+−

S[0]+F+−
S[2](s,sℓ)+O(E4), ReG+−

P (s,sℓ) = GP[0]+G+−
P[2](s,sℓ)+O(E4), (3.3)

Using the unitarity condition Eq. (2.7), we obtain the expressions valid up toO(E6) corrections

δS= ∑
{a′,b′}

1
Sa′b′

λ
1
2

a′b′(s)

s

[

ϕa′b′;+−
0 (s)

Fa′b′
S[0] +Fa′b′

S[2] (s,sℓ)

F+−
S[0] +F+−

S[2](s,sℓ)
+ ψa′b′;+−

0 (s)
Fa′b′

S[0]

F+−
S[0]

]

θ(s−sa′b′)+ . . . ,(3.4)

δP= ∑
{a′,b′}

λ
1
2

a′b′(s)

s

λ
1
2

a′b′(s)

λ
1
2

ab(s)

[
ϕa′b′;+−

1 (s)
Ga′b′

P[0] +Ga′b′
P[2](s,sℓ)

G+−
P[0] +G+−

P[2](s,sℓ)
+ ψa′b′;+−

1 (s)
Ga′b′

P[0]

G+−
P[0]

]
θ(s−sa′b′)+ . . . .(3.5)

The phasesδS(s,sℓ) andδP(s,sℓ) depend onsℓ through the orderO(E2) corrections to the form
factors, as soon as a second intermediate statea′b′ 6= +− is involved. In the case of theP-wave
phase shift, there can be no contribution from states with two identical particles due to Bose sym-
metry. Hence, forδP in the specific caseab= +− and fors≤ M2

K, the sum boils down to the single
π+π− intermediate state, the contribution from form factors drops out altogether and there is nosℓ

dependence. While Watson’s theorem does not apply to theδS(s,sℓ) phase shift due to the occur-
rence of two distinct possible intermediate states [π0π0 andπ+π− for s≤ M2

K], it is still operative
in the l = 1 channel. This explains both why the phases ofFP(s,sℓ) and ofGP(s,sℓ) are identical,
and why this common phaseδP(s) actually does not depend onsℓ, as indicated in Eq. (3.1).

4. Two-loop representation of Kℓ4 form factors

One can derive a representation of theKℓ4 form factorsFab(s,sℓ) and Gab(s,sℓ) that holds
up to and including two loops in the low-energy expansion, proceeding as in the case of theππ
amplitude in Ref. [15], or as discussed for the scalar form factor of the pion in Ref. [18] (in the
isospin limit) and in Ref. [1] (with isospin breaking included). As compared to the latter case, one
has to deal with some additional kinematic complexities when addressing theKℓ4 form factors.
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A at order E2k

projection

over partial waves

f at order E2k

unitarity

Im f at order E2k+2

dispersion relation

A at order E2k+2

Figure 2: Recursive construction for two-loop representations of the K+
e4 form factors andππ scattering

amplitudes in the low-energy regime.A denotes the amplitude of interest andf its partial waves.

As a starting point, we consider fixed-t dispersion relations with two subtractions for all form
factors, in all three channels. Assuming the usual analyticity properties for the form factors, with a
first cut extending to infinity along part of the real positives-axis, and a similar second cut along the
real negatives-axis, due to theu-channel singularities, we obtain the following dispersion relations

Aab(s, t) =

(
Fab(s, t)
Gab(s, t)

)
= Pab(t|s,u)+

s2

π

∫
dx
x2

1
x−s− i0

ImAab(x, t)

+
u2

π

∫
dx
x2

1
x−u− i0

λaλcCusImAcb(x, t). (4.1)

whereλa,c andCus are phases and matrix implementing the expected structure of the Kℓ4 form
factors underu-crossing, andPab(t|s,u) denotes a pair of subtraction functions that are polynomials
of the first degree ins andu, with coefficients given by arbitrary functions oft. We may express
ImAab in terms of the imaginary parts of the form factorsFab

S (s), Fab
P (s) andgab

1 , and exploit the
chiral counting to absorb parts of the dispersive integralsin the (yet unspecified) functionsPab

Aab(s, t,u) = Pab(s, t,u)+
[
Φab

+ (s)− (t −u)Φab
− (s)

]
+ λaλcCus

[
Φcb

+ (u)− (t −s)Φcb
− (u)

]

+λbλcCst [Φac
+ (t)− (s−u)Φac

− (t)] + O(E6). (4.2)

where the functionsΦ+ andΦ− are defined through their analyticity properties in the complex s-
plane: their singularities are restricted to a cut along thepositive real axis, and their discontinuities
along this cut are linear combinations of Imf ab

0 (s), Im f ab
1 (s) and Imgab

1 (s). Crossing relations can
be used to show thatPab(s, t,u) is a pair of polynomials of at most second order in all three variables
s, t, andu, with arbitrary constant coefficients (which may depend on the masses and onsℓ).

The low-energy discontinuities are limited to two-meson intermediate states [cf. examples of
typical diagrams at one loop shown in Fig. 1] up to and including two-loop order. This provides
an iterative set-up to construct theKe4 form factors at two loops through a two-step process, as
illustrated schematically in Fig. 2. The starting point is provided by the form factors and ampli-
tudes at lowest order. Since these are given by at most first order polynomials in the corresponding
Lorentz invariant kinematical variables, the computationof the lowest partial waves required for the
one-loop discontinuities is a simple exercise. Likewise, finding the appropriate explicit representa-
tion of the one-loop functions with the prescribed discontinuities presents no particular difficulties.
Things become less tractable at the second iteration, whichrequires the partial-wave projections of
the one-loop form factors and scattering amplitudes. Ref. [1] used this approach both for the vector

6
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and scalar form factors of the pion, as well as for theππ scattering amplitudesϕ andψ , whereas
the case ofKℓ4 form factors has been discussed in ref. [2].

5. Isospin breaking in the phases of the two-loop form factors

Since the low-energyππ scattering amplitudes play a central role in this discussion, we sim-
plify the notation, so that quantities related to the process π+π− → π+π− (π0π0 → π0π0) will be
distinguished by a+− (00) superscript or subscript, e.g.ϕ+−

0 (s) ≡ ϕ+−;+−
0 (s). For the inelastic

channelπ+π− → π0π0, we use the superscript/subscriptx, so thatϕx
0(s) ≡ ϕ+−;00

0 (s), for instance.
The general formulas (3.4) and (3.5) read, for 4M2

π ≤ s≤ (MK −mℓ)
2,

δS(s,sℓ)−δ0(s) = σ(s)
{[

ϕ+−
0 (s)− oϕ+−

0 (s)
]
+
[
ψ+−

0 (s)− oψ+−
0 (s)

]

−1
2

[
ϕx

0(s)−
oϕ x

0 (s)
]
− 1

2

[
ψx

0(s)−
oψ x

0 (s)
]}

+
1
2

[
σ(s)− (1+2

√
3ε2)σ0(s)

]
[ϕx

0(s)+ ψx
0(s)]

+
1
2

σ0(s)ϕx
0(s)

[
(1+2

√
3ε2)f

+−
0 (s,sℓ)− f00

0 (s,sℓ)
]
+O(E6), (5.1)

δP(s)−δ1(s) = σ(s)
{[

ϕ+−
1 (s)− oϕ+−

1 (s)
]
+
[
ψ+−

1 (s)− oψ+−
1 (s)

]}
+O(E6). (5.2)

The phase-space factors for two charged or two neutral pionsare λ
1
2

+−(s) = sσ(s), andλ
1
2

00(s) =

sσ0(s), and for any quantityA,
o
A denotes its counterpart in the isospin limit. We have used

F 00
S[0]/F+−

S[0] =−(1+2
√

3ε2) (ε2 being related toπη mixing), and denotedF+−
S[2](s,sℓ)= F+−

S[0] ·f
+−
0 (s,sℓ)

andF00
S[2](s,sℓ) = −F+−

S[0] · f
00
0 (s,sℓ), so thatf00

0 andf+−
0 combineF- andG-form factor partial waves.

In agreement with Ref. [1], isospin-breaking effects take place in theS-wave phase shift
through two types of contributions: the first two lines in Eq.(5.1) are universal as they depend only
on ππ (re)scattering, whereas the last two are process-dependent as they involve isospin-breaking
in theKℓ4 form factors. For the third term, this dependence is not as explicit as for the last one, but
one should recall that the factor−(1+ 2

√
3ε2) originates from the ratioF00

S[0]/F+−
S[0]. On the other

hand, isospin breaking in theP-wave phase shift Eq. (5.2) is indeed universal. In order to relate
the data fromK±

e4 decays to theππ phases shiftsδ0(s)− δ1(s) in the isospin limit, we evaluate
the isospin-breaking correction∆IB(s,sℓ) = [δS(s,sℓ)−δ0(s)]− [δP(s)−δ1(s)] , at next-to-leading
order. This requires the determination of the partial-waveprojectionsf+−

0 (s,sℓ) andf00
0 (s,sℓ) of the

Kℓ4 form factors and theππ partial wavesϕ+−
0,1(s), ϕx

0(s), ψ+−
0,1(s), andψx

0(s).

The iterative procedure described above allows one to describe these quantities in terms of a
large set of subtraction constants not fixed by the general properties (unitarity, analyticity, chiral
counting) on which we have built our approach. Additional information must be provided on these
quantities, which is obtained by matching the expression ofthe subtraction constants ontoχPT:
a) The quantities related to theππ partial-wave projections,ϕ+−

0,1(s),ϕ
x
0(s) or ψ+−

0,1(s),ψ
x
0(s) can

be expressed in terms of the corresponding threshold parameters, which can be related to the two
S-wave scatteringa0

0 and a2
0 in the isospin limit using the results of Ref. [1].b) For the other

lowest-order two-meson scattering amplitudes contributing to the real parts of the form factors
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at one-loop, we have used leading-order expressions from three-flavourχPT 2 c) Finally, for the
subtraction constants for theKℓ4 form factors, we have matched the dispersive representation with
Nf = 3 χPT expressions.

For our numerical analysis, we use the inputs for strong and electromagnetic low-energy con-
stants described in Refs. [1, 2]. We assume (as already done in Ref. [14]) that the low-energy
constants involved in the theory without virtual photons are identical to those in the full theory.
This identification induces a systematic theoretical errorwhose size is difficult to assess, but which
will be assumed to be small compared to the other sources of uncertainties. We have varieda0

0 in
the range [0.18,0.30] anda2

0 in the Universal Band obtained from the analysis of Roy equations
and the compatibility with high-energy inputs. The main contribution to∆IB can be seen as com-
ing, on the one hand, from pure phase-space effects which dominates in the low-energy region,
and on the other hand, from the significant (especially at higher energies) universal contribution
and the form-factor dependent one, with opposite signs. As in the case of the scalar and vector
pion form factors [1], the form-factor dependent part tendsto decrease the size of the correction,
and a significant cancellation takes place between the universal and non-universal contributions to
isospin breaking in the two-loop phase shifts. The contributions to∆IB(s,sℓ) from theP-wave term
are completely universal and very small, in agreement with Ref. [1]. At larges, the correction is
reduced compared to the leading-order results, and varies significantly in the(a0

0,a
2
0) plane, as illus-

trated in Fig. 3, which can be compared to Ref. [14]. Going away from sℓ = 0 does not change the
above picture. The dependence on the dilepton invariant mass sℓ comes from the partial-wave pro-
jection of the form factorsf00

0 andf+−
0 , but this dependence is very mild: varying over the allowed

phase space 0≤ sℓ ≤ (MK+ −√
s)2 changes∆IB(s,sℓ) by less than 1%.

6. Re-analysis of NA48/2 results

We can use our computation of the isospin-breaking correction ∆IB(s,sℓ) as a function of
the two scattering lengthsa0

0 and a2
0 to perform an analysis of the available phase shifts from

the NA48/2 experiment [10]. We proceed along the lines of Ref. [9], using the same solutions
of the Roy equations in the isospin limit, and correcting themeasured phase shifts based on the
interference betweenSandP waves (S−P fit). Actually, theS-P interference from theK±

e4 angular
analysis provides a strong correlation betweena0

0 anda2
0, but a weaker constraint on each of them

separately. We can circumvent this problem by performing the extended fit described in Ref. [9],
where we supplement the NA48/2 data set with information from the I = 2 S wave3 in order to
constrain each of the two scattering lengths more tightly (extended fit). The results of these analyses
are shown in Fig. 3 and summarised in Tab. 1. We perform the analysis either with or without
isospin-breaking corrections. In the first case, our results agree with the NA48/2 collaboration for
the S-P fit (so-called Model B in Ref. [10]:a0

0 = 0.222± 0.013 anda2
0 = −0.043± 0.009) but

with slightly larger errors once isospin-breaking corrections are included. This is not surprising

2This might not look quite at the same level of generality as inthe case of theππ amplitudes. In some cases, like
for instanceπK scattering, we could have used existing phenomenological information [19]. However, the numerical
weight of all these contributions is quite small, well belowthe level of the uncertainties generated by the other terms.

3The isospin-breaking corrections attached to theI = 2 channel cannot be estimated in our framework but are
certainly subleading compared to the large uncertainties for this set of data.
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Figure 3: On the left: Isospin breaking in the phase of the two-loop form factors,∆IB(s,sℓ), as a function of
the dipion invariant massMππ =

√
s, for sℓ = 0. The middle (light-blue) band corresponds to the(a0

0,a
2
0) =

(0.182,−0.052), whereas the other two cases shown correspond to(a0
0,a

2
0) = (0.205,−0.055) (upper orange

band) and to(a0
0,a

2
0) = (0.24,−0.035) (lower green band). On the right: Results of the fits to the NA48/2

data in the(a0
0,a

2
0) plane. The two black solid lines indicate the universal bandwhere the twoS-wave

scattering lengths comply with dispersive constraints (Roy equations) and high-energy data onππ scattering.
The orange band is the theoretical constraint coming from the scalar radius of the pion [8]. The small dark
(purple) ellipse represents the prediction based onNf = 2 χPT [8]. The three other ellipses on the left
represent, in order of increasing sizes, the 1-σ ellipses corresponding to the scalar (orange ellipse [8]),S-P
(blue ellipse) and extended (green ellipse) fits, respectively, including isospin-breaking corrections. The
light-shaded ellipses on the right represent the same outputs, without isospin-breaking corrections.

since our isospin-breaking correction varies witha0
0 anda2

0. Once isospin-breaking corrections are
included, the mild discrepancy previously observed between the two fits [9] is recovered, whereas
the larger uncertainty of theS-P fit covers both solutions. By comparing the dispersive and chiral
descriptions of the low-energyππ amplitude in the isospin limit following Refs. [15, 16, 9], we
can extract theNf = 2 chiral low-energy constants̄ℓ3, ℓ̄4, or equivalently the two-flavour quark
condensateΣ(2) = − limmu,md→0〈0|ūu|0〉 and pion decay constantF(2) = limmu,md→0 Fπ measured
in physical units (calledX(2) andZ(2)). As shown in Tab. 1, the minor difference ina2

0 between
the two fits yields significant differences in the estimate oftheNf = 2 order parameters and low-
energy constants. For comparison, we also show the results obtained without including the isospin
corrections.

A natural extension of our work would consist in working out not only the phases, but also
the real parts of theKℓ4 form factors, in order to compute isospin breaking in these quantities
which are experimentally available. A full analytical treatment seems out of reach, but the outcome
would involve a limited number of one-dimensional dispersive integrals amenable to a numerical
treatment. For instance, it would provide a theoretical framework suitable to analyse the cusp
recently observed by the NA48/2 experiment inK± → π0π0e±νe [20].
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