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1. Introduction

Substantial advances in algorithms and high-performance computers now allow lattice QCD
calculations that were not possible even a year or two ago. An important threshold that has been
crossed recently is the ability to perform calculations in which the light quarks and therefore the
pions have their physical masses. This step has two important consequences. Lattice calculations
of familiar quantities such as particle masses, pseudoscalar decay constants and bag parameters can
now be computed directly without the need to make uncertain assumptions about the accuracy of
chiral perturbation theory that were previously necessary: A significant source of systematic error
present in lattice calculation has been simply removed. A second important consequence of the
ability to work at physical quark mass is that we can attempt to compute more complex quantities
now made simpler because we need not deal with the effects of unphysical masses. The calculation
of the two pion decays of the kaon [1, 2, 3] and the KL −KS mass difference [4] are two recent
efforts undertaken to exploit this important advance.

Here we will discuss the status and prospects for computing the I = 0 and 2, K → ππ decay
amplitudes A0 and A2 from first-principles using lattice techniques. We begin by describing the
methods that allow these physical decay amplitudes to be computed using lattice methods. This
discussion is then specialized to the easier case of complex amplitude A2 where results for the real
and imaginary parts using physical kinematics are now available. Next we turn to the more difficult
case of A0 and describe the state of recent numerical experiments, an array of improved techniques
that offer substantial reductions in computational costs and the calculation using physical kinemat-
ics that has now begun. Finally the recent RBC/UKQCD lattice QCD insights into the ∆I = 1/2
rule will be discussed.

2. K → ππ decays on a four-dimensional Euclidean lattice

More than ten years ago, Lellouch and Luscher [5] recognized that the Maiani-Testa “no-go”
theorem [6], impeding the calculation of two-body decays using lattice QCD, could be circum-
vented by exploiting the finite volume in which lattice calculations are performed. In a standard
lattice calculation an operator is introduced with the quantum numbers needed to create a particular
physical state and then a sufficient time extent is introduced so that the single lowest energy state
with those quantum numbers results. For the case of two pions, this lowest energy state will be
two pions at rest (for I = 2) or, even worse, the vacuum (I = 0). Lellouch and Luscher pointed out
in finite volume there will be a series of discrete QCD energy eigenstates corresponding approxi-
mately to states where the components of the pion momenta are integer multiples of 2π/L. Thus,
by tuning the spatial size of the box in which the calculation is performed, we can arrange that one
of these excited two-pion states has an energy which matches that of the kaon. The matrix element
of the effective ∆S = 1 weak Hamiltonian between the kaon and this excited state then agrees with
the on-shell, infinite volume physical matrix element up to a finite-volume correction, which Lel-
louch and Luscher show can be determined by lattice methods. This is illustrated in Fig. 1, which
shows schematically a pion wave function with momentum p ≈ 2π/L. This well-controlled theo-
retical analysis permits the direct lattice calculation of A0 and A2 to sub-percent precision, although
electromagnetic effects will likely have to be included to achieve this level of accuracy.
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Figure 1: An illustration of the Lellouch-
Luscher, finite-volume approach to K → ππ
decay. The size of the box is adjusted so that
the energy of a finite-volume π −π state co-
incides with the kaon mass.
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Figure 2: A Feynman diagram representing
the four-point functions Γi(p1, p2, p3, p4)

appearing in Eq. (2.2) upon which the RI
renormalization conditions are imposed.

While theoretically sound this method is computationally challenging because it requires dis-
tinguishing a term which falls exponentially with increasing time relative to the unphysical state
in which the pions have near-zero momentum, or for the more difficult I = 0 state, distinguishing
a term falling exponentially with increasing time relative to both the zero-momentum π −π and
the vacuum states! This issue is represented by the equation for the dependence of the correlation
function G(t) on the time separation t between the weak Hamiltonian which creates the two-pion
final state and the operator which destroys these two pions:

G(t) = c0 + c1e−E1t + c2e−E2t . (2.1)

Here we assume E2 > E1. For the I = 0 case all three terms are present. The constant term c0 is the
vacuum contribution while c1 describes the two-pion state at rest. For a properly chosen volume the
third term c2 contains the decay amplitude of interest. However, at large times where we may hope
to precisely distinguish these three terms the c2 piece will be very small and difficult to accurately
determine. The I = 2 case is somewhat better because the vacuum term, c0 is absent.

This difficulty can be substantially reduced by imposing anti-periodic boundary conditions on
the pions. For the I = 0 final state this can be done by imposing G-parity boundary conditions
on the quarks [7] while for the I = 2, π − π state we need only impose anti-periodic boundary
conditions on the d quark [8]. The spatial size of the lattice volume and the number of spatial
directions in which these boundary conditions are imposed can be chosen so that the finite-volume
two-pion state with the lowest energy is degenerate with the initial kaon. For the case of I = 2
this implies that in the large time limit the leading term is the one describing the physical K → ππ
decay. For the I = 0 case the leading large-time behavior corresponds to the unphysical K → |vac⟩
transition. However, the next-leading term will describe the physical I = 0, K → ππ decay.

A second challenge that must be addressed is the determination of the lattice expression for the
electro-weak operator which causes the decay. While the general methods needed to accomplish
this task have been in use for some time [9], there have been important refinement which substan-
tially increase the accuracy of the method. The starting point in creating an appropriate lattice
weak decay Hamiltonian is the procedure, already highly developed in the 1970’s, of representing
the fundamental W exchange process by an effective Hamiltonian that when used in low-energy
matrix elements, such as those that must be computed in a lattice calculation, reproduces the re-
sults of the original theory. The determination of this effective weak operator in continuum field
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theory is described in the review article of Buchalla, et al. [10] and results in a specific combination
of seven independent, dimension-six, four-quark operators normalized in the MS scheme.

These operators, defined in the continuum, are converted into lattice operators in two steps.
First a continuum QCD perturbation theory calculation is performed to convert from the MS renor-
malization scheme which requires dimensional regularization to the Rome/Southampton, regular-
ization independent (RI) scheme which can be imposed in both the continuum and lattice theories.
Here we define the normalization and the mixing of these seven operators by imposing conditions
on off-shell, Landau gauge-fixed, Green’s functions in which these operators appear. Schematically
we evaluate seven momentum-space Green’s functions corresponding to these seven independent
operators as shown in Fig. 2, determining the amplitudes:

(Γi(p1, p2, p3, p4))
αβγδ
abcd =

4

∏
j=1

(∫
d4x jeip j·x j

)⟨
qα

a (x1)q
β
b (x2)Qiqγ

c(x3)qδ
d (x4)

⟩
, (2.2)

where α , β , γ and δ are spin indices, a, b, c and d are color indices and 1 ≤ i ≤ 7. The RI operators
are then defined by imposing the conditions

Tr{PkΓi(p1, p2, p3, p4)}= Fki. (2.3)

Here Tr indicates a sum over the flavor and spin indices, the Pk, 1 ≤ k ≤ 7 are seven projection
operators and Fki the results obtained if these conditions are applied in the free-field case. The
momenta p1,p2, p3 and p4 are fixed at non-exceptional values to insure that the amplitudes Γi are
infrared safe and can be reliably computed in perturbation theory if the scale of these momenta is
sufficiently large [11, 12]. We can the apply the conditions in Eq. (2.3) to normalize our lattice
operators without the use of perturbation theory.

Two recent developments bring this process under more precise control. First, using these RI
conditions we can define physically equivalent operators on multiple gauge ensembles with lat-
tice spacings varying between the larger values needed when simulating physical-mass pions and
much smaller values needed to reduce, to whatever extent desired, the perturbation series trunca-
tion errors that arise when the continuum effective Hamiltonian is determined and the MS and RI
scheme related [13]. This technique can essentially eliminate the errors associated with the use
of perturbation theory. Second, we can use twisted boundary conditions for the fermion fields,
allowing momenta which are non-integer multiples of 2π/L when imposing the RI conditions in
Eq. (2.3) [13]. This permits the lattice four-momenta to be continuously varied while the orienta-
tions of these four-momenta relative to the lattice directions are kept fixed. This permits an accurate
continuum limit to be taken, avoiding variations in the O(a2) terms that would result if the orien-
tations of the momenta are changed and when the lattice spacing is changed. Using these methods
and presuming adequate computer resources, the accuracy of such a lattice QCD calculation of
K → ππ decay is limited by the most important phenomena that have been omitted: electromag-
netic and other isospin breaking effects which might be expected to enter at the percent level for
A0 and at a possible larger relative value for the accidentally suppressed amplitude A2.

Central to the K → ππ calculations described below is the use of a chiral fermion formulation,
in our case domain wall fermions [14, 15]. While all fermion formulations are expected to show
chiral behavior at long distances, chiral fermions have a short-distance behavior which also respects
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chiral symmetry. This reduces the number of operators that must be introduced in the effective
electro-weak theory and greatly simplifies the mixing of those operators, a simplification that is
critical to the application of the renormalization methods described above. In addition, this physical
character of the domain wall formulation at short distances leads to relatively small discretization
errors, reducing the errors associated with evaluating the continuum limit [16].

3. K → ππ decay, ∆I = 3/2

The first realistic, ab initio calculation of the amplitude A2 was completed in 2011 [2, 3]. The
I = 2 final state does not receive a vacuum contribution and anti-periodic boundary conditions can
be easily imposed on the two final-state pions by using isospin symmetry to relate the physical
decay to one in which the two final-state pions are both π+. These π+ mesons can be made to
obey anti-periodic boundary conditions by imposing anti-periodic boundary conditions on the d
quarks and periodic boundary condition on the u quarks. This calculation used a kaon and pions
with essentially physical masses, 505.5(3.4) MeV and 142.11(94), respectively, while the energy
of the two-pion final state had the close to energy conserving value of 485.5(4.2) MeV. The result
for the complex amplitude A2 was:

Re(A2) = 1.381(46)stat(258)syst ×10−8 GeV (3.1)

Im(A2) = 6.54(46)stat(120)syst ×10−13 GeV

where the large systematic error is dominated by our estimate of the discretization errors arising
from the single and relatively small inverse lattice spacing of 1/a = 1.371(8) GeV used.

This calculation was carried out on a specially designed 323 × 64 ensemble of gauge fields
whose large lattice spacing was chosen to give a sufficiently large volume that pions of physical
mass could be studied. However, such a coarse lattice spacing gives rise to large residual chiral
symmetry breaking for the domain wall fermion formulation and an extra dislocation suppressing
determinant ratio (DSDR), developed for the study of QCD thermodynamics, was added to the
gauge action to allow physical quark masses to be studied [17].

Fortunately, enormous progress in numerical algorithms and computer hardware has taken
place since this first K → ππ calculation was begun in 2010. What was a large pioneering effort
has now been made routine by using the all mode averaging technique [18] and the large IBM
Blue Gene/Q Mira computer at Argonne and the smaller Blue Gene/Q machines at the RIKEN
BNL Research Center, the Brookhaven National Laboratory and the University of Edinburgh. The
original 323 × 64 volume has been increased to 483 × 96 and 643 × 128 and the relatively small
inverse lattice spacing of 1.37 GeV has been replaced by the two larger values of 1.73 and 2.28
GeV, allowing a continuum limit to be evaluated. While still preliminary, first results were reported
(after this talk was given) at Lattice 2013 by Tadesuz Janowski:

Re(A2) = 1.345(84)stat ×10−8 GeV (3.2)

Im(A2) = 6.32(28)stat ×10−13 GeV.

These results now come from an extrapolation to the continuum limit and are expected to have
systematic errors smaller than those in Eq. (3.1) by factor of two. The agreement with our earlier
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results from an independent ensemble and the agreement of Re(A2) with the experimental values
Re(A2) = 1.479(4) and 1.573×10−8 (obtained from K+ and KS decays respectively) is very good.

The value for Im(A2) was previously unknown. Assuming the standard model, we can com-
bine the results in Eq. (3.1) with the experimental result for Re(A0) and Re(ε ′/ε) to determine the
two CP violating ratios whose difference determines the direct CP violation parameter ε ′:

Im(A2)

Re(A2)
= −4.76(37)stat(81)syst ×10−5 (3.3)

Im(A0)

Re(A0)
= −16.3(1.9)stat(20)syst ×10−5, (3.4)

showing that ε ′ is dominated by the contribution of Im(A0), without large cancellation between the
I = 0 and I = 2 contributions. This calculation is now part of the standard “measurement” package
of RBC/UKQCD and will be refined future calculations in much the way as the calculation of the
pseudoscalar decay constants fπ and fK . We now turn to the much more difficult lattice calculation
A0 and the challenge of a complete lattice calculation of the standard model value for ε ′.

4. K → ππ decay, ∆I = 1/2

Both A0 and A2 are needed for a complete description of K → ππ decay, making the calculation
of the remaining, I = 0 amplitude, A0, a high priority. However, this is the more difficult of the two
to calculate since the I = 0 π −π state has vacuum quantum numbers, implying that some of the
needed amplitudes will have only gluons connected the initial and final quarks. For such amplitudes
the exponential decay with increasing Euclidean time separation that identifies the energies of the
states being studied is not realized by the decreasing size of the quark propagators joining the initial
and final states and the intermediate weak decay Hamiltonian. Instead, this exponential decrease
comes from the increasingly complete cancelation of individual path integral contributions which
themselves do not decrease. As a result such “quark-line-disconnected” amplitudes are plagued
with large statistical noise and very large statistical samples are needed.

We are pursuing two strategies to overcome this challenge. First, we must collect large statis-
tics. The first calculation to detect a non-zero result for Re(A0) using unphysical threshold kinemat-
ics [1] studied 800 configurations and performed 32 independent measurements on each. Second,
we can construct an operator which destroys the π −π final state but which couples weakly to the
vacuum. (The long-time amplitude which must be canceled by the Monte Carlo average is the
amplitude describing the coupling to the vacuum intermediate state.) At present we have two com-
plementary methods to do this. In the first we locate the quark fields associated with each of the
two pions on separate time slices, where a separation of four appears to work best. This allowed
a calculation of the more difficult Im(A0), again at threshold with unphysical masses, from 138
configurations [19, 20]. This “split-source” method removes the terms where a quark-anti-quark
pair, one from each pion, can immediately annihilate – behavior enhancing the ⟨ππ|vac⟩ overlap.

The second refinement of the π−π operator uses all-to-all methods [21] to introduce localized
quark-anti-quark wave functions for each pion, enhancing the coupling to the target two-pion state
while removing large parts of the π −π operator which couple only to the vacuum. Results pre-
sented at Lattice 2013 by Daiqian Zhang, show an improvement equivalent to a 4-5 times increase
in statistics.
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A second challenge offered by the I = 0 state is the introduction of anti-periodic boundary
conditions for the pion. Here we use an idea of Changhoan Kim [7, 22] and impose G-parity
boundary conditions. These are unusual boundary conditions which require the introduction of
two explicit flavors of light quarks and the imposition of boundary conditions under which a u
quark becomes a d and a d becomes a −u upon passing through a spatial boundary in one or more
directions. These boundary conditions preserve isospin (so the identification of I=0 and I=2 states
still makes sense) and can be used to insure that the lowest, finite volume π − π energy equals
MK . The charge-conjugation in this identification requires that the gauge field also obeys charge-
conjugation boundary conditions, so new, special gauge-configurations must be generated. Thus,
both the measurement code and the code generating the gauge configurations must be modified
to incorporate the two distinct fermion flavors and these charge-conjugation boundary conditions.
This is made more difficult because this must remain highly efficient, high-performance code. This
has been accomplished. Again at Lattice 2013, Christopher Kelly announced the beginning of full-
scale simulations with G-parity boundary conditions which will allow the first calculation of the
I = 0 amplitude A0 with physics kinematics on an ensemble of gauge configurations very similar
to those used for the first, physical calculation of A2. We hope to have preliminary results from
this exploratory within a year and more definitive results in possibly two years. While the expected
accuracy cannot be confidently estimated until we have a better understanding of the required
statistics, our goal is a 20% result, similar to our initial result for A2.

5. The ∆I = 1/2 rule

As a final topic, we will discuss the understanding of the ∆I = 1/2 rule that has recently
emerged from the physical results for A2 and the first calculations of A0 with unphysical kine-
matics [23]. (The reader is referred to this paper for references to earlier work on this topic.)
Recall that the ∆I = 1/2 rule refers to the large ratio found for the I = 0 and I = 2 amplitudes:
Re(A0)/Re(A2) = 22.4. For our two sets of unphysical, threshold kinematics [1, 19, 20] we can
compute this ratio and obtain:

Re(A0)

Re(A2)
= 9.1(21) Mπ = 422 MeV MK = 877 MeV (5.1)

Re(A0)

Re(A2)
= 12.0(17) Mπ = 329 MeV MK = 622 MeV (5.2)

While not equal to the experimental value of 22.5, these numbers are substantially larger than the
ratio of approximately 2 given by the Wilson coefficients alone. In addition, as we decrease the
pion mass towards its physical value, the ratio is seen to increase.

Further evidence that our current calculations may have captured the essence of the ∆I = 1/2
rule is shown by Fig. 3. There we plot both the lattice results for Re(A2) computed with essentially
physical kinematics as well as results for Re(A2) and Re(A0) computed for a threshold π −π final
state and a pion with mass 422 and 329 MeV, results presented in Refs. [1] and [19, 20] respectively.
We see that Re(A2) decreases dramatically with increasingly physical kinematics and agrees well
with the physical value at the physical point. For Re(A0) no physical calculation has yet been
performed but for the two unphysical cases studied the results are similar and close to the physical
result.
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Figure 4: The two types of contractions
which give the largest contributions to the
real parts of A0 and A2. For the case of A0

they add while for A2 they cancel.

Assuming that a calculation Re(A0) with physical kinematics is similar to those that we have
performed, we can examine our calculations of Re(A2) and Re(A0) to identify the mechanism
responsible for the ∆I = 1/2 rule. The current-current operator Q2 gives the dominant contributions
to Re(A2) and Re(A0) and the corresponding diagrams, labeled as 1⃝ and 2⃝, are shown in Fig. 4.
These combine to give the Q2 contribution to A2 and A0 as

A2 =

√
2
3
( 1⃝+ 2⃝) (5.3)

A0 =

√
1
3
(2 · 1⃝− 2⃝) . (5.4)

For the case of free fields or if we assume that current-current matrix element between a kaon and
two pions factorizes into a product of a K −π matrix element of one current times the π − |vac⟩
matrix element of the other, then 2⃝≃ 1

3 1⃝ causing these two contribution to add for A2 and subtract
for A0. In fact this factorization hypothesis does not describe our numerical results which give
2⃝≃−0.75 1⃝. (This is also poorly described by a large N approximation in which the color mixed

amplitude 2⃝ would be neglected.)
Thus, our calculation suggests that the ∆I = 1/2 rule arises from the cancellation of two similar

term which contribute to both A2 and A0. These largely cancel when combined to give A2 resulting
in a combination which is sensitive to the quark masses and causes A2 to decrease by more than a
factor of 3 between our mπ = 422 and 142 MeV results. We find this cancellation to be the largest
for the case of physical kinematics. In contrast, these amplitudes add to give A0, resulting in an
amplitude that appears less sensitive to the quark masses and is not far from its physical value, even
for our unphysical kinematics. The final piece of this “explanation” of the ∆I = 1/2 rule will be
the actual calculation of A0 for physical kinematics, a project now underway.

While it is best left to the reader to judge if this can be properly called an explanation of the
∆I = 1/2 rule, the mechanism uncovered does have consequences. Since this large experimental
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ratio of 22.5 appears to follow from the standard model, no new physics needs to be introduced
to explain it. Since A2 is made small by an apparently accidental cancellation, other processes
contributing to A2 might be expected not to show a similar suppression. This is certainly the case
for the relatively large CP-violating phase of A2 arising from the electroweak penguin contribution,
which is not similarly suppressed. Likewise, we might expect that the electromagnetic contribu-
tions to Re(A2) will be relatively large since the normal αEM terms will likely be free of this 1/22.5
suppression factor.

6. Outlook

The lattice QCD treatment of the weak interactions of the quarks has made enormous progress
since the first calculations were attempted in the 1980’s. With the refinement of methods to impose
continuum normalization on lattice operators, the algorithmic and computational capability to work
with physical values for the light quark masses and the techniques needed to accurately describe
interacting, two-pion states above threshold, it is now possible to study the weak interactions of K
mesons with few-percent-level precision. Such results are available now for the easier ∆I = 3/2
amplitude A2 now and similar results for the more difficult amplitude ∆I = 1/2 A0 in 2-3 years. On
a 2-5 year time scale we may also anticipate the accurate inclusion of charm quark loops in such
kaon amplitudes. This will allow similarly accurate treatment of the KL −KS mass difference [4]
and the contribution of charm quarks to rare kaon decays. Such a non-perturbative treatment of
charm may also be required for the accurate calculation of the imaginary part of A0. At present
this is computed using QCD perturbation theory to “integrate out” the charm quark, an approach
with uncertain accuracy. Errors arising from the truncation of the perturbative series or from the
neglect of (ΛQCD/mc)

2 corrections may require the non-perturbative inclusion of charm to reach
percent-level accuracy for a quantity such as ε ′.

The author thanks his RBC/UKQCD collaborators with whom this work was done. Critical to
this calculation were the Blue Gene/P and /Q computers at the Argonne Leadership Computing Fa-
cility (DOE contract DE-AC02-06CH11357). Also important were the DOE USQCD and RIKEN
BNL Research Center QCDOC and Blue Gene/Q computers at the Brookhaven National Lab., the
Blue Gene/Q computer at the DiRAC facility and the University of Southampton’s Iridis cluster.
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