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1. Introduction

The standard “model” of elementary particle physics ineshat least, 26 free parameters or 28
if neutrinos are not Dirac but Majorana fermions, most oftlrelated to the fermion-mass sector of
the theory. One of these basic parameters is the mass ofttoetbguark. Its actual numerical value
depends on the choice made for its rigorous definition; tegoil this quantity are usually presented
in terms of either a merely perturbatively given pole massaheMS renormalization scheme, the
running massn,(v) at renormalization scakeor the latter’s specific valuey, = m, (M) atv =m,.

In principle, lattice QCDoffers a possibility to infer thb-quark mass from first principlese.,
directly from QCD. Unfortunately, thiequark is too heavy for current lattice setups: some loophole
of one kind or the other has to be found. Moreover, latticéuatins of theb-quark’s running mass
involve the calculation of a nonperturbative renormal@atonstant; this limits the precision of the
mass extraction. Accordingly, the accuracy of present&findings form, is not particularly high.

Table 1 summarizes some recent predictions fobthaark mass found from lattice QCD with
unquenched gauge configurations and two dynamical quatke sea by extrapolating from lighter
simulated masses [1, 2] or adopting “heavy-quark effe¢heery” (HQET) [3—5] or from moment
sum rules for two-point correlators béavy—heavyuark currents that take advantage of three-loop
O(a?) [6] or four-loopO(a) [7]* fixed-order perturbative-QCD results combined with experit
or renormalization-group-improved next-to-next-todia-logarithmic-order results plus data [9].

Table 1: Bottom-quark massy, = My, (M) in MS renormalization scheme: selection of previous evauati

Approach Collective of authors my, (GeV)
Lattice QCD ETM Collaboration [1] £9+0.14
ETM Collaboration [2] 435+0.12
Gimenezt al. [3] 4.26+0.09

UKQCD Collaboration [4] 425+0.11
ALPHA Collaboration [5] 422+0.11
Moment sum rules  Kiihn and Steinhauser [6] .191+ 0.051
Chetyrkinet al.[7] 4.163+0.016
Hoanget al. [9] 4.235+ 0.055pery £ 0.03exp

In the recent study reported here, we used precise valureBf§-meson decay constanlt@s)
as hadronic input theavy-lightBorel QCD sum rules to prediat, with comparable accuracy [10].

2. Lesson from Quantum Mechanics: Expect Clear-cut Anticorelation of fg and my

Our present intention is to perform a precision determimedif the heavy-quark masgy = my
from knowledge of the decay constari%. Within QCD, the question arises: how sensitive are the
numerical values of these two quantities to each other, Whetand amount of correlation between
them should we expect? To answer this question, before s&ldgethe real-life problem let us have
a look at the corresponding situation in quantum mechaiiiesre nonrelativistic potential models
are utilized since long for describing (sufficiently heakmgdrons as bound states of quarks [11, 12].

IThese findings get support when combining perturbative QitOattice QCD with 2-1 dynamical sea quarks [8].
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Now, if the potential involves just one coupling constant,ihstance, ifitis a pure Coulomb or
pure harmonic-oscillator potential, for a ground stateviise function at the origing(0), is related
to its binding energyg by |@(0)| O £%/2; for sums of confining and Coulomb potentials, this relation
holds approximately [13]. Realizing that(0)| assumes the réle of a decay constant and exploiting
the scaling behaviour of a heavy-meson decay constant lrelag/-quark limit then relates the pole
massmg of a heavy quark) to theB-meson masMlg, approximately byfg /Mg = k (Mg —mg)®/2.
Upon accepting this, it is straightforward to obtain thdatwn J fg of fg as consequence of a small
variationdmg around some chosen valuemg. From the experimental findingg = 5.27 GeV and
for fg =~ 200 MeV neamg ~ 4.6-4.7 GeV, we getk ~ 0.9-10 andd fg ~ —0.50mq, which entails

of o)
o8« _(11-12 2™
fB mg
Forinstancedmg = +100 MeV impliesd fg =~ —50 MeV. Hence, we feel entitled to expect a rather

high and negative correlation of, ande@ manifesting also in QCD sum-rule predictions [14, 15].

3. Earlier Predictions for B(s)-Meson Decay Constants by QCD Sum-Rule Approach

Relying on, essentially, one and the same expression féraney—light correlation function at
three-loop accuracy [16], in the last years several QCD sulmextractions of beauty-meson decay
constants have been performed [17 — 20]; their result§sfare compiled in Table 2. At first glance,
all these findings appear to be consistent and reliable bytdte not, as they do not comply with the
guantum-mechanical expectations for the relationshiywéen fg andmy,. The crucial issues are the
definition of heavy-quark masses in use and a proper incatiparof theeffectivecontinuum onset.

Table 2: B-meson decay constafy: some predictions by QCD sum rule for heavy-light two-pé&imiction.

Reference [17] Reference [18] Reference [19] Referenck [20
m, (GeV) 405+ 0.06 421+0.05 4245+0.025 4236+ 0.069
fg (MeV) 203+23 210+ 19 193+ 15 206+ 7

After rather successful application [19, 21] of QCD sumswdesing from the correlator of two
heavy—light pseudoscalar quark currents to an extracfitrealecay constants of charmed mesons,
we recently revisitednutatis mutandiby the same formalism, the beauty-meson system. There, in
contrast to the charmed-meson case, we indeed observesthenpegronouncedanticorrelation of
heavy-quark mass and heavy-meson decay constant [10].ukinng our correlator in terms of the
MS running instead of the polequark mass and applying consistent extraction procegwesfind
for the QCD-sum rule prediction d§ a linear dependence om, with negative slope, if keeping the
input values of all other OPE quantities, such as renormai@tia scalesqs, quark condensate, fixed:

m, — 4.247 GeV
0.1 GeV
This observation suggests to invert, in tg-meson case, our line of reasoning: using, as hadronic

input, our averagds°“® = (19154 7.3) MeV of recent lattice-QCD results fdg [1, 2, 5, 22 — 24]
in our QCD sum rule deriving from the heavy-light correlat®(a?) accuracy yields the accurate
estimatem, = (4.247+0.034) GeV. In the following, we present some relevant details of thisigt

fg(my) = <1920— 37 - 3(Sysb> MeV . (3.1)
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4. (Borel-Transformed) QCD Sum Rule from Heavy-Light Two-Current Correlator

Arising from an evaluation of correlation functions of appriate interpolating currents at both
the QCD level (with quarks and gluons as basic degrees afdragand the hadron leveDCD sum
rulesrelate the fundamental parameters of the theory (such ak masses and strong coupling)
to experimentally observable features of hadronic bousigsof the QCD degrees of freedom. Our
goal is to adopt this QCD sum-rule approach in order to aaivgeprediction of thé-quark massn,
from the decay constanf% of theBs) mesons. To this end, we start from the correlator [14, 15] of
two pseudoscalar currents obguark and a light quarg of masam, j5(x) = (my+m) q(x)i y5 b(X):

n(p?) = i/d“xexp(i px)<0‘T<j5(x)jg(O))‘o>,

At QCD level, Wilson’s operator product expansion (OPE)ssitilntes nonlocal products of currents
by series of local operators composed of the QCD degreeseddm, at the price of introducing —
in addition to perturbative contributions given in form nfégrals of spectral densiti@gen(s, 1) —
power corrections of nonperturbative origitisower( T, ), iNvolving so-called vacuum condensates.
Applying to both QCD and hadronic expressions for a coroelahder study a Borel transformation
M(p®) — MN(7) to a Borel variabla suppresses at hadron level both higher excitations andhiadr
continuum. The hadronic states above the ground state lasamied by integrals of hadron spectral
densitienadr(S) with physical thresholdsysysas lower endpoints; in our casgpys= (Mg + Mp)2

is given by the beauty vector meson’s miggs and the maship of the lightest pseudoscalar meson
with appropriate quantum number,., rTor K. In this way, we get for the QCD sum rule sought, in
terms of theB sy meson’s mashlg and decay constarii defined by(m,-+m) (0|qi y5b|B) = fa M3,

M(r) = EMgexp(~MZT) + | dsexp(~ST) pracd(9
Sphys

= /dsexp(—sr)ppen(s,u)+I'Ipowe,(r,u) .
(My+m)2

Quark—hadron dualityerves to banish all contributions of higher hadronic sthyeassuming them

to be counterbalanced by perturbative contributions beoreffective continuum thresholgqs$1)

that is an object intrinsic to the QCD sum-rule frameworlkhwiitteresting and nontrivial facets [25],
depends on the Borel variabtéf requiring rigour in the description of ground-state pedjes [26],

but must not be confused withnys. We end up with a QCD sum rule relating ground state and OPE:

Seff(T)
fEMgexp(—M3T) = / dsexp(—ST) pen(S, ) + Mpower( T, 1) - (4.1)
(My+m)2

Even withpper(s, 1) andMpower T, 1) known up to a certain accuracy, the evaluation of this retati
requires us to formulate both criterion and resulting iipgon for determining the functioses(7)
and to assure reasonable convergence of the OPE. We acsbithgilatter by expandingper(s, 1)
perturbatively not in terms of the pole mass [16] but in teaitheMS mass of thé quark. Explicit
results forpper(s, 1) at three-loop level anB powed T, ) have been given by Refs. [16, 18]. Table 3
presents the numerical values of all OPE quantities ad@stéuput to our extraction afy, [27, 28].
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Table 3: Operator product expansion inputs: QCD parameters andtesimensional vacuum condensates.

OPE quantity Symbol Numerical input value
Light-quark mass my(2GeV)  (3.5+0.5)MeV
Strange-quark mass ms(2 GeV) (95+5) MeV
Strong coupling constant as(Mz) 0.1184+ 0.0007
Light-quark condensate  (qq)(2 GeV) —[(269+17) MeV)?
Strange-quark condensate(ss (2 GeV)  (0.8+0.3) x (qg)(2 GeV)

Two-gluon condensate <%S GG> (0.024+0.012) GeV*

5. Effective Continuum Threshold: Allowing for Dependenceon Borel Parameter(s)

Entering in the course of the evaluation of QCD sum rulesealgbel of the basic QCD degrees
of freedom, the effective continuum threshelg constitutes, indisputably, one of the key quantities
of the entire formalism: to a large extent, it determinestinmerical value of any hadron parameter
extracted from some QCD sum rule. In order to improve thewwpthis QCD sum-rule technique
and to acquire, in a systematic manner, an idea dfithi@sic uncertainties of the approach [25], we
collected arguments for a dependence of this effectivarmamin threshold on the Borel parameters
introduced, as new variables, into this framework uponguaring Borel transformations [26], here
summarized by the generic labelss = Ser(T). Surprisingly, the authors of Ref. [29] question this
T dependence; by providing a few clarifying remarks on trgaés let us try to avoid misconception:

e Thet dependence of the effective continuum threshold is justiattand direct consequence
of requiring QCD sum rules such as Eq. (4.1) taigerousrelations; from this point of view,
Seff(T) is a convenient tool to realize exact quark—hadron duatityas sucmotquestionable.

e Beyond doubt, one may stick to assumggto be ar-independent constant. QCD sum rules
of the kind (4.1) then remain trulgpproximateelations; one can then merely try to minimize
the discrepancy between QCD and hadron sides of one’s sermrsiliitably chosem ranges,
to derive in this way some “besgif value. In actual extractions, one simultaneously fits both
effective continuum threshold on the QCD side and bounid$atures on the hadronic side.

e Anyway, we should keep in mind one fact: whatever one dogshaund-state parameter can
be extracted from QCD sum rules only with limited accuradiemed by itssystemati@rror,
even if the OPE for the correlator is known with arbitrariiglmaccuracy in a limited range,
the Borel window. Thus, in principlanyalgorithm for fixingset can be used if it enables one
to get a realistic estimate of this systematic error. Exicamples from quantum mechanics
(where the “exact” bound-state observables may be foundleing a Schrodinger equation)
show that procedures basedwindependens.; entailuncontrollableerrors of the extracted
bound-state properties; we did not succeed in identifymgexample where such a treatment
yields a realistic estimate of its systematic uncertai@g)].[ In contrast to this, our procedure,
based orr-dependents [26], provides realistic systematic-error estimates andenprecise
estimates of the central values of extracted bound-statergders compared to the outcomes
if forcing effective continuum thresholds by arbitrary d#en to ber-independent constants.
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6. Reverting the Line of Thought: Calculating the MS Massm, of the Bottom Quark

Even if the rapid variation (3.1) di with m, renders difficult to determiné from knowledge
of my, it offers a possibility to arrive at a precision predictiam in, by taking advantage of accurate
evaluations oifB(S) provided by lattice QCD. We seize this opportunity by impéaring in the QCD
sum rule (4.1) the dependence of the effective continuum threstsgfdr ) in form of a polynomial
AnsatZor s(T) up to third order. Figure 1 presents a pictorial overviewwffindings. Following
the evolution of oumy, results with increasing perturbative accuracly Table 4) fromO(1) leading
order (LO) viaO(as) next-to-leading order (NLO) t®(a?) next-to-next-to-leading order (NNLO),
we find formy, a nice perturbative convergencs&z., a decrease of its central value and its OPE error.
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Figure 1: Extraction of the mass of the bottom quarkvis renormalization schemey, = M, (M), from our
heavy—light QCD sum rule (4.1) by a bootstrap analysis oétiners of all OPE parameters for a central value
of the beauty-meson decay constgnof fg = 1915 MeV: (a) Our predictions famy, calculated for different
perturbative accuracy of the correlator (identified by #iels “LO,” “NLO,” and “NNLO,” respectively) and
different order of our polynomigAnsatzmployed for the effective continuum threshelgl(7) (indicated by
“constant,” “linear,” “quadratic,” and “cubic,” respeweély). For comparison, the ranges corresponding to the
(+10) errors of tham, values reported, for instance, by Chetyrkiral. [7], Hoanget al. [9], and the Particle
Data Group (PDG) [28] are represented by the differentlgsdaectangles. (b) Bootstrapping results for the
distribution of massesy, obtained by assuming Gaussian distributions for the OP&npaters except for the
renormalization scalgs andv and, for the latter, uniform distributions in the intervab8V < u,v < 6 GeV.

Table 4: Bottom-quark massy, = My (M, ) in MS renormalization scheme: tracing perturbative convezge

Perturbative order my (GeV)
Leading order (LO) B8+ 0.1opg + 0.020 sysy
Next-to-leading order (NLO) 27+ 0.040pg £ 0.0154ys

Next-to-next-to-leading order (NNLO) 247+ 0.027opg & 0.01 554
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TheOPE uncertaintyof our QCD sum-rule extraction ofi, arises from the uncertainties of the
OPE parameters listed in Table 3 and from allowing the twomeralization scaleg [demanded by
the strong couplingts(u)] andv [introduced when expressing thequark pole mass in terms of the
MS massm,(v)] to vary independently in the interval 3 Ge¥, v < 6 GeV; we estimate this error
by a bootstrap analysis. Table 5 discloses all individuatrioutions to our NNLO-level prediction;
adding these in quadrature gives 27 MeV as total OPE err@syi$tematic uncertaintyf the QCD
sum-rule formalism is estimated from the spread of restiitained for differenAnséatzdor s (T).
Here, itamounts to 11 Me\Moreover, the certainly limited accuracy of all hadronipuhforces us
to take into account an additional uncertainty labelledxa®rimentaleven if it derives from lattice
QCD but not from experimental observation. In our café CP adds a (Gaussian) error of 18 MeV

Table 5: Composition of OPE uncertainty: contributions by uncettias of all parameters entering the OPE.

OPE quantity Individual contribution (MeV)
Light-quark mass 4
Strong coupling constant 8
Quark condensate 20
Gluon condensate 7
Renormalization scales 14

To make a long story short, our findings for the bottom-qiMBmassm, = My (M), extracted
from a Borel QCD sum rule for the correlator of two heavy-tighark currents known up ©(a?)
accuracy by adopting precise lattice-QCD evaluations@Btineson decay constant as input, reads

My = (4.247+0.027 opg £ 0.018 ¢y = 0.01% sy ) GEV. (6.1)
Evidently, the systematic error is under control. Addidgiatertainties in quadrature finally yields

mp = (4.24740.034) GeV. (6.2)

7. Summary of Main Results and Conclusions

The observation of the unexpected scale (3. hegfative correlatioletweerm, and the QCD
sum-rule prediction fofg forms both basis and starting point of our entire subsequeestigation:

5fs _ ,omy

—_ N 00— .

fg my

Given this behaviour, feeding sufficiently accurate 1a#@CD values ofg into our QCD sum-rule
machinery renders possible a precise evaluation didipgark mass, culminating in our predictions
(6.1) and (6.2) [10]. Confronted with other published po#idns (see Table 1), oun, result enjoys
excellent agreement with Ref. [9], acceptable agreemehtRaf. [6], and agreement at the level of
two standard deviations with the Particle Data Group awemag= (4.18+0.03) GeV [28]; there is,
however, undeniable tension with the finding of Ref. [7] dameltaluem, = (4.171+0.009) GeV by
Ref. [30]. For completeness, with oo, result (6.2) Eq. (4.1) predicts, for th&;) decay constants,

fs = (1920+ 14.3 opg £ 3.0(sysy ) MeV fa, = (22804 19.40pg + 4(sysy) MeV .
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