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1. Introduction

The observable evolution of the Universe [1, 2, 3] can be described by the spatially flat
Friedmann–Lemaître–Robertson–Walker (FLRW) background and cosmological perturbations. One
of the most important recent results of the observational cosmology is the conclusion that the Uni-
verse expansion is speeding up rather than slowing down. The assumption that General Relativity
is the correct theory of gravity leads to the conclusion the observable data [1, 2] give the strong
support that there exists and currently dominates a smoothly distributed, slowly varying cosmic
fluid with negative pressure (dark energy).

Models with scalar fields are very useful to describe such a type of the evolution. That is why
scalar fields play an essential role in modern cosmology. Cosmological models with scalar fields
have acquired a great popularity during the last decades both as descriptions of the evolution of
the Universe at the early epoch [4, 5, 6, 8], and as dark energy model [9, 10, 11]. In particular,
the Higgs-driven inflation that includes non-minimal coupling between the Standard Model Higgs
boson [7] and gravity has attracted a lot of attention [8].

The simplest way to describe dark energy is to add the cosmological constant to the Einstein–
Hilbert action. The cosmological constant corresponds to a constant Hubble parameter (de Sitter
Universe). The standard way to obtain an evolving Hubble parameter is to add scalar fields to a
cosmological model. It has been demonstrated that dark energy with an evolving equation of state
parameter provides a compelling alternative to a cosmological constant if data are analyzed in a
prior-free manner and the weak energy condition is not imposed by hand [12]. For the model with
minimally coupled scalar with the standard kinetic term the Hubble parameter is a monotonically
decreasing function. To get increasing or non-monotonic behaviour of the Hubble parameter one
needs either to add a phantom scalar field and get, for example, a quintom model [13, 14, 15], either
consider a scalar field non-minimally coupled with gravity [16] or consider a scalar field with the
second-derivative Lagrangian [17].

The number of integrable cosmological models based on scalar fields is rather limited. The
most popular integrable cosmological model is the model with a minimally coupled scalar field and
a self-interaction exponential potential [18, 19]. The general classification of integrable cosmolog-
ical models based on scalar fields was suggested and studied in great detail in [20]. Integrable
models with non-minimally coupled scalar fields have been found in [21].

For a generic polynomial potential cosmological models are non-integrable, moreover some-
times it is not easy to get a particular solution in the analytic form. Using a reconstruction procedure
one can construct the potential of the scalar field such that the resulting model has exact solutions
with important physical properties. If we consider late-time evolution of the Universe, then we can
consider the background solutions only and the most important these properties are the behavior of
the Hubble parameter and the stability of the obtained solutions.

The models with the Ricci scalar multiplied by a function of the scalar field are being inten-
sively studied in cosmology [5, 8, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 16, 21, 32]. The reconstruc-
tion procedure for the induced gravity models has been proposed in [28] and it has been shown that
one can linearize all the differential equations that should be solved in the reconstruction procedure
to get the potential corresponding to a given cosmological evolution. This property allows one to
obtain the explicit forms of potentials reproducing the dynamics of a spatially flat FLRW universe,
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driven by barotropic perfect fluids, by a Chaplygin gas and by a modified Chaplygin gas.
In [16] another reconstruction procedure for the models with non-minimally coupled scalar

field has been considered. Such a method is similar to the Hamilton–Jacobi method (also known as
the superpotential method or the first-order formalism) and is applied to cosmological models with
minimally coupled scalar fields [18, 33, 34, 14, 15, 35, 36, 37, 38]. Note that a similar method is
used for the reconstruction procedure in brane models [39, 40] and in holographic models [41, 42].
The key point in this method is that the Hubble parameter is considered as a function of the scalar
field ϕ . These two methods described above supplement each other and together allow one to
construct different cosmological models with some required properties.

In this paper we give a short review of the reconstruction procedures based on superpotential
method in the case of minimally and nonminimally coupled scalar fields and demonstrate that this
method is useful to construct cosmological models with non-minimally coupled scalar field and
polynomial potentials.

2. Superpotential method for the model with a minimally-coupled scalar field

The main goal of our paper is to consider the reconstruction procedure for modified gravity
models. At the same time it is convenient to remind the superpotential method for a cosmological
model with one scalar field ϕ , which is described with the action

S =
∫

d4x
√
−g

(
R

16πGN
− C

2
gµν∂µϕ∂νϕ −V (ϕ)

)
, (2.1)

where the potential V (ϕ) is a twice continuously differentiable function of the scalar field ϕ , GN

is the Newtonian gravitational constant, and C is a nonzero real constant, The determinant of the
metric tensor gµν is g and the signature (−,+,+,+) is used. The interval in the spatially flat FLRW
universe is

ds2 = −dt2 +a2(t)
(
dx2

1 +dx2
2 +dx2

3
)
, (2.2)

where a(t) is a scale factor of an isotropic homogeneous spatially flat universe.
The Friedmann equations can be written in the following form:

Ḣ = −4πGNCϕ̇ 2, 3H2 = 8πGN

(
C
2

ϕ̇ 2 +V
)
. (2.3)

The equation for the field got by the variation of the action over the field is

Cϕ̈ +3CHϕ̇ +V ′ = 0, (2.4)

here and hereafter a dot indicates the derivation over t, a prime indicates the derivation over the
scalar field ϕ . The Hubble parameter is H = ȧ/a. Note that Eq. (2.4) is a consequence of system
(2.3). If we consider the standard scalar field with C > 0, then from the first equation of system
(2.3) we get a monotonically decreasing Hubble parameter.

System of equations (2.3) with a generic potential V (ϕ) is not integrable. At the same time it
is possible to construct the potential V (ϕ) and to find the function ϕ(t) if H(t) is given explicitly.
Indeed, from system (2.3) one can get the following equation:

V =
1

8πGN

(
3H2 + Ḣ

)
. (2.5)
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Thereby, if H(t) is given, then we obtain V (t), also from the first equation of system (2.3) we get
ϕ̇(t). So, in principal, we can reconstruct the potential V (ϕ) for an arbitrary monotonic H(t).

This method is useful to get the model if one knows exactly the behaviour of the Hubble pa-
rameter and the form of the potential is not important. But usually to construct a model motivated
from the fundamental physics we need the model with some form of the potential, for example,
with a polynomial potential (see, for example, [43, 34, 14]). At the same time, we can not get
the values of coefficients of this potential from the fundamental model. So, we want to get cos-
mological model with a particular exact solution and a polynomial potential and explore types of
the Hubble parameters that can be obtained in such class of models. To solve this problem we use
the superpotential method [33, 34], also known as the Hamilton–Jacobi method or the first-order
formalism. The key point in the considering method is that the Hubble parameter is a function
of the scalar field ϕ , called superpotential, that is H(t) = W (ϕ(t)). Using equality Ḣ = W ′ϕ̇ , we
obtain from system (2.3):

ϕ̇ = − 1
4πGNC

W ′, (2.6)

V =
3

8πGN
W 2 − 1

32π2G2
NC

W ′2. (2.7)

The superpotential method is to choose W (ϕ) in such form that both ϕ(t) and V (ϕ) have
required properties. Equation (2.6) is always solvable at least in quadratures. Formula (2.7) allows
one to find the potential V , provided the superpotential W is given.

3. Superpotential method for the model with a non-minimally coupled scalar field

Let us consider model with non-minimally coupled scalar field, describing by the action

S =
∫

d4x
√
−g

[
U(ϕ)R− C

2
gµνϕ,µϕ,ν −V (ϕ)

]
, (3.1)

where U(ϕ) and V (ϕ) are arbitrary twice continuously differentiable functions. Note that we can
put C = 1 without loss the generality1.

The Friedmann equations derived by variation of action (3.1) have the following form [28, 16]:

6UH2 +6U̇H =
1
2

ϕ̇ 2 +V, (3.2)

2U
(
2Ḣ +3H2)+4U̇H +2Ü +

1
2

ϕ̇ 2 −V = 0. (3.3)

The variation of action (3.1) with respect to ϕ gives

ϕ̈ +3Hϕ̇ +V ′ = 6
(
Ḣ +2H2)U ′ , (3.4)

where the prime indicates the derivative with respect to the scalar field ϕ . Combining Eqs. (3.2)
and (3.3) we obtain

4UḢ −2U̇H +2Ü + ϕ̇ 2 = 0. (3.5)

1The reconstruction procedure in the case, when C is not a constant, but a function of ϕ have been proposed in [25].
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Our goal is to demonstrate how one can reconstruct V (ϕ) and get a model with exact solutions
for the given Hubble parameter H =Y (ϕ). We show that to do this it is enough to solve only linear
differential equations. Let the function F (ϕ) is defined as follows

ϕ̇ = F (ϕ). (3.6)

Substituting ϕ̇ and ϕ̈ = F ′F into Eq. (3.5), one obtains the following equation [16]:

4UY ′+2(F ′−Y )U ′+
(
2U ′′+1

)
F = 0. (3.7)

Equation (3.7) contains three functions. If two of them are given, then the third one can be found
as the solution of a linear differential equation. Let us note that Eq. (3.7) is a first order differential
equation for both Y and F . The potential V (ϕ) can be obtained from (3.2):

V (ϕ) = 6UY 2 +6U ′FY − 1
2
F 2. (3.8)

To find the function ϕ(t) and, hence, H(t) = Y (ϕ(t)) we integrate Eq. (3.6).
The use of this reconstruction procedure allows to find exact analytical solutions leading to

some physically interesting behaviors of the Hubble parameter. For example, the potentials and the
corresponding evolutions of the associated scalar field leading to de Sitter solutions and power-law
solutions, that reproduce the expansion of the Universe driven by a barotropic perfect fluid, have
found in [16]. Also, this reconstruction procedure allows to get a one-parameter set of the induced
gravity models with the sixth degree polynomial potentials and one and the same particular exact
solution ϕ(t). For different potentials this function ϕ(t) is associated with different behaviors of the
Hubble parameter [16]. In particular, it is possible to get a non-monotonic behavior of H(t). Such
behavior of the Hubble parameter is similar to behavior of the Hubble parameter in the quintom
models with the sixth degree polynomial potential [14] and, in principle, can describe the late-
times accelerating expansion of the Universe with the dark energy state parameter less than minus
one. Conditions under which solutions with a non-monotonic Hubble parameter that tend to a fixed
point are attractors have been found in [32].

4. Construction of induced gravity models with polynomial potentials

Polynomial potential frequently appears as a result of the reconstruction procedure because
polynomials are integrable and they can be systematically used to obtain exact solutions by the su-
perpotential technique. On considering cosmological models with scalar fields, which are inspired
by some fundamental theory, for example, string field theory, it is difficult to get the exact poten-
tial, but it is possible to get, at least, some properties of the potential. Let us analyze the sufficient
conditions on the functions U and F to get a model with a polynomial potential.

To get a polynomial potential we assume that F(ϕ) is a N degree polynomial: F(ϕ)=
N

∑
k=0

Bkϕ k.

If U = ξ ϕ 2/2, then from Eq. (3.7) we get

Y (ϕ) =
B0(2ξ +1)

4ξ ϕ
− B2(6ξ +1)

2ξ
ϕ ln

(
ϕ
ϕ0

)
+YP(ϕ), (4.1)
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where YP(ϕ) is a polynomial. Using formula (3.8), we get that the term proportional to ϕ−1 gives
the constant term in the potential (3.8), thus only the term proportional to ϕ ln(ϕ) should be elim-
inated to obtain a polynomial potential. Hence, we come to the conclusion that for an arbitrary
polynomial F(ϕ) we get a polynomial potential if ξ = −1/6. This value of ξ corresponds to the
case of conformal coupling [28]. For other values of ξ we get a polynomial potential only if B2 = 0.

At first sight the case ξ = −1/6 is the most suitable to construct models with polynomial
potentials, but the analysis of Eqs. (3.2)–(3.4) shows [31] that in the case of the conformal coupling
(ξ = −1/6) the induced gravity model has nontrivial solutions in the spatially flat FLRW metric if
and only if V (ϕ) = V0ϕ 4. So, the correct use of the reconstruction procedure assume not only the
construction of the potential or some other function, but also verification of Eqs. (3.2)–(3.4).

5. A new algorithm of the reconstruction procedure

There exists another way to reconstruct of the potential in the cosmological model, describing
by action (3.1). One can introduce new variable in such a way that the equations in terms of these
new variable will be similar to Friedmann equations for some model with a minimal coupling scalar
field. Note that we do not make conformal transformation and do not consider the model in the
Einstein frame. We introduce a new variable

Q ≡ H +
U̇
2U

= Y +
U ′F

2U
. (5.1)

In terms of the function Q and the function F , defined by (3.6), equations (3.2) and (3.5) have the
following form

3Q2 =
U +3U ′2

4U2 F 2 +
V
2U

. (5.2)

Q̇− U̇
2U

Q = − U +3U ′2

4U2 F 2. (5.3)

Therefore,
d
dt

[
Q√
U

]
=

d
dϕ

[
Q√
U

]
F = − U +3U ′2

4U2
√

U
F 2. (5.4)

So, we get the following equation

d
dϕ

[
Q√
U

]
= − U +3U ′2

4U2
√

U
F . (5.5)

If the function U(ϕ) is given, then the knowledge of F allows to get Q and vice versa. Whereupon
from Eq. (5.2) we get the potential. Note that Eq. (3.7) is a linear second order equation for the
function U(ϕ). So, it is possible to get U(ϕ), if Y (ϕ) and F (ϕ) are given [16]. Equation (5.5) is not
suitable for this goal. At the same time, Eqs. (5.2) and (5.5) are similar to the Friedmann equations
for models with minimally coupled scalar fields. So, they can be useful to get possible relations
between the exact solutions for the models with the minimally coupled to gravity scalar fields and
the models with the non-minimal coupling, which are connected by a conformal transformation. It
can be a useful tool for the construction of new exact solutions.
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6. Conclusion

Note that idea to consider the Hubble parameter H(t) or that is the same the time derivative
ϕ̇(t) as a function of ϕ can be used in different ways. In particular, it can be used to get the
general solution of a integrable cosmological model with minimally coupled scalar field [18, 38].
In [21] it has been shows how the knowledge of an integrable system with a minimally coupled
scalar field [20] allows one to obtain the integrable system with a non-minimally coupled one
and vice versa. At the same time, to the best of our knowledge there is no generic procedure to
obtain integrable cosmological models with scalar fields. It would be very interesting to get such a
procedure and the development of the superpotential method can assist to solve this problem.

In this paper, we compare the superpotential method for cosmological models with non-
minimally scalar field proposed in [16], with a new variant, that is more close to the method used
in the models with minimally coupled scalar field [33, 34]. It would be interesting to generalize
this procedure to the models with two scalar fields non-minimally coupled with gravity 2.

The considering reconstruction procedure allows to get cosmological models with exact so-
lutions. It is only a first step for describing of the Universe evolution. The stability of obtained
solutions is important question, which need additional consideration. For example, the stability
conditions for exact solutions with non-monotonic Hubble parameter, obtained in [21], have been
found in [32]. Another important question is the comparison of the solutions obtained with ob-
servation data. The comparison with the supernovae data can be done immediately. As far as
the comparison with the data on the microwave background cosmic radiation and the large scale
structure of the Universe is concerned, the study of cosmological perturbations is necessary.
Acknowledgements. This work is supported in part by the Russian Ministry of Education and
Science under grant NSh-3042.2014.2 and by the RFBR grant 14-01-00707.
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