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1. Introduction

At the present time the investigations of non-linear processes in Physics are very intensive.
There are atoms [1] and molecules [2] ionization and excitation by ultrashort strong laser pulses.
In this case the multi-photon interaction between matter and light has the main role. To describe
this interaction we need to find such equations, that describe the quantum systems dynamics in
non-perturbation approaches. The Path Integral approach [3] is one of them. Within this approach
we consider the Influence Functional method, which received the active development in many
scientific papers [4, 5, 6, 7, 8, 9].

There are two fundamental problems. The first problem cover the influence function cal-
culation for investigating model of matter and light interaction. The second is the path integral
calculation for the description of investigating system density matrix or observation probabilities
evolution. In the present article we present the path integral transformation from complex to real
functionals over investigating system trajectories space. This trick allows us to calculate path inte-
grals basing on modern numerical simulations methods (Monte-Carlo’s methods).

2. The Influence Functional Approach

We consider the quantum systems (atom, molecule), which interact with electromagnetic field.
The state of this model we describe in terms of statistical operator ρ̂(t). Its evolution can be
presented as

ρ̂(t) = Û(t)ρ̂(0)Û∗(t), (1)

where the evolution operator Û(t)

Û(t) = T̂ exp[− ı
h̄

∫ t

0
Ĥ f ull(τ)dτ]. (2)

The «matter+light» Hamiltonian Ĥ f ull(τ)

Ĥ f ull = Ĥsys + Ĥ f ield + Ĥint , (3)

where Ĥsys is the Hamiltonian of multi-level quantum system, which defines the stationary states
spectrum of the free system

Ĥsys|n〉= En|n〉; (4)

Ĥ f ield is the Hamiltonian of free electromagnetic field

Ĥ f ield =
∫

∑
λ

d3k
(2π)3 h̄Ωk(â+

kλ
âk,λ +1/2); (5)

Ĥint is interaction Hamiltonian [10]:

Ĥint =
∫ d3k

(2π)3 ∑
λ

e ĵµ(ελ
µ (k)â+

k,λ
+ ε

λ∗
µ (k)âk,λ ), (6)

where ĵµ is µ-component of the current operator, ελ
µ (k) is the polarization vector, â+

k,λ
, âk,λ are

operators of photons creation and annihilation with wave vector k and polarization λ .
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We write the evolution equation (1) in the mixed representation. The basis vectors of this
representation are

|x,ak,λ 〉= |x〉⊗ |ak,λ 〉,

where definition of vectors |ak,λ 〉 is the following: âk,λ |ak,λ 〉= ak,λ |ak,λ 〉,

〈a′k,λ
|ak,λ 〉= exp{−1

2
(|a′k,λ

|2 +|ak,λ |
2−2a′∗k,λ

ak,λ )},
∫
|ak,λ 〉〈ak,λ |

|ak,λ |d|ak,λ |dφk,λ

π
= 1;

the vectors |x〉 are to define:

x̂|x〉= x|x〉, 〈x′|x〉= δ (x′− x),
∫
|x〉〈x|dx = 1.

The equation of density matrix evolution in this representation is the following

ρ(a∗f ,x f ,a′f ,x
′
f ; t) =

∫ da∗inain

2πı
da′∗ina′in

2πı
dxindx′in×

×U(a∗f ,x f ,ain,xin; t)ρ(a∗in,xin,a′in,x
′
in;0)U∗(a′f ,x

′
f ,a
∗
in,x
′
in; t), (7)

where

ρ(a∗in,xin,a′in,x
′
in;0) =< ain,xin|ρ̂(0)|a′in,x′in > ρ(a∗f ,x f ,a′f ,x

′
f ; t) =< a f ,x f |ρ̂(t)|a′f ,x′f > .

The evolution operator (2) kernel can be presented as path integral [11]

U(a∗f ,x f ,ain,xin; t)=
∫

(∏
k,λ

Daλ∗
k (τ)Daλ

k(τ)Dp(τ)Dx(τ))exp[− ı
h̄

S f ull[p(τ),x(τ),aλ∗
k (τ),aλ

k(τ)]],

(8)
where action in (8)

S f ull[p(τ),x(τ),aλ∗
k (τ),aλ

k(τ)] =
∫

τ

0
[p(τ)ẋ(τ)−Hsys(p(τ),x(τ))+

+
∫

∑
λ

(
ȧλ∗

k (τ)aλ

k(τ)−aλ∗
k (τ)ȧλ

k(τ)

2ı
−H f ield(aλ∗

k (τ),aλ

k(τ)))
d3k

(2π)3−

−
∫ d3k

(2π)3 ∑
λ

jµ(x(τ))(ελ
µ (k)aλ∗

k (τ)+ ε
λ∗
µ (k)aλ

k(τ))]dτ;

obviously, that the kernel U∗(a′f ,x
′
f ,a
∗
in,x
′
in; t) has the same structure. We consider such systems,

in which the interaction turns on at initial moment t = 0, so that

ρ(a∗in,xin,a′in,x
′
in;0) = ρsys(xin,x′in;0) ·ρ f ield(a∗in,a

′
in;0). (9)

The next steps are substitution the density matrix (9) in equation (7) and electromagnetic field
variables exclusion. After that we have the equation for quantum system density matrix ρ(x f ,x′f ; t)
evolution in the following form

ρ(x f ,x′f ; t) = Spa f =a′ f ρ(a∗f ,x f ,a′f ,x
′
f ; t) =

∫
(Dp(τ)Dx(τ))dx f dxin(Dp′(τ)Dx′(τ))dx′f dx′in×

3
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×exp[− ı
h̄
(Ssyst [p(τ),x(τ)]−Ssyst [p′(τ),x′(τ)])]F [x(τ),x′(τ)]ρsys(xin,x′in;0), (10)

where F [x(τ),x′(τ)] the influence functional of electromagnetic field on the quantum system is
under study:

F [x(τ),x′(τ)] =
∫

(∏
k,λ

Da∗k,λ
(τ)Dak,λ (τ))da f dain(∏

k′,λ ′
Da′∗k’,λ ′(τ)Da′k’,λ ′(τ))da′f da′in×

×exp[− ı
h̄
(Sin f l[a∗k,λ

(τ),ak,λ (τ),x(τ)]−Sin f l[a′
∗
k’,λ ′(τ),a′k’,λ ′(τ),τ])]ρ f ield(a∗in,a

′
in;0). (11)

Ssys[p(τ),x(τ)] is free quantum system action:

Ssys[p(τ),x(τ)] =
∫ t

0
[p(τ)ẋ(τ)−Hsys(p(τ),x(τ))]dτ;

Sin f l[a∗k,λ
(τ),ak,λ (τ),x(τ)] is the action, which describes the electromagnetic field influence on

the system under study:

Sin f l[a∗k,λ
(τ),ak,λ (τ),x(τ)] =−

∫ t

0
[
∫ d3k

(2π)3 ∑
λ

jµ(x(τ))(ελ
µ (k)aλ∗

k (τ)+ ε
λ∗
µ (k)aλ

k(τ))−

−
∫

∑
λ

(
ȧλ∗
k (τ)aλ

k(τ)−aλ∗
k (τ)ȧλ

k(τ)

2ı
−H f ield(aλ∗

k (τ),aλ

k(τ)))
d3k

(2π)3 ]dτ. (12)

Particularly, the influence functional (11) can describe the thermal photon bath influence.
We present the equation (7) for the density matrix evolution in energy representation. We

consider such model, in which the quantum system state |n〉 state is determined by wave function
φn(x); the electromagnetic field state with wave vector k is determined by function in holomorphic
functions space ψk(a). The product of them creates full system orthonormal basis:∫ ∫

φ
∗
n′(x)ψ

∗
k′(a)φn(x)ψk(a)dxda = δn′nδk′k.

We choose the basis as a φn(x)ψk(a) and consider the density matrix (7) representation if the
formulas (8), (9) are true:

ρ(m,k f ,m′,k′ f ; t) =
∫

(Dp(τ)Dx(τ))dx f dxin(Dp(τ)Dx(τ))dx′f dx′in×

×φm(x f )φm′(x′f )exp[− ı
h̄
(Ssyst [p(τ),x(τ)]−Ssyst [p′(τ),x′(τ)])]

Fk f ,k′ f ;kin,k′in [x(τ),x′(τ)]∑
n,n′

φ
∗
n′(x
′
in)φn(xin)ρsys(n,n′;0), (13)

where
ρ(m,k f ,m′,k′ f ; t) =

∫
φm(x f )ψk f (a f )ρ(x f ,a f ,x′f ,a

′
f ; t)φm′(x′f )ψk′f

(a′f ) (14)

- the density matrix of quantum system and electromagnetic field at the time moment t in energy
representation;

ρsys(n,n′;0) =
∫ ∫

φ
∗
n (xin)ρsys(xin,x′in;0)φn′(x′in)dxindx′in (15)

4
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is the density matrix of quantum system at the time moment t in energy representation;

Fk f ,k′ f ;kin,k′in [x(τ),x′(τ)] =
∫

(∏
k,λ

Da∗k,λ
(τ)Dak,λ (τ))(∏

k′,λ ′
Da′∗k’,λ ′(τ)Da′k’,λ ′(τ))×

×ψk f (a f )ψk′f
(a′f )exp[− ı

h̄
(Sin f l[a∗k,λ

(τ),ak,λ (τ),x(τ)]−Sin f l[a′
∗
k’,λ ′(τ),a′k’,λ ′(τ),τ])]×

× ∑
kin,k′in

ψkin(ain)ρ f ield(kin,k′in;0)ψ∗k′in(a
′
in)da f dainda′f da′in (16)

is the influence functional of electromagnetic field in the case that its states in initial and final time
moments are defined.

ρ f ield(kin,k′in;0) =
∫ ∫

ψk f (ain)ρ(ain,a′in;0))ψk′in(a
′
in) (17)

is the density matrix of electromagnetic field at the initial time moment t = 0 in energy repre-
sentation; here indexes in, f are define the value status at the initial (t = 0) and final (t > 0) time
moments.

The equations (13) - (17) are defined concretely for specific models of quantum system and
electromagnetic field.

We consider the model, in which the initial and final states of quantum system are pure quan-
tum states, are defined with wave functions φn0(x

′
in),φm(x f ), while in the equations (13), (15)

m = m′, ρsys(n,n′;0) = δn0−nδn−n′ . The electromagnetic field state is also pure and they are defined
functions ψk f (a f ),ψkin0(ain), in equations (13), (16) k f = k′ f , ρ f ield(kin,k′in;0) = δkin0−kinδkin−k′in .

In this model the equation (13) describe probabilities P(m, t|n,0) of investigated quantum
system transition under influence of electromagnetic field with wave vector k from state φn(x′in to
state φm(x f )

P(m, t|n,0) =
∫

(Dp(τ)Dx(τ))dx f dxin(Dp(τ)Dx(τ))dx′f dx′in×

×φm(x f )φm(x′f )exp[− ı
h̄
(Ssyst [p(τ),x(τ)]−Ssyst [p′(τ),x′(τ)])]Fk[x(τ),x′(τ)]φn(xin)φ ∗n (x′in), (18)

where the influence functional Fk[x(τ),x′(τ)] is defined by (16) and model parameters

Fk f ;kin [x(τ),x′(τ)] =
∫

(∏
k,λ

Da∗k,λ
(τ)Dak,λ (τ))da f dain(∏

k′,λ ′
Da′∗k’,λ ′(τ)Da′k’,λ ′(τ))da′f da′in×

×ψk f (a f )ψ∗k f
(a′f )exp[− ı

h̄
(Sin f l[a∗k,λ

(τ),ak,λ (τ),x(τ)]−Sin f l[a′
∗
k’,λ ′(τ),a′k’,λ ′(τ),τ])]×

×ψkin(ain)ψ∗kin
(a′in). (19)

In the case the final state of electromagnetic field is not specified (can be any), then we sum
over all possible finite states of electromagnetic field ψk f (a f ) and take into account

∑
k f

ψk f (ak f )ψ
∗
k f

(a′k f
) = δ (ak f −a′k f

),

5
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then the influence functional (19) we convert to the following form

Fkin [x(τ),x′(τ)] =
∫

a f =a′ f

(∏
k,λ

Da∗k,λ
(τ)Dak,λ (τ))(∏

k′,λ ′
Da′∗k’,λ ′(τ)Da′k’,λ ′(τ))×

×exp[− ı
h̄
(Sin f l[a∗k,λ

(τ),ak,λ (τ)]−Sin f l[a′
∗
k’,λ ′(τ),a′k’,λ ′(τ)])]ψkin(ain)ψ∗kin

(a′in). (20)

The influence functionals (19),(20) were calculated for vacuum and pure coherent state of
electromagnetic field [?]. If the initial and finite states of electromagnetic field are one mode
vacuum

ψkin,vac(ak,in) = exp[−
|ak,in|2

2
], ψk, f vac(ak, f ) = exp[−

|ak, f |2

2
],

then the influence functional (12) is calculated in the following form:

Fvac→vac
k [x(τ),x′(τ)] =

= exp{−
∫

τ

0

∫
τ ′

0
[γk(τ ′,τ ′′) j(x(τ ′)) j(x(τ ′′))+ γ

∗
k (τ ′,τ ′′) j(x′(τ ′)) j(x′(τ ′′))]}dτ

′′dτ
′}. (21)

If the initial state of electromagnetic field is one mode vacuum ψkin,vac(ak,in) = exp[− |ak,in|2
2 ]

and we have no interest in the final state, then the influence functional (20) was calculated in the
following form:

Fvac
k [x(τ),x′(τ)] = Fvac→vac

k [x(τ),x′(τ)]·

·exp{
∫

τ

0

∫
τ ′

0
[γ∗k (τ ′,τ ′′) j(x(τ ′)) j(x′(τ ′′))+ γk(τ ′,τ ′′) j(x′(τ ′)) j(x(τ ′′))]dτ

′′dτ
′}. (22)

In the equations (21), (22) the functions γ(τ ′,τ ′′) depend on time interval and fundamental constant

γk(τ ′,τ ′′) =
e2

h̄2
h̄Ωk

2ε0V
e−ıΩk(τ ′−τ ′′).

The analytical calculation of the spontaneous emission probability was done in [12, 13]. The result
agree with other theoretical models and experimental data.

If the initial state of electromagnetic field is one mode pure coherent state

ψa0(ain) = 〈ain|a0〉= exp[−|ain|2

2
− |a0|2

2
+a∗ina0]

and we have no interest in the final state, then the influence functional (20) is calculated in the
following form:

Fcoh
k [x(τ),x′(τ)] = Fvac

k [x(τ),x′(τ)]exp{− ı
h̄

√
h̄Ωk

2ε0V
e
∫

τ

0
( j(x′(τ ′))− j(x(τ ′)))cos(Ωkt ′−φk)dt ′}.

(23)
The influence functionals of multi-mode electromagnetic field F [x(τ),x′(τ)] can be calculated by
product of the independent modes k influence functionals [3]:

F [x(τ),x′(τ)] = ∏
k

Fk[x(τ),x′(τ)]. (24)

6
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3. The transitions probability as a path integral of real functional

The influence functionals for wide class of electromagnetic field models was investigated in
the papers [12]. The analysis of resulting influence functionals allows us to write its general form
as

F [x(τ),x′(τ)] = exp[−1
h̄

S0F [x(τ),x′(τ)]]exp[− ı
h̄

S f [x(τ),x′(τ)]], (25)

where S0F [x(τ),x′(τ)] and SF [x(τ),x′(τ)] are real functionals, which defined in trajectories space
of investigated quantum system. We should note, that structure (25) of the electromagnetic field
influence functional describes the time irreversible evolution of the quantum system density matrix
(10), (13) and transition probabilities (18).

We present the equation (18) with the (25) in the following form

P(m, t|n,0) =
∫

Dp(τ)Dx(τ)Dp′(τ)Dx′(τ)dx f dx′f dxindx′in φ
∗
m(x f )φm(x′f )φ

∗
n (xin)φn(x′in)×

×exp[−1
h̄

S0F [x(τ),x′(τ)]]exp[− ı
h̄
(Ssys[p(τ),x(τ)]−Ssys[p′(τ),x′(τ)]+SF [x(τ),x′(τ)])]. (26)

For numerical simulations we present the path integral (26) in such form, in which the inte-
grand is the real functional.

We transform formula (26) using the Euler formula to the following form

P(m, t|n,0) =
∫

Dp(τ)Dx(τ)Dp′(τ)Dx′(τ)dx f dx′f dxindx′in φ
∗
m(x f )φm(x′f )φ

∗
n (xin)φn(x′in)×

×exp{1
h̄

S0F [x(τ),x′(τ)]}cos{1
h̄
(Ssys[p(τ),x(τ)]−Ssys[p′(τ),x′(τ)]−SF [x(τ),x′(τ)])}−

−ı
∫

Dp(τ)Dx(τ)Dp′(τ)Dx′(τ)dx f dx′f dxindx′in φ
∗
m(x f )φm(x′f )φ

∗
n (xin)φn(x′in)×

×exp{1
h̄

S0F [x(τ),x′(τ)]}sin{1
h̄
(Ssys[p(τ),x(τ)]−Ssys[p′(τ),x′(τ)]−SF [x(τ),x′(τ)])}. (27)

The path integral (27) is equal to path integral with real and sing varied integrand functional, so we
present the transition probability in the form:

P(m, t|n,0) =
∫

Dp(τ)Dx(τ)Dp′(τ)Dx′(τ)dx f dx′f dxindx′inφ
∗
m(x f )φm(x′f )φn(xin)φ ∗n (x′in)×

×exp{1
h̄

S0F [x(τ),x′(τ)]}cos{1
h̄
(Ssys[p(τ),x(τ)]−Ssys[p′(τ),x′(τ)]−SF [x(τ),x′(τ)])}. (28)

The formula (28) can be proved by integration independence over trajectories with prime and with-
out one in formula (27). The asymmetry of the functional sin{1

h̄(Ssys[p(τ),x(τ)]−Ssys[p′(τ),x′(τ)]−
SF [x(τ),x′(τ)])} relatively the replacement these trajectories and if following formula are true

S0F [x(τ),x′(τ)] = S0F [x′(τ),x(τ), ] SF [x(τ),x′(τ)] =−SF [x′(τ),x(τ)],

φ
∗
m(x f )φm(x′f ) = φ

∗
m(x′f )φm(x f ), φn(xin)φ ∗n (x′in) = φn(x′in)φ

∗
n (xin).

We should remind, that first reference on possibility of probability transition presentation as
path integral of real and sign variable functional was developed by G. V. Ryazanov [14].

7
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Basing on (28) we consider the non-relativistic multi-level quantum system transition un-
der electromagnetic field influence in the dipole approximation. The intensity of electromagnetic
field in our model is so large, that the vacuum influence is neglected. In this case we assume
SOF [x(τ),x′(τ)] = 0 in the formula (28), that makes the calculations simpler and leads to unitary
dynamics.

The formula (28) for transition probability for numerical simulations is more convenient in the
energy representation.

P(n f , t f |nin, tin) = lim
K→∞

N

∑
n1,..,nK=1

N

∑
m1,..,mK=1

1∫
0

..

1∫
0

dξ0..dξKdζ0..dζK×

×cos[S[n f ,nK ,ξK ; ..;nk,nk−1,ξk−1; ..;n1,nin,ξ0]−S[n f ,mK ,ζK ; ..;mk,mk−1,ζk−1; ..;m1,nin,ζ0]],
(29)

where action S[n f ,nK ,ξK ; ..;nk,nk−1,ξk−1; ..;n1,nin,ξ0] =
K+1
∑

k=1
S[nk,nk−1,ξk−1] is functional in tra-

jectories space, which defined in space of discrete nk and continuous ξk variables. The size of
discrete space is one of the quantum system parameter and the continuous space is limited on the
interval [0,1]. The boundary conditions are tK+1 = t, nK+1 = n f , t0 = 0.

S[nk, tk;nk−1, tk−1;ξk−1] = 2π(nk−nk−1)ξk−1 +Ω
R
nknk−1

(cos(2π(nk−nk−1)ξk−1+

+(Ω+ωnk,nk−1)
tk + tk−1

2
)+ cos(2π(nk−nk−1)ξk−1− (Ω−ωnk,nk−1)

tk + tk−1

2
))(tk− tk−1). (30)

The action (30) was calculated without rotating wave approximation (RWA). In this approximation,
terms in a Hamiltonian which oscillate rapidly are neglected. Obviously, that within RWA the
action is

SRWA[nk, tk,nk−1, tk−1;ξk−1] = 2π(nk−nk−1)ξk−1 +Ω
R
nknk−1

(tk− tk−1)×

×cos(2π|nk−nk−1|ξk−1−
Ω−|ωnk,nk−1 |

2
(tk + tk−1)). (31)

Basing on (29-31) we have calculated the multi-level quantum system transition probabilities
with rotating wave approximation and without it, using the computer cluster. The results predict
fluctuations of the Rabi oscillation [15]. They are not contrary to the quantum system description by
the perturbation theory [16, 17, 18, 19, 20] and the experimental data [21], [22] for two-photon Rabi
oscillations. This facts confirm, that this approach (29)-(31) describe the multi-photon processes.
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