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We consider extended chiral group Eχ and investigate whether soliton-skyrmion with di-
quark parameters can be formed within sympletic subgroup of Eχ.We find that classically
stable, finite mass topological solitons exist in the extended chiral group Eχ. In the case
of three colors, two flavors their status is described by the chiral group O(3)L̃×O(3)R̃.
The vacuum background gluon field defines also an asymptotic behavior of the shape
function F (R); the field should be chromomagnetic.
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1. Introduction

The extended chiral group Eχ [1, 2] was introduced in the bosonisation approach [3, 4, 5]
to derive the effective action of diquark fields. The corresponding extended chiral trans-
formation depends both on pseudoscalar and diquark fields as parameters. While at the
classical level the chiral symmetry is broken by quark mass, the extended chiral (Eχ) sym-
metry is broken by quark mass and gluon fields. Eχ -group isU(2N) for N internal degrees of
freedom, N = NcN f . Non-anomalous (measure preserving) generators span the Lie algebra
of O(2N), anomalous generators belong to the coset U(2N)/O(2N). Anomalous generators
describe chiral rotations and transformations with diquark variables ("diquark" rotations),
non-anomalous part consists out of gauge transformations and combined chiral "diquark"
rotations. It was assumed that Eχ -symmetry breaking due to quark masses and gluon
fields is soft in the sense that the action for bosonised diquark fields can be obtained by
integrating corresponding Eχ -anomaly. Colorless chiral fields after bosonisation give rise to
Goldstone particles - pseudoscalar mesons. At low energies bosonised diquark parameters
of Eχ -transformations with quantum numbers of lightest JP = 0+ ud -diquark was treated
as a Goldstone-like particle. The Eχ -group in this case is SU(4), non-anomalous trans-
formations are just gauge transformations SU(3)U(1) and the diquark Goldstone degrees
of freedom belongs to CP3 = SU(4)/SU(3)U(1). In the limit of vanishing gluon condensate
and current quark masses the ud-diquark introduced a la Goldstone becomes massless.

Understanding world of color solitons is important in an non-perturbative approach to
the low energy hadron physics. One of the problems is to include chiral anomalies [6, 7] in
the total (gauge plus chiral, or anomalous) color space and to study changes of gauge space.
In the gauge sector of SU(2) QCD theory, color solitons were reported by Faddeev-Niemi
[8, 9, 10] and Cho et al. [11, 12, 13]. In the quark chiral sector, the Skyrmion model
for constituent quarks (qualitons) was discussed by Kaplan [14, 15, 16], and it was shown
[17, 18] that isolated color solitons (i.e. solitons on the background of vacuum gluon field)
can be classically stabilized by the chromomagnetic vacuum field in the cases of two colors,
one flavor and three colors, one flavor, their mass can be evaluated and intersoliton potential
displays confinement behavior. A possibility of existence of a colour chiral solitons with
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baryon number B = NF/NC was mentioned in the paper on colour bosonization [3], where
baryon number current Bµ was derived

Bµ =
NF

24π2NC
εµνλσ tr

[
UDνU−1UDλU−1UDσU−1−3Gνλ

(
UDσU−1−U−1DσU

)]
The aim of this talk is to discuss quark and diquark type topological color solitons,

existing in the extended chiral group Eχ . We consider isolated solitons which are defined
as solitons in vacuum background field. We describe vacuum in a phenomenological way
[20] through condensates and assume that cubic gluon condensate is zero.

2. Colour chiral bosonization and effective action

Chiral bosonization [3, 4] is a prescription for introducing chiral field, and integration
of chiral anomaly is usually invoked, as a way to derive the chiral effective action.

Let us consider the Dirac lagrangian Lψ(G,A) with background gluon field Gµ and
external colour field Aµ in the group SU(N)×SU(N)

Lψ = iψ
(

∂̂ + Ĝ+ γ5Â
)

ψ = ψD(G,A)ψ

A chiral fieldU is defined by the following transformation of Dirac fermions ψU = 1
2 [(1− γ5)U+

(1+ γ5)ψ, U+U = 1. The quark Lagrangian Lψ (G,A) remains invariant, if fields Gµ ,Aµ are
transformed appropriately Lψ (G,A) = ψU D

(
GU ,AU

)
ψU , where U -transformed fields are

given by
GU

µ +AU
µ = U

(
Gµ +Aµ

)
U−1 +U∂µU−1,GU

µ −AU
µ = Gµ −Aµ

Repeated transformation with the chiral field U1 gives (GU
µ )U1 = GU1U

µ . These fields are not
symmetrical /antisymmetrical with respect to left-right exchange. However, they are gauge
transforms of vector and axial vector fields G̃µ , Ãµ with the gauge function χ which is square
root of U

GU
µ = χG̃µ χ

−1 + χ∂µ χ
−1,AU

µ = χÃµ χ
−1,χ

2 = U

Under a gauge transformation g the function χ transforms as χ ′ = gχg−1 .
The infinitesimal chiral transformation g5 = 1+ γ5λ acts in the following way

δGµ =
[
Aµ ,λ

]
,δAµ = Dµλ , δψ = γ5λψ,δψ = ψγ5λ ,δU =−(Uλ +λU)

An important property of U -transformed fields GU ,AU ,ψU ,ψU is that for them the chiral
transformation g5 is a non-chiral gauge transformation

δGU
µ =−Dµ

(
GU)

λ ,δAU
µ =

[
λ ,AU

µ

]
, δψ

U = λψ
U ,δψ

U =−ψ
U

λ

It follows that the Yang-Mills Lagrangian LY M
(
GU
)

= 1
2g2 trGU

µν(GU)µν is invariant under
chiral transformations .
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In order to find an effective action for the colour chiral field U we study functional
integrals

Zψ (G,A,RS) =
∫

DψDψ exp i
∫

dxLψ (G,A) = exp iW (G,A,RS)

Zψ

(
GU ,AU ,RS

)
=
∫

DψDψ exp i
∫

dxLψ

(
GU ,AU)= exp iW

(
GU ,AU ,RS

)
which are also specified by a Regularization Scheme RS . They play the role of quantities
Z and ZU in definition of an effective action We f f (U) . Thus, we obtain

We f f (G,U,RS) =−i ln
Zψ (G,A,RS)

Zψ (GU ,AU ,RS)

The usual way to calculate effective chiral action is to find an infinitesimal change δUWe f f

(i.e.the anomaly) and integrate it up to U . We put U = expΘ and introduce the anomaly
A(x,Θ)

A(x,Θ) =
1
i

δ lnZψ (expΘ)
δΘ

Then
W ψ

e f f (Θ) =−
∫

d4x
∫ 1

0
dsA(x;sΘ)Θ(x) =

∫
d4xLψ

e f f (U)−WWZW

where the Wess-Zumino-Witten term WWZW describes topological properties of U .
Eliminating external colour axial fields, Aµ = 0, we get the effective chiral Lagrangian

Lψ

e f f (U) arising from integration over fermions with NF flavors

Le f f (U) = NFtrC{
f 2
0
4

DµUDµU−1 +
1

192π2

[
1
2
[
UDνU−1,UDµU−1]2− (UDνU−1UDνU−1)2

]

+
1

96π2

(
[UDµU−1,UDνU−1](Gνµ +UGνµU−1)+GµνUGµνU−1)

where the kinetic term contains a constant f 2
0 which is an analogue of the pion decay

constant f 2
π .

Soliton for NF = 1.
Effective chiral lagrangian has the structure Le f f (U) = Lkin(U)+ L(4)(U), Lkin(U) - ki-

netic term with two derivatives, L(4)(U) - contains terms with 4 derivatives and do not
depend on regularization scheme RS ; the dimensional constant f 2

0 may look different in
different RS , but in applications it should be taken from phenomenology. Derrick theorem
is fulfilled, and Le f f can lead to static stable soliton solutions.

Next steps:
1. Choice of the ansatz for the color chiral field U
2. Choice of the background gluon field
Step 1. Natural boundary condition for color chiral field U : U(x)−→ I , as |x| → ∞. So

R3 is compactified to S3 and we have mapping U : S3→ SU(Nc).
We are looking for topological solitons with nontrivial topological charge (winding

number). In the case of (3+1) -dimensional models this can be done only for two symmetry
groups [19] G1 = diag[SO(3)I⊗SO(3)S], G2 = diag[SO(2)I⊗SO(2)S]

4
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The fields invariant against transformations from G1 are spherically-symmetric fields
of the hedgehog type, winding numbers Q = 1,2, ... Those invariant under group G2

are axisymmetric configurations with winding numbers Q ≥ 2. For the Skyrme model
EQ=2(G2)≤ EQ=2(G1).

For the case NF = 1 we are looking for the configuration with minimal energy, so we
choose the group G1 = diag[SO(3)I⊗SO(3)S].

We consider the colour gauge group SU(2) with antihermitian generators Ta = τa
2i , where

τa are the Pauli matrices. Let us write the chiral field in the usual hedgehog way

U = exp i
(xaτa

R

)
F (R) = cosF + irsinF,rara = r2 = 1,raτa = r,ra =

xa

R

Step 2. Colour configurations U are always associated with background colour field Gµ

because of necessity to maintain colour gauge invariance. In this respect, the case of colour
solitons is quite different from the case of flavor solitons, where there is no flavour gauge
invariance, and the external flavour gauge field can be eliminated from the chiral action.
The background colour field should be chosen according to the colour configurations U
under consideration. The gluonic vacuum Ψ0 is characterized by the condensate

Cg =
(

Ψ0,
g2

4π2 Oa
µνOµνa

Ψ0

)
∼=

g2

4π2 Ga
µνGµνa 6= 0

that is by the non-zero vacuum expectation value of the Yang-Mills lagrangian for the full
quantum field Oµ represented by the background vacuum field Gµ in our approximation.
According to phenomenological descpription Cg � 0 , Cg ≈ 0.04GeV 4 [20], so Gµ is a chro-
momagnetic field in the real case of SU(3) gauge group. The vacuum field strength Gkl in
the temporal gauge G0 = 0 is constant up to a time independent gauge transformation.

We consider the simplest case of a chromomagnetic vacuum background field , when it
is an Abelian-type field which is a product a coordinate vector field Vk and a SU(2) color
vector na

Ga
k = Vkna,Vk =−1

2
Vklxl =−1

2
εklmxlνmB,Gk = gGa

k
τa

2i

where na is a constant unit vector in the colour space, νm is a constant unit vector in
coordinate space, νmB = 1

2 εmlkVlk is the vacuum chromomagnetism and B is related to the
condensate Cg = g2

2π2 B2 . In the vacuum all directions na and νl are equivalent, so that it is
necessary to average over them at the end.

We are now able to right down the Effective colour static Lagrangian

Le f f (U,Gk) =−NF
f 2
0
4

[2((∂RF)2 +2
sin2 F

R2 )+
2
9

g2B2R2 sin2 F ]+
NF

96π2 [
(

(∂RF)2 +2
sin2 F

R2

)2

+

16
225

g4B4R4 sin4 F +
2
9

g2B2R2
(

(∂RF)2 +3
sin2 F

R2

)
sin2 F ]− NF

72π2 g2B2 sin2 F

− NF

24π2

[
2sin2 F

R2 (∂RF)2 +
sin4 F

R4 +
2
9

g2B2 sin4 F
]
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The static energy or mass

M =−4π

∫
dRR2Le f f (U,Gk)

must be finite. Near the origin R = 0 soliton soliton function F(R) behaves in the same
manner as in the Skyrme model F(R)≈ kπ−bR

The asymptotic behavior of F(R) at large R is determined by the gluon condensate Cg

F → ( f0R)−
3
2 exp

(
−π

3

√
Cg

2
R2

)
,R→ ∞

3. Group structure of Eχ-transformations

In order to consider quark-antiquark and quark-quark composites on equal footings
one should introduce eight-component spinors Ψ constructed from ordinary Dirac spinors
ψ We consider the Dirac operator D for massless quarks q with background vector Vµ and
axial vector Aµ fields and look for impact of transformations, which mixes particles and
antiparticles and introduce fields ω with diquark quantum numbers

δq =−αq− γ5ωCq̄T ,δ q̄T =−α
∗q̄T − γ5ω

∗Cq

on the quark lagrangian L = 1
2(q̄Dq−qT DT q̄T +qTCΦq+ q̄Φ̄q̄T ).

The extended chiral group Eχ is the group of all gauge and chiral transformations
leaving quark lagrangian invariant, if external fields are transformed accordingly. In absence
of external fields, Eχ is the group of global color and flavor transformations leaving free

quark lagrangian invariant. The basic Dirac spinor Ψ is 8-component: Ψ = (
q

q̄T )

and the Dirac lagrangian L can be rewritten as L = 1
2 ΨT F̂Ψ with F̂ represented in the

block form

F̂ =

(
CΦ −D̂T

D̂ ΦC

)
=−F̂T ,

where D̂ = iγµ
(
∂µ +Vµ + γ5aµ

)
is the Dirac operator with external fields, ”T ” means

transposition and Φ = γµ
(
φ5µ + γ5φµ

)
contains external vector diquark fields, Φ = γ0Φ+γ0.

To avoid difficulties with the Majorana spinors in finding a counterpart of F̂ in the
Euclidean path integral over Ψ, one should take special care keeping in mind that what
is necessary for chiral actions is only to calculate det F̂ . To this end we use the hermitian

operator Ĝ =

(
D̂ Φ

Φ D̂c

)
, D̂c =C−1D̂TC, with det Ĝ = det F̂ and required positivity properties.

Thus, having in mind the chiral anomaly and related effective action, one should study
transformations of operator Ĝ induced by quark transformation δΨ

δΨ =−ΩΨ, Ĝ→ Ĝ′ = exp(−Ξ+ γ5Θ) Ĝexp(Ξ+ γ5Θ)

6
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where antihermitian matrices Ω,Ξ,Θ are given by

Ω = ρ11 (α + γ5χ)+ρ22 (α∗− γ5χ
∗)+

ρ12 (ξ + γ5ω)C +ρ21 (−ξ
∗+ γ5ω

∗)C

Ξ = ρ11α +ρ22α
∗+ρ12ξ +ρ21ξ

∗ , Θ = ρ11χ−ρ22χ
∗+ρ12ω−ρ21ω

∗

We introduced notation: ρab is a 2×2 block matrix with elements (ρab)cd = δacδbd .
We have α+ = −α,χ+ = −χ,ξ T = −ξ ,ωT = ω . The quark baryon number is b̂ =

1
3(ρ11−ρ22) = 1

3 ρ̂3.
Transformations with Ξ do not change the quark path integral, while transformations

with Θ induce chiral anomalies. The Lie algebras with Ξ + γ5Θ and Ξ + Θ are isomor-
phic. For Nc colors and N f flavors, generators Ξ + Θ are in algebra of U (2N), N = NcN f .
Non-anomalous generators α are in algebra of SU (N) and include color SU (Nc); the left-
right group GLR = SU (N)L × SU (N)R has α,χ as generators, while (Ξ+Θ)sp = ρ11α +
ρ22α∗ + ρ12ω − ρ21ω∗ is in algebra of symplectic group Sp(2N), because (Ξ+Θ)T

sp iρ2 +
iρ2 (Ξ+Θ)sp = 0.

In Eχ non-anomalous generators Ξ are in algebra of the orthogonal group O(2N)
and include in addition to block diagonal generators α also non-diagonal generators ξ ,
which arise from non-commutativity of anomalous generators ΘLR = ρ11χ − ρ22χ∗ and
Θsp = ρ12ω − ρ21ω∗. Anomalous generators Θsp of the symplectic group Sp(2N) belong
to the coset Sp(2N)/SU (N). We see that there are two distinguished subgroups GLR and
Sp(2N) of Eχ with the same block diagonal non-anomalous generators Ξ0 = ρ11α + ρ22α∗

and different anomalous parts ΘLR and Θsp, which do not require introduction of addi-
tional non-anomalous generators ξ . In the case of entire group Eχ , anomalous generators
Θ include both χ and ω and belong to the coset SU (2N)/O(2N).

Effective chiral lagrangian for field U
The chiral field is U = expΘ. The calculation of effective lagrangian by integration

of anomaly follows the standard bosonization procedure. After eliminating external color
axial fields, Aµ = 0, we get the chiral action for 2N internal degrees of freedom W (U) =
We f f (U)−Wwz with an effective lagrangian Le f f (U):

Le f f (U) = trc, f {
f 2
ω

4
DµUDµU−1 +

1
384π2

[
1
2
[
UDνU−1,UDµU−1]2− (UDνU−1UDνU−1)2

]

+
1

192π2

(
[UDµU−1,UDνU−1](G̃νµ +UG̃νµU−1)+ G̃µνUG̃µνU−1)},

Dµ = ∂µ +
[
G̃µ ,∗

]
, G̃µ = ρ11Gµ +ρ22

(
−GT

µ

)
+ρ12Φ̄+ρ21Φ

The kinetic term depends on a phenomenological parameter f 2
ω .

The structure of Le f f (U) = Lkin(U)+L(4)(U) is the same as in the previous case.

7
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4. Solitons in the symplectic group

By next step we must find the ansatz for the color chiral field U and then consider
the choice of the background gluon field. We shall restrict ourselves to the case of scalar
diquark as a natural partner in the formation of the nucleon. We are looking for the fields
invariant against transformations from G1, which are spherically-symmetric fields of the
hedgehog type with winding number Q = 1.

Let us consider the symplectic group Sp(2N) with α in SU (N), N = NcN f . The chiral
field Usp is a mapping from S3 to Θsp = ρ+ω −ρ−ω∗ with ω = ωT . For the whole group
(with both α and ω) such mappings belong to π3 = Z . Excluding α we get:

(a)Two or three colors, one flavor: ω = λaωa,a = 1,3,4,6,8 , no spherical solitons;
(b) Two colors, two flavors: ω = Λbωb , Λb are nine traceless symmetrical matrices

σ2× τ2 and σk̃× τl̃; k̃, l̃ = 0,1,3 ; no spherical solitons;
(c) Three colors, two flavors; non-anomalous part Ξsp is given by 12×12 matrix with

α in SU (6) built on SU (3) matrices λa and flavor Pauli matrices τk, while anomalous
part Θsp together with Ξsp span Sp(12) algebra. Symmetric matrix ω contains fields with
diquark quantum numbers associated with both symmetrical matrices λ S

a × τS
k and both

antisymmetrical ones λ A
a × τ2. Antisymmetric matrices

λ
A = (λ2,−λ5,λ7)≡ (Ok) ;(Ok)i j =−iεki j

These are the generators of a 3̄ -representation, which is equivalent to the spin one
representation of an SU(2) group

In color O(3) algebra we combine with unit coordinate vector rk,rkrk = 1 into r̂ = Okrk.
We retain only those parameters ω , which enter with generators of O(3), introduce the
shape function Fsp (R) and write the spherically-symmetric ansatz made out of fields ϑk,ϑ

∗
k

with diquark quantum numbers for the color chiral field as

Θsp = ρ+iτ2Okϑk−ρ−iτ2Okϑ
∗
k ≡ iτ2η r̂Fsp,η = ρ1 cos χ−ρ2 sin χ

Usp = expΘsp = 1+ iτ2η r̂ sinF + r̂2 (cosF−1) ,R2 = xkxk,

assuming that χ is constant. Isospin matrices Ik = (ρ3τ1,τ2,ρ3τ3) commute with Θsp.

Choice of background gluon field
A single color soliton is defined as a soliton in the background of the vacuum chromo-

magnetic field Ga
µ =VµNa, which depend on constant color unit SU(3) - vector Na, NaNa = 1.

Soliton in a particular color domain is correlated with its background field. This correlation
disappears, when we average over different color domains and important phenomenological
parameter - gluon condensate forms. Consider DµU = ∂µ +[Ĝk,U ]. Doubled gluon field

Ĝk = ρ11Gk +ρ22
(
−GT

k
)
, Gk = VkN̂, N̂ = λaNa, NaNa = 1

U = expΘ and Θ contains only antisymmetric matrices λ A. Thus, we should take
N = NA antisymmetric, otherwise symmetric NS would take Θ out of O(3) algebra. Note,
that (NA)3 = NA. We see that tr(NA)3 = 0. It follows that cubic gluon condensate is zero.

8
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In order to preserve the form of U we have to restrict Ξsp to a common subgroup O(3) of
SU (3)× SU (3)∗ . As we see, this is possible for vacuum background field Ga

k = VkN̂, N̂ =
λaNa, trN̂3 = 0 in the gauge Ga

0 = 0.

Then Ĝk = ρ11Gk +ρ22
(
−GT

k

)
= (ρ11 +ρ22)VkÑ, where Ñ = OlNl, Ñ3 = Ñ.

In the vacuum all directions na and νl are equivalent, so that it is necessary to average
over them at the end.

The effective color chiral static Lagrangian Le f f (U) for diquark solitons take the fol-
lowing form after averaging:

Le f f (U) =−1
4

N f f 2
ω{2F

′2 +2(
2

R2 +
1
9

π
2CgR2)sin2 F +(

4
R2 +

1
9

π
2CgR2)sin4 F

2
}−

1
48π2 {(F

′2−
sin2 F

2
R2 )+

1
18

π
2CgR2(F

′2 + sin2 F(cosF−1))}+

1
96π2 (2F

′4−8
sin2 F

2
R2 {F

′2−3
sin2 F

2
R2 +

1
72

π
2CgR2(F

′2 +24sin2 F
2

)}−

1
225

π
4C2

gR4(sin2 F +4sin2 F
2

))

From finitness of mass functional M(F) = −
∫

d3xLe f f we get the behavior of solitonic
shape function at origin F(R)

2 → πk, k -integer.
Topological charge tχ (U) for a soliton U in the left-right subgroup of Eχ is related to

the quark baryon number b̂ = ρ̂3/Nc

tχ (U) =
1
2

1
24π2Nc

∫
d3xεi jktr{ρ3UDiU+UD jU+UDkU+}

and coincides with the baryon number of soliton U .
Finiteness of soliton mass follows from the static effective lagrangian Le f f and asymp-

totic behavior of the shape function F (R) at large R.

Asymptotics of F (R) is defined by the kinetic term. The kinetic term averaged over

directions Nk and νt of background vacuum field Gk
l = VlNk,Vl = − π

2i εl jtr jνtR
√

Cg
2 in O(3)

color and coordinate spaces takes the following form

K =
1
4

NF f 2
ω{2F ′

2
+2
(

2
R2 +

1
9

π
2CgR2

)
sin2 F +(

4
R2 +

1
9

π
2CgR2)sin4 F

2
}}

where Cg is the gluon condensate. Thus, leading asymptotic behavior at large R of the
shape function F (R) is governed by the similar equation as in the case of color NF = 1
quark soliton. We get the result

F → ( f0R)−
3
2 exp

(
−π

3

√
Cg

2
R2

)
,R→ ∞

which guarantees that the mass M =−4π
∫

dRR2Lstat is finite for positive condensate Cg, i.e.
for chromomagnetic vacuum field.

9
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5. Conclusions

We have shown that classically stable, finite mass topological solitons exist in the
extended chiral group Eχ . In the case of three colors, two flavors their status is described
by the chiral group O(3)L̃×O(3)R̃. The vacuum background gluon field defines also an
asymptotic behavior of the shape function F (R); the field should be chromomagnetic. This
pattern based on establishing mapping from S3 to anomalous part Θ of Eχ and using
properties of vacuum background field can be followed in more complicated cases. This
expansion of the world of color solitons is not accompanied by the widening of pure QCD
gauge space: it is still SU(3) and no additional gauge degrees ξ were still required to
accommodate solitons. However, these degrees ξ are likely to appear, if vacuum is to be
described by set of condensates. Diquark type solitons may be essential in discussion of
baryon asymmetry, baryon number nonconservation and "electroweak baryons".
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