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Spherically symmetric solution in Møller gravity
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In this paper, following C. Møller [1,2], we obtain spherically symmetric solution in the tetrad
Møller gravity. We use this solution and the so-called PPN-formalism [3,5] to compare our theory
with experiment and to improve restrictions on the theory constants.
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1. Introduction

Spherically symmetric  solutions are very important to understand the slow-motion and
weak-field limit of the gravity theory under study and to confront this theory with Solar System
experiments [4]. For example, the three classical tests of General Relativity are based on the
spherically symmetric Schwarzschild solution and the weak-field limit. 

In this paper we consider a spherically symmetric solution, which can be obtained in the
interesting generalization of General Relativity suggested by C. Møller [1].  It is convenient to
use in such analyses  so-called PPN-formalism,  specially built  to study the slow-motion and
weak-field limit of the extended theories of gravity [3].

Save for this little introduction and a short conclusion, this paper is organized as follows.
In § 2, we give a brief review of the Møller gravity. In § 3, we obtain the spherically symmetric
solution. In § 4, we gain restrictions on the theory parameters, using PPN-formalism and data of
Solar System experiments.

2. Møller gravity review

It was C. Møller, who first put forward this theory in 1978 [1]. The Møller gravity theory

is a metric theory, in which the metric tensor
3

0

( ) ( ) ( ) ( ) ( )g g g g gµν µ ν µ ν
α=

≡ δ αα α α ≡ α α∑ ,  { }( ) 1,1,1,1diagδ αβ ≡ −                                    (2.1)

is constructed from an orthonormal tetrad:

( ) ( ) ( )g g µ
µα β ≡ δ αβ                                                                                                        (2.2)

Here the indices in  the brackets are frame (vielbein) indices, which run from 0 to 3, and the

summation over the repeated indices is implied. The stress tensor for this vector fields (denoted

by ( )f µνα ) is, as usually: 

[ ]( ) ( )f gµν µ να ≡ ∂ α                                                                                                          (2.3)

Where the antisymmetrization over the indices in the square brackets is implied. The coordinate
indices can be turned into frame (vielbein) indices as it is presented below:

( ) ( )C g Cµν λ µνλα α ≡                                                                                                         (2.4)

We can obtain the Riche tensor from the stress tensor:

1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2
1 1 1

( ) ( ) ( ) ( ) ( ) ( )
2 2 2
1 1 1

( ) ( ) ( ) ( ) ( ) ( )
2 2 4

R f f f

f f f f f

f f f f f f

αβ = ∂ α µµβ + ∂ β µµα + ∂ µ βαµ

+ ∂ µ αβµ − αβµ ννµ − βαµ ννµ +

− µνα νµβ − µνα µνβ + αµν βµν

                                               (2.5)

Where ( ) ( )g µ
µ∂ α ≡ α ∂                                                                                                    (2.6)

Contacting indices in different ways, we can build from the stress tensor three different scalars: 
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1L f f αβγ
αβγ≡ 2L f f βαγ

αβγ≡ 3L f fα βγ
αγ β≡                                                                        (2.7)

Then, in general case, the simplest action quadratic in the partial derivatives is:

( )0 1 1 2 2 3 3

X

S k k L k L k L gdx= + + +∫                                                                                  (2.8)

where 0k , 1k , 2k , 3k  are arbitrary dimensional constants.

Using (2.5) we can obtain more usual expression for Einstein-Møller action (up to a complete
divergence):

{ }1 1 2 2

1

2 X

S R k L k L gdx′ ′= Λ + + +
κ ∫                                                                                   

(2.9)

We could not write the action with the terms L1 and L2, if we used just the metric tensor without
the vielbein formalism. Thus, we have a generalization of metric gravity.

As we can see, Møller gravity theory coincides with General Relativity, if 1k ′ , 2k ′ is equal to 0.

Denoting the variation of the action with respect to ( )g αµ  as 

1
( )

( )

S
X

gg
α

α

δµ ≡
δ µ ,                                                                                                    (2.10)

we  can  write   the  symmetric  and  the  antisymmetric  parts  of  the  equations  of  motion
1

( ) 0
( )

S
X

gg
α

α

δµ ≡ =
δ µ  separately. The symmetric part gives:

( ) ( ) ( )

( ) ( )
3 1 2 1 2 [ ]

( ) ( ) [ ]

( )
1 2 2 1 2

1
4 2 2 2

2

2 2 2 0

X k R g R k k f k k f f

k k f f k f f g k f f k f f

µ µν
αβ αβ αβ αβ µ µν α β

µν α β α βµν αβ µνλ µνλ
µν µν µνλ νµλ

  ′ ′ ′ ′= − − + Λ + + ∇ − − + ÷ 
′ ′ ′ ′ ′+ + − + + =

       (2.11)

The antisymmetric part of the equations of motion is

( ) ( )[ ] [ ] [ ]
1 2 2 1 22 2 4 2 3 0X k k f k f k k f fαβ αβ µ µαβ µν α β

µ µ µν′ ′ ′ ′ ′= − ∇ − ∇ − − =                             (2.12)

If 1k ′ ,  2k ′  are  equal  to  zero,  the  antisymmetric  part  vanishes.  The  symmetric  part  of  the

equations of motion gives us General Relativity. As we can see, in the Møller gravity theory

we have more restrictions on frame vectors, than in General Relativity, because of the additional
antisymmetric part of the equations of motion. And now the action of the theory is not invariant
under the rotations of the frame, unlike in General Relativity.

3.Spherically symmetric solution

Let us write the required spherically symmetric metric using isotropic coordinates [4]:

( ){ }2 22 2 2 2 2 2 2( ) ( ) sinr rds e dt e dr r d dγ α= − + θ + θ ϕ                                                      (3.1)

Then the metric tensor is:
2

2

0

0

e
g

e g pq

γ 
=  ÷ααβ  ÷− 

                                                                                                       (3.2)
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It is convenient to write an ansatz for the frame: 

0(0)g eγ= , 0(0)g e−γ= , 0( ) 0g a = , ( ) ( )q qg a e g aα= , ( ) ( )q qg a e g a−α= −                                (3.3)

Where 

cos

(1) sin

0
qg r

θ 
 ÷= − θ ÷
 ÷ 

, 

sin cos

(2) cos cos

sin sin
qg r

r

− θ ϕ 
 ÷= − θ ϕ ÷
 ÷θ ϕ 

, 

sin sin

(3) cos sin

sin cos
qg r

r

− θ ϕ 
 ÷= − θ ϕ ÷
 ÷− θ ϕ 

                                 (3.4)

is an orthonormal frame in 3-dimensional flat space. 

Using  (3.1)-(3.4) and  the equations of motion,  after some calculations we obtain three

equations for two functions parameterizing the metric and the frame:

( )2 1 2 2 1
, , , , , , , , ,2 4 2 2 2 4rr r r r rr r r r rr r− −α + α + α = ξ α − γ − γ − α γ − γ                                            (3.5)

( )2 1 1 2 2 1
, , , , , , , ,2 2 2 2 4r r r r r r r rr r r− − −α + α + γ α + γ = −ξ α + γ + α                                                 (3.6)

( )1 1 2 2 1
, , , , , , , , , ,2 2 2rr r r rr r rr r r r rr r r− − −α + α + γ + γ + γ = ξ − α + γ − α γ − α                                  (3.7)

Where 1 22k k′ ′ξ ≡ +                                                                                                           (3.8)

Obviously, this system is overdetermined. Nevertheless, it has a solution in the form of

( ) ( )0 1ln 1 / ln 1 /A r r B r rα = − + −                                                                                     (3.9)

( ) ( )0 1ln 1 / ln 1 /C r r D r rγ = − + −                                                                                    (3.10)

Where                                                                                                                 

( ) ( )1 1 2 1

1 3
A

− ξ + − ξ + ξ
=

− ξ
,

( ) ( )1 1 2 1

1 3
B

− ξ − − ξ + ξ
=

− ξ
,

( ) ( )2 1 2 1

1 3
C

ξ + − ξ + ξ
= −

− ξ
,

( ) ( )1 2 1 2

1 3
D

− ξ + ξ − ξ
=

− ξ
                                                      (3.11)

( ) ( )
0

1

2

1 2 1

1 2
r r

− ξ 
 ÷= −
 ÷

ξ
+ 

+
ξ

ξ
, 

( ) ( )
1

1

2

1 2 1

1 2
r r

− ξ 
 ÷= +
 ÷

ξ
+ 

+
ξ

ξ
                             (3.12)

And where r is the Schwarzschild radius.
Thus the spherically symmetric metric looks like:

( ) ( ) ( ) ( ) ( )2 2 2 22 2 2 2 2
0 1 0 11 / 1 / 1 / 1 /

C D A B
ds r r r r dt r r r r dx dy dz= − − − − − + +            (3.13)

As we can see, the spherically symmetric solution coincides with Schwarzschild metric not only

in the trivial case, when our theory coincides with General Relativity and 1k ′ ,  2k ′ are equal to

zero separately, but in the case when 1 22 0k k′ ′ξ ≡ + = as well.

Up to the second order in inverse radius we obtain for the space-time metric

( )2 2 2 2
2

2 2
2

2

1 1 1
1 1

2(1 2 ) 1 2 4(1 2 )

r r r
ds dt dx dy dz

r

r

r r r

   + ξ + ξ= − + − + + + + ÷  ÷+ ξ + ξ + ξ   
                 (3.14)

It is convenient to use this expression in the so-called PPN-formalism to compare our theory
with experiment.
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4.Spherically symmetric solution and the PPN-formalism

The main idea of the parameterized post-Newtonian formalism is that the comparison of
metric theories of gravity with experiment becomes simple when we use the weak-field limit.
This approximation is known as the post-Newtonian limit [3,4]. It is sufficiently accurate to the
most  solar-system tests [5].  In this approximation the space-time metric predicted by nearly
every metric theory of gravity has the same structure. The space-time metric can be written as
an expansion about the Minkowski metric in terms of dimensionless gravitational potentials of
varying degrees of smallness:

2
00 1 2 2 ...g U U= − + β + , ( )1 2 ...ij ijg U= − + γ δ +                                                            (4.1)

that are  constructed  from the  matter  variables  in  imitation  of  the  Newtonian  gravitational
potential [3,5]. For example, for the spherically symmetric distribution of matter

3( )
,

| |

m
U d r

r

ρ= = ≡
−∫
y

y x
x y

                                                                                                (4.2)

Where ( )ρ y is the density of rest mass as measured in a local freely falling frame momentarily

commoving with the gravitating matter.
The only way that one metric theory differs from another is in the numerical values of the

coefficients that appear in front of the metric potentials. The PPN-formalism inserts parameters
in place of these coefficients. In such a way parameters values depend on the theory under study
[3].

Comparing (3.14), (4.1) and (4.2), we obtain PPN-parametersβ and γ  for Møller gravity theory:

1

1 2
γ =

+ ξ
, 

1

1 2

+ ξβ =
+ ξ

, where 1 22k k′ ′ξ ≡ +                                                                         (4.3)

The parameters  β  and  γ  are  the  well-known Eddington–Robertson–Schiff  parameters

used to describe the classical tests of General Relativity [3]. Recently tests of PPN-parameters

β  and γ  have reached high precision, including the light deflection, the perihelion advance of

Mercury and the Shapiro time delay [5]. Time delay tests give the best estimation for γ  [5,6]

with a result 51 (2.1 2.3) 10−γ − = ± ×                                                                                 (4.4)

From (4.3) and (4.4) it follows that 5
1 22 ( 1.1 1.2) 10k k −′ ′ξ ≡ + = − ± ×                                 (4.5)

As we can see, the combination 1 22k k′ ′ξ ≡ +  of the theory parameters has to be very small to be

in agreement with experimental data. This is the only restriction on the theory parameters we
can get from the spherically symmetric solution and data of the solar-system experiments.

5.Conclusions

In § 2 we present the spherically symmetric solution of Møller gravity in an explicit form.
As  we can see,  the  spherically symmetric  solution appears  not  only in  the  case,  when the
additional constants of the Einstein-Møller action are small, as it was shown by Møller [1], but
also in the case of arbitrary constants too. 

The  peculiar  moment  is  that  the  spherically  symmetric  solution  coincides  with
Schwarzschild  metric  not  only in  the  trivial  case,  when our  theory coincides  with General
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Relativity (when 1k ′ ,  2k ′ are equal to zero separately),  but in the case when  1 22 0k k′ ′ξ ≡ + = as

well.

The combination 1 22k k′ ′ξ ≡ +  of the theory parameters has to be very small (of the order of

10-5)  to  be in  agreement  with  experimental  data.  This  is  the  only restriction  on  the theory
parameters we can get from the spherically symmetric solution and data of the solar-system
experiments.
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