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1. Introduction

1.1 Fusion

Fusion cross sections can be calculated from the equation [1]

σF(E) = πo2
∑
`

(2`+ 1)P`(E), (1.1)

where E is the center of mass energy, o =
√

h̄2/2mE is the reduced wavelength and ` = 0,1,2, · · · .
The cross section is proportional to πo2, the area of the quantum wave. Each part of the wave
corresponds to different impact parameters having different probabilities for fusion. As the impact
parameter increases, so does the angular momentum, hence the reason for the 2`+1 term. P`(E) is
the probability that fusion occurs at a given impact parameter, or angular momentum. Sometimes,
for a better visualization, or for extrapolation to low energies, one uses the concept of astrophysical
S-factor, redefining the cross section as

σF(E) =
1
E

S (E)exp
[
−2πη(E)

]
, (1.2)

where η(E) = Z1Z2e2/h̄v, with v being the relative velocity. The exponential function is an approx-
imation to P0(E) for a square-well nuclear potential plus Coulomb potential, whereas the factor
1/E is proportional to the area appearing in Eq. 1.1.

1.2 Many reaction channels

Eq. 1.1 does not work in most situations. Only by including coupling to other channels,
the fusion cross sections can be reproduced. In coupled channels schemes one expands the total
wavefunction for the system as

Ψ =
∑

i

ai(α)φi(α,qk), (1.3)

where φ form the channel basis, α is a dynamical variable (e.g., the distance between the nuclei),
and qk are intrinsic coordinates. Inserting this expansion in the Schrödinger equation yields a set
of CC equations in the form [2]

dak

dα
=

∑
j

a j 〈φk |U |φ j〉 eiEαα/h̄, (1.4)

where U is whatever potential that couples the channels k and j and Eα = E(k)
α − E( j)

α is some
sort of transition energy, or transition momentum. In the presence of continuum states, continuum-
continuum coupling (relevant for breakup channels) can be included by discretizing the continuum.
This goes by the name of Continuum Discretized Coupled-Channels (CDCC) calculations. There
are several variations of CC equations, e.g., a set of differential equations for the wavefunctions,
instead of using basis amplitudes. Coupled channels calculations with a large number of channels
in continuum couplings are somewhat challenging: the phases of matrix elements can add destruc-
tively or constructively, depending on the system and on the nuclear model. Such suppressions or
enhancements are difficult to interpret.
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1.3 Radiative capture

For reactions involving light nuclei, only a few channels are of relevance. In this case, a real
potential is enough for the treatment of fusion. For example, radiative capture cross sections of the
type n + x→ a + γ and πL (π = E, (M) =electric (magnetic) L-pole) transitions can be calculated
from [3]

σd.c.
EL,Jb

∝ |〈lc jc ‖OπL‖ lb jb〉|2 , (1.5)

where OπL is an EM operator, and 〈lc jc ‖OπL‖ lb jb〉 is a multipole matrix element involving bound
(b) and continuum (c) wavefunctons. For electric multipole transitions (OπL = rLYLM),

〈lc jc ‖OEL‖ lb jb〉 ∝
∫ ∞

0
dr rLub(r)uc(r), (1.6)

where ui are radial wavefunctions. The total direct capture cross section is obtained by adding all
multipolarities and final spins of the bound state (E ≡ Enx),

σd.c.(E) =
∑
L,Jb

(S F)Jb σ
d.c.
EL,Jb

(E) , (1.7)

where (S F)Jb are spectroscopic factors.

1.4 Asymptotic normalization coefficients

In a microscopic approach, instead of single-particle wavefunctions one often makes use of
overlap integrals, Ib(r), and a many-body wavefunction for the relative motion, uc(r). Both Ib(r)
and uc(r) might be very complicated to calculate, depending on how elaborated the microscopic
model is. The variable r is the relative coordinate between the nucleon and the nucleus x, with all
the intrinsic coordinates of the nucleons in x being integrated out. The direct capture cross sections
are obtained from the calculation of σd.c.

L,Jb
∝ |

〈
Ib(r)||rLYL||Ψc(r)

〉
|2.

The imprints of many-body effects will eventually disappear at large distances between the
nucleon and the nucleus. One thus expects that the overlap function asymptotically matches (r→
∞),

Ib(r) = Ci×

(
W−η,lb+1/2(2κr)

r

) 
√

2κ
r

Klb+1/2(κr)

 , (1.8)

where () are for protons and [] for neutrons. The binding energy of the n+ x system is related to κ by
means of Eb = h̄2κ2/2mnx, Wp,q is the Whittaker function and Kµ is the modified Bessel function.
In Eq. 1.8, Ci is the Asymptotic Normalization Coefficient (ANC).

In the calculation of σd.c.
L,Jb

above, one often meets the situation in which only the asymptotic
part of Ib(r) and Ψc(r) contributes significantly to the integral over r. In these situations, uc(r) is
also well described by a simple two-body scattering wave (e.g. Coulomb waves). Therefore the
radial integration in σd.c.

L,Jb
can be done accurately and the only remaining information from the

many-body physics at short-distances is contained in the asymptotic normalization coefficient Ci,
i.e. σd.c.

L,Jb
∝ C2

i . We thus run into an effective theory for radiative capture cross sections, in which
the constants Ci carry all the information about the short-distance physics, where the many-body
aspects are relevant [4] . It is worthwhile to mention that these arguments are reasonable for proton
capture at very low energies, because of the Coulomb barrier.
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Figure 1: World data on 7Be(p,γ)8B compared to theoretical calculations [7]. The solid curve is from Eq.
(1.10).

1.5 Resonating group method

One immediate goal can be achieved in the coming years by using the Resonating Group
Method (RGM) or the Generator Coordinate Method (GCM). These are a set of coupled integro-
differential equations of the form [5]∑

α′

∫
d3r′

[
HAB
αα′(r,r

′)−ENAB
αα′(r,r

′)
]
gα′(r′) = 0, (1.9)

where H(N)(r,r′) = 〈ΨA(α,r)|H(1)|ΨB(α′,r′)〉. In these equations H is the Hamiltonian for the
system of two nuclei (A and B) with the energy E, ΨA,B is the wavefunction of nucleus A (and
B), and gα(r) is a function to be found by numerical solution of Eq. 1.9, which describes the
relative motion of A and B in channel α. Full antisymmetrization between nucleons of A and B are
implicit. Modern nuclear shell-model calculations are able to provide the wavefunctions ΨA,B for
light nuclei [6].

The astrophysical S-factor for the reaction 7Be(p,γ)8B was calculated [8] and excellent agree-
ment was found with the experimental data in both direct and indirect measurements [8, 9]. The
low- and high-energy slopes of the S-factor obtained with a many-body microscopic calculation
[8] is well described by the fit [7]

S 17(E) = (22.109 eV.b)
1 + 5.30E + 1.65E2 + 0.857E3

1 + E/0.1375
, (1.10)

where E is the relative energy (in MeV) of p+7Be in their center-of-mass. This equation corre-
sponds to a Padé approximant of the S-factor. A subthreshold pole due to the binding energy of 8B
is responsible for the denominator [10, 11]. Figure 1 shows the world data on 7Be(p,γ)8B compared
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to a few of the theoretical calculations. The recent compilation published in Ref. [12] recommends
S 17 = 20.8±0.7 (expt)±1.4 (theor) eV b.

2. Direct reactions and the role of radioactive beams

2.1 Transfer reactions

Transfer reactions are effective when a momentum matching exists between the transferred
particle and the internal particles in the nucleus. Thus, beam energies should be in the range of a
few 10 MeV per nucleon. Low energy reactions of astrophysical interest can be extracted directly
from breakup reactions a+b −→ s+c+C by means of the Trojan Horse method (THM) [13]. If the
Fermi momentum of the particle x inside b = (s + x) compensates for the initial projectile velocity
vb, the low energy reaction a + x −→ c +C is induced at very low (even vanishing) relative energy
between a and x. Basically, this technique extends the method of transfer reactions to continuum
states. Very successful results using this technique have been reported [14, 15].

2.1.1 The Trojan Horse Method

The THM was successfully applied to study several two-body reactions relevant for astrophys-
ical applications by using appropriate three-body breakup reactions. The method has proven to be
particularly suited for acquiring information on charged- as well as neutral-particle-induced reac-
tion cross sections at astrophysical energies, since it allows the particles to overcome, in the case of
charged-particle-induced reactions, the Coulomb barrier of the two-body entrance channel. THM
allows one to extract the low-energy behavior of a binary reaction by applying the well-known the-
oretical formalism of the quasi-free (QF) process. The basic idea of the THM is to extract the cross
section in the low-energy region of a two-body reaction with significant astrophysical impact,

a + x −→ c +C, (2.1)

from a suitable three-body QF reaction,

a + b −→ s + c +C, (2.2)

An example of application of the THM is the S-factor for the 2H(d,p)3H reaction extracted through
3He breakup in the 2H(3He,pt)H reaction.

The assumption is that of an interaction between the impinging nucleus and one of the clusters
constituting the target (called participant x, a deuteron in the present case), while the residual nu-
cleus does not participate in the reaction (spectator s, 4He or p in the two different cases). The latter
is free from any effect due to the interaction between the incoming nucleus and the participants,
reflecting in the exit channel the same momentum distribution, for the inter-cluster (x− s) motion
inside b, it had before the occurrence of the QF breakup. QF processes are direct mechanisms in
which the interaction between an impinging nucleus and the target can cause the target breakup
or the projectile breakup. In particular, these processes have three particles in the exit channel,
one of which can be thought as a spectator to the binary interaction of interest. Under appropriate
kinematical conditions, the three-body reaction a(b,cC)s is considered as the decay of the Trojan
horse b into the clusters x and s followed by the interaction of a with x. If the bombarding energy
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Ea is chosen high enough to overcome the Coulomb barrier in the entrance channel of the reaction,
the effect of the Coulomb barrier and electron screening effects are negligible. The application of
the THM significantly simplifies if the PWIA is valid. In this approach the triple differential cross
section in the center of mass of the TH reaction can be written as

d3σ

dEcdΩcdΩC
∝ KF |Φ(psx)|2

∑
ll

∣∣∣Lll

∣∣∣2 ( dσll

dΩc.m.

)HOES

, (2.3)

where
(i) ll is the orbital angular momentum of particles s and x in the entry channel of the binary

subreaction and Lll is a function of relative momentum and kinetic energy in the entry channel of
the binary sub-reaction as defined in Ref. [16];

(ii) (dσ/dΩ)cm)HOES is the half-off-energy-shell (HOES) differential cross section for the two-
body reaction at the center-of-mass energy Ecm given in post-collision prescription by

Ecm = Ec−C −Q2b, (2.4)

where Q2b is the two-body Q-value of the binary process and Ec−C is the relative energy between
the outgoing particles;

(iii) KF is a kinematical factor containing the final-state phase-space factor and is a function
of the masses, momenta, and angles of the outgoing particles;

(iv) Φ(psx) is the Fourier transform of the radial wave function χ(r) for the x− s intercluster
motion, usually described in terms of Hänkel, Eckart, and Hulthën functions depending on the x− s
system properties.

The success of the THM relies on the QF kinematics (equivalent to Φ(psx) ∼ 0 for nuclei like
3He or 2H where the dominant wave of the inter-cluster relative motion is l = 0), at which the
TH conditions are best fulfilled. The occurrence of the QF mechanism at low energies has been
pointed out in a number of papers [17, 18, 19, 20]. The TH triple differential cross section can be
written in a factorized form, as in Eq. (2.3) in terms of the HOES differential cross section whose
energy trend is the relevant information for the THM. Its absolute value can be extracted through
normalization by the direct data available at higher energies. Thus, if the PWIA is valid, the HOES
differential cross section for the binary sub-reaction determined from the TH reaction should not
depend on the type of the TH nucleus, as was proven in Refs. [21] for the two examined cases (see
also, Fig. 2).

2.1.2 The ANC method

Another transfer method, coined as ANC technique [4, 23, 24] relies on fact that the amplitude
for the radiative capture cross section b + x −→ a +γ is given by

M =< Ia
bx(rbx)|O(rbx)|ψ(+)

i (rbx) >,

where
Ia
bx =< φa(ξb, ξx, rbx)|φx(ξx)φb(ξb) >

is the integration over the internal coordinates ξb, and ξx, of b and x, respectively. For low energies,
the overlap integral Ia

bx is dominated by contributions from large rbx. Thus, what matters for the

6
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Figure 2: Averaged astrophysical S(E)
factor for the d(d,p)t reaction measured
via THM after 6Li breakup (black dots)
and after 3He breakup(red points), ex-
tracted from Ref. [22], clearly showing
the Trojan horse particle invariance. The
polynomial fit to data from Ref. [22] is
reported for comparison as a solid line.

calculation of the matrix element M is the asymptotic value of Ia
bx ∼ Ca

bx W−ηa,1/2(2κbxrbx)/rbx,
where Ca

bx is the ANC and W is the Whittaker function. This coefficient is the product of the
spectroscopic factor and a normalization constant which depends on the details of the wave function
in the interior part of the potential. Thus, Ca

bx is the only unknown factor needed to calculate the
direct capture cross section. These normalization coefficients can be found from: 1) analysis of
classical nuclear reactions such as elastic scattering [by extrapolation of the experimental scattering
phase shifts to the bound state pole in the energy plane], or 2) peripheral transfer reactions whose
amplitudes contain the same overlap function as the amplitude of the corresponding astrophysical
radiative capture cross section. One of the many advantages of using transfer reaction techniques
over direct measurements is to avoid the treatment of the electron screening problem [14, 24].

2.2 Intermediate energy Coulomb excitation

The Coulomb excitation cross section is given by

dσi→ f

dΩ
=

(
dσ
dΩ

)
el

16π2Z2
2e2

h̄2

∑
πλµ

B(πλ, Ii→ I f )
(2λ+ 1)3 | S (πλ,µ) |2, (2.5)

where B(πλ, Ii → I f ) is the reduced transition probability of the projectile nucleus, πλ = E1, E2,
M1, . . . is the multipolarity of the excitation, and µ = −λ,−λ+ 1, . . . ,λ.

The relativistic corrections to the Rutherford formula for (dσ/dΩ)el (relevant for collisions at
50 MeV/nucleon and above) has been investigated in Ref. [25]. It was shown that the scattering
angle increases by up to 6% when relativistic corrections are included in nuclear collisions at 100
MeV/nucleon. The effect on the elastic scattering cross section is even more drastic: up to 13% for
center-of-mass scattering angles around 0-4 degrees.

The orbital integrals S (πλ,µ) contain the information about relativistic corrections. Inclu-
sion of absorption effects in S (πλ,µ) due to the imaginary part of an optical nucleus-nucleus
potential where worked out in Ref. [26]. These orbital integrals depend on the Lorentz factor
γ = (1− v2/c2)−1/2, with c being the speed of light, on the multipolarity πλµ, and on the adiabatic-
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ity parameter ξ(b) = ω f ib/γv < 1, where ω f i =
(
E f −Ei

)
/h̄ is the excitation energy (in units of h̄)

and b is the impact parameter.
Ref. [27] has shown that at 10 MeV/nucleon the relativistic corrections are important only at

the level of 1%. At 500 MeV/nucleon, the correct treatment of the recoil corrections is relevant
on the level of 1%. Thus the non-relativistic treatment of Coulomb excitation [28] can be safely
used for energies below about 10 MeV/nucleon and the relativistic treatment with a straight-line
trajectory [29] is adequate above about 500 MeV/nucleon. However at energies around 50 to 100
MeV/nucleon, accelerator energies common to most radioactive beam facilities, it is very important
to use a correct treatment of recoil and relativistic effects, both kinematically and dynamically. At
these energies, the corrections can add up to 50%. These effects were also shown in Ref. [30] for
the case of excitation of giant resonances in collisions at intermediate energies.

A reliable extraction of useful nuclear properties, like the electromagnetic response (B(E2)-
values, γ-ray angular distribution, etc.) from Coulomb excitation experiments at intermediate en-
ergies requires a proper treatment of special relativity [27, 31]. The dynamical relativistic effects
have often been neglected in the analysis of experiments elsewhere (see, e.g. [32]). The effect is
highly non-linear, i.e. a 10% increase in the velocity might lead to a 50% increase (or decrease)
of certain physical observables. A general review of the importance of the relativistic dynamical
effects in intermediate energy collisions has been presented in Ref. [2, 33].

2.3 The Coulomb dissociation method

The Coulomb dissociation method is quite simple. The (differential, or angle integrated)
Coulomb breakup cross section for a + A −→ b + c + A follows from Eq. 2.5. It can be rewrit-
ten as

dσπλC (ω)
dΩ

= Nπλ(ω;θ;φ) . σπλγ+a → b+c(ω), (2.6)

where ω is the energy transferred from the relative motion to the breakup, and σπλ
γ+a → b+c(ω) is the

photo nuclear cross section for the multipolarity πλ and photon energy ω. The function Nπλ, some-
times called virtual photon numbers, depends on ω, the relative motion energy, nuclear charges and
radii, and the scattering angle Ω = (θ,φ). Nπλ can be reliably calculated [34] for each multipolarity
πλ. Time reversal allows one to deduce the radiative capture cross section b + c −→ a + γ from
σπλ
γ+a → b+c(ω). This method was proposed in Ref. [35] and has been tested successfully in a num-

ber of reactions of interest for astrophysics. The most celebrated case is the reaction 7Be(p,γ)8B
[36], followed by numerous experiments in the last decade (see e.g. Ref. [37]).

Eq. 2.6 is based on first-order perturbation theory. It also assumes that the nuclear contribution
to the breakup is small, or that it can be separated under certain experimental conditions. The
contribution of the nuclear breakup has been examined by several authors (see, e.g. [38]). 8B has
a small proton separation energy (≈ 140 keV). For such loosely-bound systems it had been shown
that multiple-step, or higher-order effects, are important [39]. These effects occur by means of
continuum-continuum transitions. Detailed studies of dynamic contributions to the breakup were
explored in refs. [40, 41] and in several other publications which followed. The role of higher
multipolarities (e.g., E2 contributions [3, 42, 43] in the reaction 7Be(p,γ)8B) and the coupling to
high-lying states has also to be investigated carefully. It has also been shown that the influence of
giant resonance states is small [44].
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2.4 Knock-out reactions

The early interest in knockout reactions came from studies of nuclear halo states, for which
the narrow momentum distributions of the core fragments in a qualitative way revealed the large
spatial extension of the halo wave function. It was shown [45] that the longitudinal component of
the momentum (taken along the beam or z direction) gave the most accurate information on the
intrinsic properties of the halo and that it was insensitive to details of the collision and the size of
the target. In contrast to this, the transverse distributions of the core are significantly broadened by
diffractive effects and by Coulomb scattering. For experiments that observe the nucleon produced in
elastic breakup, the transverse momentum is entirely dominated by diffractive effects, as illustrated
[46] by the angular distribution of the neutrons from the reaction 9Be(11Be,10Be+n)X. In this case,
the width of the transverse momentum distribution reflects essentially the size of the target [47].

Figure 3: Total knockout cross sections for removing the
l = 0 halo neutron of 15C, bound by 1.218 MeV, in the re-
action 9Be(15C,14Cgs). The solid curve is obtained with
the use of free nucleon-nucleon cross sections. The dashed
curve includes the geometrical effects of Pauli blocking. The
dashed-dotted curve is the result using the Brueckner theory,
and the dotted curve is a phenomenological parametrization
[48].

To test the influence of the medium effects in nucleon knockout reactions, we consider the re-
moval of the l = 0 halo neutron of 15C, bound by 1.218 MeV. The reaction studied is 9Be(15C,14Cgs).
The total cross sections as a function of the bombarding energy are shown in figure 3. The solid
curve is obtained with the use of free nucleon-nucleon cross sections. The dashed curve includes
the geometrical effects of Pauli blocking. The dashed-dotted curve is the result using the Brueckner
theory, and the dotted curve is the phenomenological parametrization of the free cross section.

Figure 4: Longitudinal momentum distribution for the
residue in the 9Be(11Be,10Be), reaction at 250 MeV/nucleon.
The dashed curve is the cross section calculated using the
NN cross section from the Brueckner theory and the solid
curve is obtained the free cross section [48].

9
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Figure 5: The total reaction cross
section of the p + 12C taken from
Ref. [52]. The curves are calcu-
lated with the free NN cross sections
(solid), with a geometrical account of
Pauli blocking (dashed), a phenomeno-
logical fit from Ref. [53] (dotted),
and a correction from Brückner theory
(dashed-dotted). The triangle-dotted
curve is calculated with free NN cross
sections but with an another HFB cal-
culation [54] for the 12C ground state
density.

In figure 4 we plot the longitudinal momentum distributions for the reaction 9Be(11Be,10Be),
at 250 MeV/nucleon [48]. The dashed curve is the cross section calculated using the NN cross
section from the Brueckner theory and the solid curve is obtained the free cross section. One sees
that the momentum distributions are reduced by 10%, about the same as the total cross sections,
but the shape remains basically unaltered. If one rescales the dashed curve to match the solid one,
the differences in the width are not visible [49].

As we mentioned above, medium effects have been routinely neglected in the experimental
analysis of knockout reactions. But their relevance has been known for a long time in the analysis
of elastic and inelastic scattering, as well as of total reaction cross sections [50, 51]. The effects are
larger at lower bombarding energies, where Pauli blocking strongly reduces the nucleon-nucleon
cross sections in the medium. A systematic study of these effects has been presented in Ref. [51].

To corroborate these statements, in figure 5 we show the data on p + 12C reaction cross sections
taken from the Ref. [52] in the energy region of our interest, 20-100 MeV/nucleon. The cross
sections were calculated from the relation

σR = 2π
∫

db b
[
1− |S (b)|2

]
, (2.7)

where S (b) has been calculated using an eikonal model [49] and the carbon matter density from a
Hartree-Fock-Bogoliubov calculation [54]. Several distinct calculations are shown. The solid curve
uses the free nucleon-nucleon cross sections and the carbon matter density from a HFB calculation
[55], whereas the triangle-dotted curve (the triangles are not data, but used for better visibility) uses
a different HFB density [54], consistent with the calculations presented in Ref. [56]. As expected,
the agreement between the two calculations is very good.

The other curves in figure 5 show the same calculation procedure, but including medium cor-
rections for the nucleon-nucleon cross section. The results are evidently very different than the
previous ones. The dotted (dashed-dotted) [dashed] curves use phenomenological (Brueckner)
[Pauli geometrical] recipes for medium effects on the cross sections. Based on the large error bars
and spread of the experimental data, it is hard to judge what model adopted for medium corrections
yields the best agreement with the data. It is clear that the inclusion of medium effects change the
results to yield a closer reproduction of the data.

10
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Figure 6: Two-nucleus system con-
taining rest target and boosted projec-
tile with the velocity v. The ellipse rep-
resents the boosted projectile density as
seen from the target reference frame.
R and b denote the distance and im-
pact parameter between two nuclei in
the target reference frame.

3. The nucleus-nucleus interaction between boosted nuclei

A consistent theoretical treatment of relativistic many-body systems is still a challenge in many
areas of physics. The effects of the Dirac sea imply corrections due to vacuum fluctuations and
other features of quantum field theory may also become manifest. An important aspect of special
relativity, namely causality, is only verified if sea effects are properly incorporated. Unfortunately,
up to now it is proved to be very difficult to find unambiguous experimental evidence for such
effects. That might not be the case for static properties of nuclear matter for which a successful
project carried out during many years has shown that nuclear energies for the ground and lower
excited states of nuclei are well described by a relativistic mean-field treatment of the collection of
nucleons [58, 59, 60, 61, 62, 63].

Almost nothing has been done to understand the rather relevant problem of the influence of
relativity on many-body scattering. Usually, this is accounted quite straightforwardly in quantum
field theory for two-body scattering including the sea effects with help of perturbation theory. But
the scattering of relativistic composite objects where the compositeness becomes an active part of
the scattering process is still a very difficult theoretical problem. This is an obviously important
problem in nuclear physics, due to an inherent theoretical difficulty in defining a nuclear potential
between many-body relativistic systems. Nonetheless, nuclear potentials are often used in the anal-
ysis of nucleus-nucleus scattering at energies of 100 MeV/nucleon and higher. In fact, many rare
isotope facilities use reactions at these energies in which relativistic effects are expected to be of
the order of 10% or more for some processes of interest [2, 64, 65]. For proton-nucleus scattering a
successful approach, known as “Dirac phenomenology”, has been use for many years [66]. But for
nucleus-nucleus collisions a reasonable account of these features has not yet been accomplished.
Due to retardation, an attempt to use a microscopic description for nucleus-nucleus potentials start-
ing from binary collisions of the constituents is not possible as a nucleus-nucleus potential requires
a simultaneous interaction between all constituents. In the case of nucleus-nucleus collisions a
similar approach as in the Dirac-phenomenology case can be followed up by using a mean field
theory.

The nucleus-nucleus potential used in the analysis of elastic scattering experiments is a very
complex object which contains information about all possible inelastic processes. The presence
of inelastic channels lead to, among other things, the introduction of an imaginary part for the
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nucleus-nucleus potential. This potential is usually termed “optical potential". Although several
microscopic models have been developed to calculate the optical potential, due to its complexity,
it is often parametrized by a set of phenomenological functions depending on the distance between
the center of mass of the interacting nuclei. The parameters set (often with ambiguities) is ob-
tained by fitting elastic scattering data whenever available. Needless to say that for many systems
(e.g. most reactions with radioactive beams) the elastic scattering data are unavailable and one
has to resort to theoretical constructions of the optical potential. A popular method is to build a
folding potential in which the real part of the optical potential is obtained from an integral over
the nucleon-nucleon densities weighted by their individual (sometimes density dependent) inter-
actions. The nuclear densities are taken as frozen, with all nucleons interacting simultaneously.
A method to deduce the magnitude of the effects of relativity in nucleus-nucleus interactions pre-
sented in Refs. [2, 64, 65] where the nucleus-nucleus potential for a relativistic projectile was
modified in a similar way as the scalar part of the electromagnetic interaction. This procedure has
shown that relativistic corrections lead to appreciable changes of inelastic processes involving 100
MeV/nucleon projectiles. A microscopic theory to describe the covariant properties of the nuclear
potential was later developed [57]. We briefly describe its main results.

3.1 Energy density functional for two colliding nuclei

Based on the meson exchange theory, finite nuclear systems can be well described by an energy
density functional within the relativistic mean field approach [58, 59]. In the mean field approach,
the nucleons are treated as point-like particles interacting by the exchange of mesons and photons.
The energy functional [59, 60, 61, 62, 63] for a single nucleus, associated with σ-, ω-, ρ-mesons
and photon (A) exchange, is given by (h̄ = c = 1)

E =

∫
dr

∑
a

ψ̄a (−iγ ·∇+ M)ψa +
1
2

∑
φ=σ,ω,ρ,A

∫
drdr′

∑
ab

ψ̄a(r)ψ̄b(r′)Γφ(r,r′)Dφ(r−r′)ψb(r′)ψa(r),

(3.1)
where the two-body interacting matrices read as

Γσ(r,r′) = −gσ(r)gσ(r′), (3.2)

Γω(r,r′) = + (gωγµ)r
(
gωγµ

)
r′
, (3.3)

Γρ(r,r′) = +
(
gργµτ

)
r
·
(
gργµτ

)
r′
, (3.4)

ΓA(r,r′) = + e2

4
[
γµ (1−τz)

]
r

[
γµ (1−τz)

]
r′
. (3.5)

In the energy functional (3.1), ψa denotes stationary single particle states, M is the rest mass of
nucleon, and gσ, gω, and gρ are the coupling constants with baryonic density dependence. The
propagators of mesons (φ = σ, ω, and ρ and mφ for the meson mass) and photon (A) are given by

Dφ =
1

4π
emφ |r− r′|
|r− r′|

, DA =
1

|r− r′|
. (3.6)

Based on the energy functional (3.1), the single particle configurations (ψa) can be obtained from a
self-consistent iterative procedure, aiming at describing the physical properties for the ground state
of the nucleus such as binding energy, radii, density distributions, etc. [59, 60, 61, 62, 63].
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The relativistic energy functional (3.1) described above for a single nucleus can be also ex-
tended to describe the interaction between two nuclei, i.e., the interaction between a target and a
boosted projectile. Here we only consider same target and projectile nuclei. As shown in figure 6,
the two-nucleus system consists of a target and a projectile with velocity v, separated by a distance
R. For simplicity, we assume straight-line dynamics, appropriated for high-energy collisions. A
given point in space is denoted by rt = (xt,yt,zt) in the frame of reference of the target with respect
to its center of mass. For a collision with impact parameter b this point can be related to its coor-
dinate rp = (xp,yp,zp) in the frame of reference of the projectile by means of a Lienard-Wiechert
transformation. If v is taken as the z axis, this transformation reads

xp = xt + b, xt = xp−b,

yp = yt, yt = yp,

zp = γ(zt + Rcosθ), zt = γ(zp−Rcosθ), (3.7)

where the impact parameter is related to the relative distance between the center of mass of the
nuclei by b = Rsinθ. The Lorentz factor is γ = (1−β2)−1/2 and β = v/c.

Figure 7: The interaction potentials
(MeV) as functions of the distance R
(fm) between rest target and boosted
projectile nuclei for impact parameter
b = 0 fm and different values of γ. The
inset presents the potentials from R =5
fm to 10 fm with an enlarged scale.

The total energy functional for two-nucleus system shown in figure 6 is given by

E(At,Ap,v) = E(At) + E(Ap,v) +E(At,Ap,v), (3.8)

where E(At) and E(Ap,v) denote respectively the target (with mass number At) and the projectile
(with mass number Ap) energy functional, and E(At,Ap,v) represents the interacting potential en-
ergy. For the isolated target and projectile, the energy functional E(At) and E(Ap,v) = E(Ap) can
be determined from Eq. (3.1). Similar as the second term in right hand of Eq. (3.1), the interacting
one E(At,Ap,v) can be obtained as

E(At,Ap,v) =
∑

φ=σ,ω,ρ,A

∫
dr

∫
dr′

∑
ab

ψ̄t,a(r)ψ̄p,b(r′)Γφ(r,r′)Dφ(r− r′)ψp,b(r′)ψt,a(r), (3.9)

where the integral over r and r′ are done within the same reference frame, e.g., the target inertial
frame. The single particle configurations ψt,a and ψp,b (subindex t for target and p for projectile) can
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be determined from the individual self-consistent calculations in the target and projectile frames,
respectively. Because the collisions are fast, we adopt a frozen configuration scheme in which the
rearrangement effects from the nucleus-nucleus interaction are neglected in determining the single
configurations of each nucleus.

Taking σ and ω as example, the corresponding contributions in Eq. (3.9) can be written as,

Eσ = − 1
γ

∫
drt

∫
dr′pgσ(rt)ρs,t(rt)Dσ(rt − r′t)ρs,p(r′p)gσ(r′p), (3.10)

Eω = +
∫

drt
∫

dr′pgω(rt)ρb,t(rt)Dω(rt − r′t)ρb,p(r′p)gω(r′p). (3.11)

The scalar and baryonic densities ρs and ρb can be obtained as

ρs(r) =
∑

a ψ̄a(r)ψa(r), ρb(r) =
∑

a

ψ̄a(r)γ0ψa(r), (3.12)

where the sums are restricted within one nucleus.
In the interacting energy functional (3.9), there exist two types of couplings, the scalar (σ)

and the vectors (ω, ρ, and A). For a straight-line motion, the Lorentz boots are:
{
ρb,p(rp),0

}
→{

γρb,p(rp),γρb,p(rp)β
}
. The scalar coupling remains invariant under the Lorentz transformations

because dr′t = dr′p/γ and the Lorentz contraction of the longitudinal distance cancels out the Lorentz
enhancement of the field. This contrasts with the vector coupling channels where the Lorentz
transformation leads to a strong dependence on the projectile velocity.

In energy functional (3.9), the coupling constants are functions of density ρv =
√

jµ jµ and
jµ = ψ̄tγψ

µ
t + ψ̄pγ

µψp, and the Lorentz transformation from the target to projectile, and the reverse,
leads to

ρv(rt) =
√
ρ2

b,t(rt) + 2γρb,t(rt)ρb,p(rp) +ρ2
b,p(rp), (3.13)

ρv(rp) =
√
ρ2

b,t(rt) + 2γρb,t(rt)ρb,p(rp) +ρ2
b,p(rp). (3.14)

The method described above allows us to calculate the interaction potential of the two nuclei in
terms of the single-particle states calculated within a relativistic mean field theory. In practice, the
calculations are very complicated because the advantage of treating wavefunctions and densities
in terms of angular momentum expansions in spherical basis is lost. Due to Eq. 3.7, the boosted
quantities also include Lorentz γ factors within the polar angles of the single-particle states for the
projectile rendering a very complicated description of their radial and angular dependence.

3.2 The boosted nucleus-nucleus potential

We take 12C-12C as a typical example of a two-nucleus system in figure 6 and study the
nucleus-nucleus interacting potential energy according to the method described above. In the first
step, each nucleus is treated in their reference frame independently to obtain the single particle
configurations, from which the nucleus-nucleus interacting potential energy is determined via Eq.
(3.9). The effective interaction PKDD [68] is utilized to determine the single particle configurations
as well as the nucleus-nucleus potential.

In figure 7 we show the nucleus-nucleus potential energies V(R) = E [see Eq. (3.9)] as a
function of the distance R for different values of Lorentz factor γ. The impact parameter is set as b =

14



P
o
S
(
B
o
r
m
i
o
 
2
0
1
3
)
0
4
1

Direct Reactions for Nuclear Astrophysics C.A. Bertulani

Figure 8: Contributions to the interaction potentials from the ω (a), σ (b), Coulomb (c), and ρ (d) fields are
shown as functions of distance R (fm) with different values of γ for the same two-nucleus system shown in
the previous figure. The insets show the details from R = 5 fm to 10 fm with enlarged scales.

0 fm, and only the surface part of the potential has any useful application. The inset gives the results
from R = 5 to 10 fm with enlarged scale. The nucleus-nucleus potential gets contributions from
different fields at different times. First the nuclei approach from a fairly large distance, there exist
very little overlap between the target and projectile densities and the potential is mainly contributed
by the long range interaction – the photon field (A), which yields the Coulomb barrier. As the
distance decreases to, e.g., R ∼ 7.5 fm for γ = 1.0, the densities start to overlap and the nucleus-
nucleus potential bend toward a negative value. This is due the contribution of the meson fields
leading to attraction. When R ≤ 5 fm, the nucleus-nucleus potential have only net attractions. For
the chosen nucleus 12C, the self-consistent calculation with PKDD gives the neutron, proton and
total radii, respectively, as rn = 2.26 fm, rp = 2.28 fm, and r = 2.27 fm. These values (multiplied
by 2) are consistent with the evolution of the nucleus-nucleus potential with respect to separation
distance R, as seen in figure 7.

The nucleus-nucleus potentials shown in figure 7 also display a systematical behavior with
respect to the Lorentz factor γ which represents the boosted energy of the projectile, roughly (γ−
1)M per nucleon. With increasing bombarding energy, the nucleus-nucleus potential well becomes
shallower, as seen in figure 7. The point where the potential becomes attractive does not change
appreciably with the bombarding energy. But, as shown in the inset, the potential barrier does have
a strong dependence on the bombarding energy. This hints to a destructive additional (because of
the boost) cancellation between the attractive meson fields and the repulsive photon field. These
additional cancellations also tend to lead to a shallower potential. The filled circles in the inset
show the tendency of this effect to stretch the nucleus-nucleus potential outwards as the energy
increases.

In order to have better understanding about the systematics of the nucleus-nucleus potentials,
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we show in figure 8 the detailed contributions from four coupling channels, (a) ω-vector, (b) σ-
scalar, (c) Coulomb vector, and (d) ρ-vector couplings. The corresponding insets present the results
from R = 5 to 10 fm with enlarged scales. In figure 8 (d), it is clearly seen that the contribution from
the ρ field is very tiny since in 12C the nucleons are isospin saturated. Among the contributions to
the nucleus-nucleus potential, the attraction mainly originates from the σ scalar coupling, whereas
the repulsion is mainly due to the ω and Coulomb fields. Starting from a fairly large separation
distance, the sole contribution is the photon field which yields an increasing Coulomb repulsion. At
R ∼ 10 fm the σ and ω fields start to act with distinct contributions to turn the Coulomb repulsion
into nuclear attraction. From figure 8(a) and (b), one sees that the ω and σ contributions increase
rapidly when the target and projectile approach. This is mainly due to the short range character of
the meson exchange interaction.

Figure 9: The nucleus-nucleus interaction potentials (in MeV) are shown as function of the distance R
between the target and projectile nuclei for different values of γ [(a) γ = 1.0; (b) γ = 1.1; (c) γ = 1.3; and (d)
γ = 1.6] and different impact paramters b (fm). The insets show the results from R = 3.5 fm to 8 fm with
enlarged scales.

As seen from the inset of figure 8 (c), the photon field has a rather weak dependence on the
boosted energy whereas a stronger dependence is found from the contributions from σ and ω fields.
As shown in the insets of figure 8 (a) and (b), the repulsive (ω field) and attractive (σ field) increase
with the boosted energy considerably. When the target and projectile approach a close distance,
the curves with different bombarding energies tend to cross each another at some point, denoted
by red circles in figure 8. In fact these are turning points, where the trend of the bombarding
energy dependence is just reversed. Similar turning points can be also found in figure 7, where the
nucleus-nucleus potential becomes attractive.

In figures 7 and 8, the impact parameter b is set to zero. In figure 9 we show the nucleus-
nucleus potential as a function of the separation distance R with the impact parameter b = 0,1,2,3,
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and 4 fm. For comparison, the results with four bombarding energies are shown in figure 9, (a)
γ = 0, (b) γ = 1.1, (c) γ = 1.3, and (d) γ = 1.6. As seen from figure 9 (a) and (b), the nucleus-nucleus
potentials with lower bombarding energy are not sensitive to the impact parameter. With increasing
bombarding energy, the potentials show a strong dependence on the impact parameter. As shown
in figure 9 (c) and (d), the slope of the nucleus-nucleus potential at large distances becomes smaller
with increasing impact parameter. It is also demonstrated by the insets in figure 9.

In order to asses the relativistic modifications of the nucleus-nucleus potential on scattering
observables, we consider the elastic scattering cross section of spherically symmetric nuclei. Our
results for 12C+12C scattering are compared to experimental data at bombarding energies of 85
MeV/nucleon 200 MeV/nucleon in figure 10 (solid lines) [69]. We compare the cross sections
with those calculated with non-relativistic dynamics are shown in figure 10 by dashed lines. WE
assume an imaginary part of the optical potential having the same form as the real part, with a
scaling parameter λ, which is set to 0.5 (0.4) for the bombarding energy of 85 (200) Mev per
nucleon. One observes that the minima of the elastic cross sections are shifted to smaller values
of the scattering angle. This is due to the smaller effective radius of the nucleus-nucleus potential
when relativistic effects are included, as observed in figures 7-9. For a discussion of the effects
of size and diffuseness of optical potentials on scattering observables, see, e.g., Ref. [70]. The
diffuseness of the potentials also increases with the inclusion of relativistic effects. This is shown
manifest in figure 10 by a (slightly) faster decrease of the cross section as a function of angle. We
also notice that the relativistic effects become more pronounced at larger bombarding energies, as
expected.
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Figure 10: Elastic cross sections
dσ/dΩ = | f (ϑ)|2 in units of Ruther-
ford cross sections | fRuth.(ϑ)|2 as func-
tions of the scattering angle ϑ, with
different values of Lorentz factor γ.
The dashed lines represent the results
with non-relativistic reduction.

4. Conclusions

There were many questions not addressed in this review, such as the role of central nucleus-
nucleus collisions in determining phase transition, equation of state, and a quark-gluon plasma,
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all topics or relevance in astrophysics. The review was more focused on the role of short-lived,
exotic nuclei. There are many important scientific questions to be addressed both experimentally
and theoretically in nuclear physics of exotic nuclei with relevance for astrophysics. These ques-
tions provide extreme challenges for experiments and theory. On the experimental side, producing
the beams of radioactive nuclei needed to address the scientific questions has been an enormous
challenge. Pioneering experiments have established the techniques and present-generation facili-
ties have produced first exciting science results, but the field is still at the beginning of an era of
discovery and exploration that will be fully underway once the range of next- generation facilities
becomes operational. The theoretical challenges relate to wide variations in nuclear composition
and rearrangements of the bound and continuum structure, sometimes involving near-degeneracy
of the bound and continuum states. The extraction of reliable information from experiments re-
quires a solid understanding of the reaction process, in addition to the structure of the nucleus. In
astrophysics, new observations, for example the expected onset of data on stellar abundances, will
require rare-isotope science for their interpretation.

One of the big challenges is the investigation of relativistic effects in nucleus-nucleus po-
tentials. We have shown here an example, based on the relativistic mean field theory [57]. The
relativistic effects have been studied by analyzing the dependence of the potentials upon bombard-
ing energies and impact parameters. It is found that for a given impact parameter the Coulomb
barrier is softened with increasing bombarding energy. For large bombarding energies, the po-
tential edge becomes increasingly flat with increasing impact parameters which indicates that the
target and projectile have to get closer to compensate for more attraction. We used the relativistic
corrected potentials in the analysis of elastic scattering of 12C+12C at bombarding energies of 85
MeV/nucleon 200 MeV/nucleon. The imaginary part of the optical potential was assumed to have
the same form as the real part, with a scaling factor. Although not perfect, the agreement is rather
reasonable in view of the simplifications adopted to obtain the optical potential.

The studies carried out here are exploratory in the sense that a consistent theory of a nucleus-
nucleus potential including relativity requires a much more elaborated effort. Such a theory is in
fact missing in the literature. To be consistent, this theory would have to include other effects
such as exchange terms, which are missing in our calculation, or the effects of multiple scattering
which should also become relevant at increasing energies. Both mentioned effects are challenging:
(a) the first involves the calculation of complex multidimensional integrals and (b) the second
involves handling retardation effects in multiple, sequential, collisions. Many of nucleus-nucleus
experiments at energies of 100 MeV/nucleon and above are presently been carried out around
the world with the goal to extract spectroscopic information on rare nuclear species [70]. Our
work shows that some modifications on the values of the extracted spectroscopic quantities might
occur due to the relativistic dynamics missing in most methods used to construct a nucleus-nucleus
potential, such as the folding models. An accurate assessment of such modifications is worthwhile
to pursue.

References

[1] L.F. Canto, P.R.S. Gomes, R. Donangelo, M.S. Hussein, Phys. Rep. 424, 1 (2006).

[2] C.A.Bertulani, Phys. Rev. Lett. 94, 072701 (2005).

18



P
o
S
(
B
o
r
m
i
o
 
2
0
1
3
)
0
4
1

Direct Reactions for Nuclear Astrophysics C.A. Bertulani

[3] C.A. Bertulani, Phys. Rev. C49 (1994) 2688; Nucl. Phys. A587 (1995) 318; Z. Phys. A356 (1996)
293.

[4] A.M. Mukhamedzhanov and N.K. Timofeyuk, JETP Lett. 51, 282 (1990).

[5] Y.C. Tang, M. LeMere and D.R. Thompsom, Phys. Rep. 47, 167 (1978).

[6] Sofia Quaglioni and Petr Navrátil, Phys. Rev. Lett. 101, 092501 (2008).

[7] C.A. Bertulani, Rev. Mex. Phys. 53, 11 (2008).

[8] P. Navrátil, C.A. Bertulani, and E. Caurier, Phys. Lett. B 634 (2006) 191; Phys. Rev. C 73 (2006)
065801.

[9] Petr Navratil, Robert Roth, Sofia Quaglioni, Ab initio many-body calculation of the 7Be(p,gamma)8B
radiative capture, arXiv:1105.5977.

[10] B. K. Jennings, S. Karataglidis, and T. D. Shoppa, Phys. Rev. C 58, 579 (1998).

[11] R. D. Williams and S. E. Koonin, Phys. Rev. C 23, 2773 (1981).

[12] E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011).

[13] G. Baur, Phys. Let. B178 (1986) 135.

[14] M. La Cognata et al., Phys. Rev. C 76, 065804 (2007).

[15] R.G. Pizzone et al, Few-Body Systems 50, 319 (2011).

[16] A. M. Mukhamedzhanov (unpublished).

[17] S. Cherubini et al., Astrophys. J. 457, 855 (1996).
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