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1. Introduction

Describing strong interactions in hadronic reactions and decays is an open challenge in hadron
physics. Due to the running coupling strength in QCD, perturbation theory cannot be used for low-
energy hadron physics. Instead, effective theories can be used which include hadrons instead of
quarks and gluons as relevant degrees of freedom. For the energy regime of the pseudoscalar octet,
pions, kaons and η-meson, the dynamics in the threshold region can be successfully described by
chiral perturbation theory (ChPT) [1, 2]. ChPT is not applicable to describe dynamics in the energy
range of the hadronic resonances ρ-, ω-, K∗-, φ - and η ′-meson since these particles are treated as
heavy.

Electromagnetic reactions of hadrons can be described efficiently with dynamical vector me-
son degrees of freedom according to the vector-meson-dominance conjecture [3]. Many reactions
are phenomenologically successfully described by the standard vector-meson-dominance model
(VMD) but a consistent picture cannot be generated within this model. VMD fails, e.g., to describe
the ω-π0-transition form factor, i.e. the transition form factor for the decay of an ω-meson into a
neutral pion and a dilepton [4]. Such transition form factors will be studied in the following using
an effective Lagrangian with explicit vector-meson fields [5].

In [6, 5], a counting scheme was proposed which treats both the low-lying pseudoscalar and
vector mesons as soft, i.e. of the order of a typical momentum Q. Hence, the counting rules are
given as

mP, mV ∼ Q, Dµ ∼ Q (1.1)

for masses of pseudoscalar and vector mesons, mP and mV , respectively, and a covariant derivative
Dµ . According to the hadrongenesis conjecture all other genuine quark-antiquark states are much
higher in mass as schematically displayed in Fig. 1. This mass gap quantified by Λhard provides a
dimensionless expansion parameter Q/Λhard. All other observed low-lying mesons are dynamically
generated from interactions of low-lying pseudoscalar and vector mesons [6, 7, 8, 9, 10, 5] which
justifies the restriction to pseudoscalar and vector mesons as the only relevant degrees of freedom.

2. Leading-order Lagrangian

Accoring to the counting scheme (1.1), the leading-order Lagrangian relevant for the decays
V → Pγ∗ and P→V γ∗ of a vector meson V and a pseudoscalar meson P, respectively, is given by

L = − hA

16 f
ε

µναβ tr
{[

Φµν ,∂
τ
Φτα

]
+

∂β Φ

}
− bA

8 f
ε

µναβ tr
{

Φµν [Φ,χ0]+ Φαβ

}
− m2

V hH

4 fH
ε

µναβ tr
{

ΦµνΦαβ

}
η̃1 − e fV tr{ΦµνQ}∂µAν

+
e fV eH

fH
ε

µναβ tr
{

ΦµνQ
}

∂αAβ η̃1 . (2.1)
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Figure 1: The meson spectrum of QCD in the limit of a large number of colors Nc as conjectured in the
hadrongenesis picture.

Hereby, the matrix Φµν describes the vector-meson nonet represented by antisymmetric tensor
fields and Φ the pseudoscalar nonet,

Φµν =

ρ0
µν +ωµν

√
2ρ+

µν

√
2K+

µν√
2ρ−µν −ρ0

µν +ωµν

√
2K0

µν√
2K−µν

√
2K̄0

µν

√
2φµν

 , (2.2)

Φ =


π0 + 1√

3
η8

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8

√
2K0

√
2K−

√
2K̄0 − 2√

3
η8

+ η̃1
f

fH

√
2
3

I3×3 . (2.3)

Furthermore, χ0 = diag
(
m2

π ,m
2
π ,2m2

K−m2
π

)
denotes the mass matrix, Q= diag(2/3,−1/3,−1/3)

the quark-charge matrix and Aµ the photon field. The pion decay constant is given as f = 90 MeV,
the vector-meson decay constant as fV = 140 MeV, the generic vector-meson mass as mV = 764
MeV and the positron charge as e = α/(4π) = 0.303.

The Lagrangian (2.1) allows only the η̃1-state to couple directly to a vector meson and a
photon, i.e. there exists only a η̃1−V − γ vertex described by the last term proportional to the
parameter eH and no P−V − γ vertex for any other pseudoscalar meson P. Therefore, only the
decays V → η̃1γ(∗) (see left-hand side in Fig. 2) and η̃1→V γ(∗) can happen directly. Decays with
an arbitrary pseudoscalar (including the η̃1-state) as, e.g., V → Pγ(∗) (see right-hand side in Fig. 2)
can happen via a virtual vector meson, i.e. such decays consist of a P−V −V ∗ vertex described by
the first three terms in (2.1) proportional to hA, bA and hH and a V ∗− γ(∗) vertex described by the
term proportional to e fV . The decay of a virtual photon into a dilepton is described by usual QED.

The pseudoscalar nonet Φ in (2.1) includes the non-physical singlet state η̃1 and octet state η8.
Therewith, the physical fields η- and η ′-meson are defined as linear combinations of the η̃1- and
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γ(∗)

η̃1

V

γ(∗)

P

V

V ∗

Figure 2: Feynman diagrams for the direct decay V → η̃1γ(∗) (left) and the indirect decay V → Pγ(∗) via a
virtual vector meson V ∗ for an arbitrary pseudoscalar meson P (right).

η8-state with a to be determined mixing angle θ ,

η = −η̃1 sinθ +η8 cosθ ,

η
′ = η̃1 cosθ +η8 sinθ . (2.4)

Since the physical fields are defined as non-mixing, the leading-order mass and kinetic terms for
pseudoscalar mesons [5] can be used to determine the mixing angle,

cos(2θ) =
m2

η ′+m2
η − 2

3

(
4m2

K−m2
π

)
m2

η ′−m2
η

, (2.5)

yielding θ = −10.7◦. Alternatively, one can use this to calculate the η ′- and η-meson mass as
functions of the mixing angle, the experimental pion and kaon masses and the combination m2

η ′ +

m2
η of the experimental η- and η ′-masses. For |θ | ≤ 15◦, the discrepancy between theoretical and

experimental masses are less than 5% (see Fig. 3). Therefore, the mixing angle θ is used as an
additional open parameter.

0.95

1.00

1.05

-15° -10° -5° 0° 5°
θ

mtheo / mexp

η
η’

Figure 3: Ratio mtheo/mexp calculated with the relation (2.5) and the experimental values for the pion mass,
the kaon mass and the mass combination m2

η ′ +m2
η .
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3. Parameter determination

The Lagrangian (2.1) has six open parameters, hA, bA, hH , eH , fH and (implicitly) the η-η ′

mixing angle θ . All parameters except fH can be determined from the five two-body decays

ω → π
0
γ, ω → ηγ, φ → ηγ, φ → η

′
γ, η

′→ ωγ .

Since the decay width depends only on the squared matrix element, the experimental values can still
be described by four different parameter sets after fixing the parameter hA to be positiv. From those
parameter sets, two sets with “resonable” parameters compared to previous calculations without
the η ′-meson [6, 11, 12] are chosen,

θ = ±2.0◦ ,

hA = 2.33 ,

bA = 0.16 ,

hH = 0.14∓0.19 fH/ f ,

eH = −0.20∓0.70 fH/ f . (3.1)

Note that only the mixing angle θ and the parameters hH and eH corresponding to the terms with
explicit η̃1-fields in the Lagrangian depend on the parameter set. The still open parameter fH will
be varied between the pion decay constant f and

√
2 f ≈ fV . In the following, the parameter sets

will be identified via the sign of the mixing angle.
For decays into dileptons, no additional parameters are needed and, therefore, one has predic-

tive power.

4. Results

4.1 Decay ω → π0l+l−

Due to isospin conservation, the decay ω → π0l+l− is only possible via a virtual ρ0-meson.
Therefore, the standard VMD form factor is given by

FVMD
ωπ0 (q) =

m2
ρ

m2
ρ −q2 (4.1)

with the invariant dilepton mass |q|. Our calculations using the Lagrangian (2.1) yield an additional
constant term compared to VMD,

Fωπ0(q)∼ hA +
−
(

m2
ω +m2

ρ

)
hA +8bAm2

π

m2
ρ −q2 (4.2)

whereby the proportionality factor is fixed according to the normalization condition Fωπ0(0) = 1.
On the left-hand side of Fig. 4, the ω-π0 transition form factor (4.2) is plotted in comparison to
the VMD prediction and data taken by the NA60 collaboration [4]. As already mentioned in the
introduction, the VMD prediction fails to describe the data. Our calculation describes the data very

5



P
o
S
(
B
o
r
m
i
o
 
2
0
1
3
)
0
4
6

Dynamics of the low-lying pseudoscalar and vector mesons C. Terschlüsen

well and misses only the last three data points. This is supported by a smaller reduced χ2 for the
single-differential decay width calculated with (4.2),

χ
2
our theo./N = 1.8 , χ

2
VMD/N = 4.8 . (4.3)

100
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q [GeV]
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0.00 0.05 0.10 0.15

q [GeV]

|Fη’ω|2

θ = − 2°
θ = + 2°
VMD

Figure 4: Left: Normalized form factor for the decay ω→ π0l+l− given by (4.2) (solid red line) in compar-
ison to the VMD prediction (dashed blue line) and data taken by the NA60 collaboration for the decay into
dimuons [4]. Right: Normalized form factor for the decay η ′→ ωe+e− given by (4.5) with fH ∈ [ f ,

√
2 f ]

(red / black for θ =−2◦/+2◦) in comparison to the VMD prediction (dashed blue line).

In addition, the calculated decay widths for both the decay into a dimuon and into a dielectron
agree very well with the experimental values,

Γω→π0µ+µ− = (9.74±0.30) ·10−7 GeV ,

Γ
exp
ω→π0µ+µ− = (11.04±3.40) ·10−7 GeV ,

Γω→π0e+e− = (6.85±0.21) ·10−6 GeV ,

Γ
exp
ω→π0e+e− = (6.54±0.51) ·10−6 GeV . (4.4)

For an alternative calculation of the transition form factors ω/φ → π0l+l− see [13].

4.2 Decay η ′→ ωe+e−

The decay η ′→ ωe+e− can happen both directly (eH term) or via a virtual ω-meson. Addi-
tionally, one has to take η-η ′ mixing into account yielding the form factor

Fωη ′ ∼ f̂η8ω sinθ +
f

fH
f̂η1ω cosθ . (4.5)
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The form factors for the formal decays of the octet and singlet states include again an additional
constant term,

f̂η8ω(q) ∼ hA +
−2m2

ωhA +8m2
πbA

m2
ω −q2 ,

f̂η1ω(q) ∼
√

2

{
hA−2

√
6eH +

−2m2
ωhA +8m2

πbA +4
√

6m2
V hH

m2
ω −q2

}
, (4.6)

compared to the VMD prediction,

FVMD
η ′ω (q) =

m2
ω

m2
ω −q2 . (4.7)

The η ′-ω transition form factor is plotted on the right-hand side of Fig. 4 in comparison to the
VMD prediction. Here, a clear deviation between the calculations with the two parameter sets
for θ = ±2◦ and an uncertainty caused by the range of fH can be observed. Nevertheless, for all
calculations our results are (clearly) distinguishable from the VMD prediction.

Unfortunately, there is no experimental data for the decay η ′→ ωe+e− available which could
be used to determine the sign of the mixing angle and to restrict the range for fH . We predict a
branching ratio of

BRη ′→ωe+e− = (1.69±0.56) ·10−4 . (4.8)

5. Summary

We applied a new counting scheme which treats both the low-lying pseudoscalar and vector
mesons on the same footing to study the leading-order transition form factors of the transitions ω-
π0 and η ′-ω . The partial decays widths in leading order for the decay of an ω-meson into a neutral
pion and both a dimuon and a dielectron are in good agreement with the experimental data. The
available experimental data for the ω-π0-transition form factor is much better described with our
approach than with standard VMD. Additionally, we predicted the leading-order branching ratio
for the decay η ′ → ωe+e−. Note that the decays presented here are only examples, the decays
ω → η l+l−, φ → η l+l− and φ → η ′e+e− have been calculated in [5].
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