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1. Introduction

After decades of theoretical and experimental studies, recent papers have published what can
be considered a quantitative, credible liquid-vapor phase diagram of nuclear matter containing the
coexistence line up to the critical temperature [1, 2]. Somewhat unexpectedly, this diagram has not
been obtained through the study of caloric curves [3, 4] or anomalous heat capacities [5, 6], but
rather through the fitting of the charge distributions in multifragmentation by means of a Coulomb-
corrected Fisher’s formula [1, 7] giving the cluster composition of a vapor:

nA(T ) = q0A−τ exp
[

∆µA
T
− c0εAσ

T

]
, (1.1)

where q0 is a normalization constant [7]; τ is the critical exponent giving rise to a power law
at criticality; A is the cluster number; ∆µ is the difference of chemical potentials between the
liquid and the vapor; c0 is the surface energy coefficient; T is the temperature; ε = (Tc− T )/Tc

is the distance from the critical temperature Tc; σ is another critical exponent (expected to be
approximately 2/3). For ∆µ = 0 the liquid and the vapor are in equilibrium and Eq. (1.1) can be
taken to be the equivalent of the cluster concentrations at coexistence. More conventionally, one
can immediately obtain from Eq. (1.1) the usual p,T and ρ,T phase diagrams by recalling that in
Fisher’s model, the clusterization is assumed to exhaust all the non-idealities of the gas. It then
becomes an ideal gas of clusters. Consequently, the total pressure and density are

p(T ) = ∑
A

pA(T ) = T ∑
A

nA(T ), (1.2)

ρ = ∑
A

AnA(T ), (1.3)

as well as the corresponding scaled quantities p/pc and ρ/ρc.
In order to make use of the Fisher description of the cluster concentrations there were three

major obstacles to overcome: finite size effects, the problem of the long-range Coulomb interaction,
and the (un)physical picture of particles in a box.

2. Finite size effects

In the nuclear case finite size effects dominate the picture macroscopically and spectroscopi-
cally at all excitation energies. The challenge is to reduce the vast amount of specific knowledge of
each “drop” (nucleus) to a general characterization of uncharged, symmetric infinite nuclear matter.
This reduction has been successfully achieved for cold nuclei (T = 0) in determining the saturation
binding energy and density by means of the liquid drop model.

We have developed a general method to deal with finite size effects in phase transitions [8]. In
the case of liquid-vapor phase coexistence, a dilute nearly ideal vapor phase is in equilibrium with a
dense liquid-like phase. The interesting case of finiteness is realized when the liquid phase is a finite
drop. The vapor pressure of a drop can be calculated by correcting the molar vaporization enthalpy
to include the surface energy of the drop [9]. We introduced the concept of the complement (the
residual drop which remains after a cluster has been emitted) in order to further quantify finite size
effects and to generalize Fisher’s theory to better describe the cluster yields from extremely small
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systems [8]. The complement approach consists of evaluating the change in free energy occuring
when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop
in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the
drop and evaluating the energy and entropy changes associated with both the vapor particle and the
residual liquid drop (the complement).

This detailed accounting can be easily generalized to incorporate other energy terms common
in the nuclear case, such as symmetry energy, Coulomb energy and even angular momentum [1,
2, 10]. In order to demonstrate the power of this method, we apply it to the Ising model, where
a great deal of work exists on the subject of finiteness, in particular on the dependence of critical
quantities on the lattice size [11, 12].

In the canonical lattice gas representation of the Ising model, a fixed number of up spins
represents the occupied lattice sites (i.e., matter in the form of monomers, dimers, large drops etc.),
while down spins are empty space. In a finite lattice, we can fix the mean density of occupied
sites in such a way that, below the coexistence temperature T0, there is a large cluster or drop of a
certain size in equilibrium with its vapor, populated mostly by monomers. Two dimensional Ising
calculations were performed for fixed magnetization (equivalently, fixed mean occupation density).
Periodic boundary conditions were used to minimize the finite size effects of the container. At
the lowest temperatures the up spins congregate into one liquid drop in a vacuum. At higher
temperatures, the vacuum is filled with a vapor made from clusters of up spins. Clusters in the
vapor were identified via the Coniglio-Klein algorithm [13] to insure that they were physical (i.e.,
cluster distributions return Ising critical exponents and not percolation exponents). The largest
cluster was formed via a geometric clustering algorithm (all spin up nearest neighbors are bonded
together) and identified as the liquid drop. The largest cluster is identified geometrically and not
via the Coniglio-Klein prescription because we do not want to include clusters associated with the
skin thickness of the liquid into our description of the vapor [14].

Rather than consider the vapor globally, we examine the vapor in detail. Fisher’s droplet model
[7] describes the cluster concentration and can be written as

nA(T ) = g(A)exp
(
−c0Aσ

T

)
= q0A−τ exp

(
c0Aσ

[
1
Tc
− 1

T

])
(2.1)

where q0 is the normalization, c0Aσ is the surface energy of the cluster and g(A) is the degeneracy
of the clusters of size A (the number of ways the cluster A can be realized through different surface
configurations) and is approximately A−τ exp(c0Aσ/Tc). The resulting surface entropy S(A) is
given by

S(A)≈ lng(A)≈−τ lnA+
c0Aσ

Tc
. (2.2)

Eq. (2.2) is a remarkably felicitous asymptotic expansion. The presence of a leading term in S
proportional to Aσ permits the vanishing of the cluster free energy at a T = Tc independent of cluster
size. This expression, valid for a vapor in equilibrium with the infinite liquid, must be generalized
for equilibrium with a finite liquid. This can be done by making a preliminary observation: in
Fisher’s expression the abundance of each cluster in the vapor follows a Poisson distribution by
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construction. This is because the resulting partial vapors are considered as non-interacting. In
the Ising/lattice gas model this same situation prevails to a surprising degree (as can be seen in
ref. [15]). The Poisson nature of the multiplicity distributions allows us to introduce the concept of
the complement.

Consider a vapor in equilibrium with a drop of its liquid. The system may be a physical system
or the Ising realization of it. For each cluster of the vapor we can make the mental exercise of
extracting it from the liquid, determining the change in entropy and energy of the drop and cluster
system, and then putting it back in the liquid (the equilibrium condition), as if all other clusters of
the vapor did not exist. Fisher’s expression can now be written for a drop of size A0 in equilibrium
with its vapor as follows

nA(T ) =
g(A)g(A0−A)

g(A0)

exp
{
−c0

T
[Aσ +(A0−A)σ −Aσ

0 ]
}

(2.3)

or

nA(T ) = q0

[
A(A0−A)

A0

]−τ

exp
{
[Aσ +(A0−A)σ −Aσ

0 ]

(
c0

Tc
− c0

T

)}
. (2.4)

In other words, we treat the “complement” (A0−A) in the same fashion as a cluster. The resulting
expression reduces to Eq. (2.1) when A0 tends to infinity. While different than the standard Fisher
expression, Eq. (2.4) still admits the same Tc as that of the infinite system. This is because the A0,
A dependence of the surface energy finds its exact counterpart in that of the surface entropy.

We are now prepared to compare the Ising yields of the vapor concentrations to our modified
Fisher’s droplet model. An example is given in Fig. 1. The yields in the upper panel show the linear
Boltzmann behavior associated with a first order phase transition. We do not show temperatures
above T = 1.65 because for those temperatures there is no coexisting liquid drop in the calculations
– it has vaporized. Fisher’s description is intended to describe the coexistence condition and is
shown by the solid lines of Fig. 1. In the lower panel is shown the scaling condition where the
ordinate is scaled by the Fisher power law and the abscissa is scaled to reflect the total surface
energy over the temperature. The scaling works rather well.

From the Fisher droplet model fits to the yields comes an estimate of the critical temperature
of 2.32± 0.02. This is to be compared to the known analytical solution of Tc = 2/ ln(1+

√
2) =

2.269... Without the complement correction to the Fisher droplet model, a fit gives results of sim-
ilar quality but a critical temperature of 2.07± 0.05, clearly in worse agreement with the known
theoretical value.

The line represented by the scaled behavior shown in the lower panel of Fig. 1 contains all
the information regarding coexistence between the finite liquid and vapor phases in the lattice gas
model. Using that information, the coexistence pressure and density can be calculated (see the
solid line in Fig. 2). The agreement between the Fisher description and the Ising calculation (open
symbols) is quite good. Furthermore, one can take the finite value for A0 used in the modified
Fisher droplet model of Eq. (2.4), and let it go to infinity to recover the standard Fisher description
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Figure 1: Upper panel: the yields of clusters of size one (open squares) up to clusters of size ten (open
triangles) as a function of temperature from a two dimensional lattice gas calculation (lattice of 40 by 40) at
constant density ρ = 0.2 (corresponding to a cold liquid drop of A0 = 80) as a function of 1/T . The lines
are fits to the yields using the modified Fisher droplet model described in Eq. (2.4). Lower panel: the same
yields scaled by the power law on the ordinate and the surface energy over temperature on the abscissa.

Figure 2: The density ρ and pressure p of a vapor in coexistence with a finite drop A0 whose size at T = 0
is 80 (symbols) from 2d Ising calculations at fixed magnetization. The dotted lines are the analytic bulk
solutions known for the Ising model in two dimensions [16]. The solid line comes from fits to the cluster
yields using the modified Fisher formula to include the complement (see Eq. (2.4)). The long dashed curve
comes from the normal Fisher description (see Eq. (2.1)) of the cluster yields.
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for coexistence with an infinite liquid. This is shown by the long dashed curve in Fig. 2. The
agreement with the known analytic solution of Onsager [16] (dotted curve) is remarkable. We have
a practical way of now moving from finite to infinite systems with the Fisher droplet model.

3. Coulomb

In ref. [10], we explored the effects of the Coulomb interaction upon the nuclear liquid phase
transition. Because large nuclei are metastable objects, phases, phase coexistence, and phase tran-
sitions cannot be defined with any generality and the analogy to liquid vapor is ill-posed for these
heavy systems. However, it is possible to account for the Coulomb interaction in the decay rates
and obtain the coexistence phase diagram for the corresponding uncharged system [1].

4. Physical picture

We now specifically address fragment emission from an excited nucleus with a time-honored
assumption which we do not justify other than through the clarification it brings to the experimental
picture: we assume (just as in compound nuclear decay) that after prompt emission in the initial
phase of the collision, the resulting system relaxes in shape and density and thermalizes on a time
scale shorter than its thermal decay. At this point, the excited nucleus emits particles in vacuum,
according to standard statistical decay rate theory. In this picture, there is no surrounding vapor and
no confining box; there is no need for either. By studying the outward flux of the first fragments
emitted, we can study the nature of the vapor even when it is absent (the virtual vapor) because
of the equivalence of the evaporation and condensation fluxes of a liquid in equilibrium with its
saturated vapor. Quantitatively, the concentration nA(T ) of any species A in the vapor is related to
the corresponding decay rate RA(T ) (or to the decay width ΓA) from the nucleus by matching the
evaporation and condensation fluxes

RA(T ) =
ΓA(T )

h̄
≈ nA(T )〈vA(T )4σinv(vA)〉 , (4.1)

where vA(T ) is the velocity of the species A (of order (T/A)1/2) crossing the nuclear interface
represented by the inverse cross section σinv. The temperature T0 of the equilibrated, excited nu-
cleus when the first fragment is emitted can be estimated by the thermometric equation of a Fermi
gas and the calorimetrically measured excitation energy E∗ such that T0 =

√
E∗/a, allowing for a

weak dependence of a on T and remembering that the system is most likely still in the Fermi strong
degeneracy regime (where the temperature is much less than the Fermi energy: T << εF ).

This is the fundamental and simple connection between Eq. (4.1), the (compound nucleus)
decay rate, and Eq. (2.4), the modified Fisher droplet model. In the latter, one immediately rec-
ognizes in the exponential the canonical expansion of the standard compound nucleus decay rate,
namely, the Boltzmann factor. The surface part of the barrier is isolated from all other components,
e.g., Coulomb [10], symmetry, and finite size [8]. Thus, the vapor phase in equilibrium can be
completely characterized in terms of the decay rate.

The physical picture described above is valid instantaneously, but not globally. The result of
a global or successive evaporation in vacuum leads to abundances of various species of emitted
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Figure 3: The scaled charge yields for the six indicated reactions. Over 500 points are collapsed onto a
single curve which describes the behavior of bulk nuclear matter. The color of the points shows the charge
of the fragments. The solid line shows the liquid-vapor coexistence curve of bulk nuclear matter. Here
Θ is an effective chemical potential that depends on the effects of finite size, the Coulomb force, angular
momentum and isospin. See [1] for further details.

fragments that arise from a continuum of systems at different temperatures [17]. This leads to
complications in various thermometers: kinetic energy, isotope ratios, etc. One way to avoid this
complication is to consider only fragments that are emitted very rarely so that, if they are not
emitted first, they are effectively not emitted at all. In other words, we consider only fragments that
by virtue of their large surface energy have a high emission barrier.

5. Infinite nuclear matter

With solutions for the problems posed by finite size effects and the long-range Coulomb inter-
action along with an appropriate physical picture, we are ready to attempt a Fisher description of
yields measured in different nuclear reactions.

Having developed and tested in so far as possible this systematic approach, we have applied
it to a series of nuclear reactions: low energy compound nucleus decay and higher energy multi-
fragmentation. Low energy compound nuclear reactions were particularly important because the
mass, charge, excitation energy and angular momentum of the decaying system could easily be
determined.

Results are shown in Fig. 3 for the indicated reactions. When the yields are scaled by the
Coulomb, rotational, symmetry energies, etc. (all terms that are not surface energy), and plotted as
a function of the Boltzmann factor associated with surface energy, the different reactions show a
similar scaling. This scaled line contains all the information of coexistence between the two phases
for chargeless, symmetric, and infinite nuclear matter. The data can be fit to obtain an estimate of Tc

and such a procedure yields Tc = 17.9±0.4 MeV. Using the ideal gas approximations (Eqs. (1.2)
and (1.3)), estimates can be obtained for the critical density ρc and critical pressure pc. Such
calculations give ρc = 0.06±0.02 fm−3 and pc = 0.31±0.07 MeV/fm3.
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With the results described herein and with the more detailed analysis described in [1, 2], we
have made a definitive, experimentally based measure of the phase diagram of infinite, neutral
nuclear matter. Future work will explore the sensitivity of these results to model assumptions.
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