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We study the impact of nonequilibrium effects on the relégignals within a chiral fluid dynam-
ics model including explicit propagation of the Polyakogpo An expanding heat bath of quarks
is coupled to the Langevin dynamics of the order parametelsfidhe model is able to describe
relaxational processes, including critical slowing dowmal ¢he enhancement of soft modes near
the critical point. At the first-order phase transition weselve domain formation and phase co-
existence in the sigma and Polyakov loop field leading to mifsdigint amount of clumping in the
energy density. This effect gets even more pronounced ifavi® gystems at finite baryon den-
sity. Here the formation of high-density clusters couldvide an important observable signal for
upcoming experiments at FAIR and NICA. We conclude that mwjirg our understanding of dy-
namical symmetry breaking is important to give realistitneates for experimental observables
connected to the QCD phase transition.
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1. Introduction

Lattice calculations of quantum chromodynamics (QCD) at vanishing baeyoical potential
predict a phase transition between hadronic and partonic degreezdbin, which is an analytic
crossover [1, 2, 3]. The question of the nature of the phase transitimita baryochemical poten-
tial i is a yet unsolved issue. Lots of effort is put into the discovery of adirder phase transition
at large baryochemical potential and a critical point at the end of thisephassition line. Exper-
imentally, this effort is centered on the beam energy scan that is condatcRtdIC where large
event-by-event fluctuations are expected at the critical point [4,. 3;@}her facilities are built to
explore the phase diagram at even higher baryonic densities (FAIRANNFrom the theoretical
side, lattice QCD simulations are constantly improved but the feasibility of calcutatiblarge
u is intrinsically limited by the fermionic sign problem. Effective models are able toockre
several characteristics of QCD, such as chiral symmetry breakingestafation. Important fea-
tures of the gluon dynamics leading to confinement can, however, naidbered in these models,
although an effective description via the Polyakov-loop results in statistigdlnement at lower
temperatures [7, 8, 9, 10, 11, 16, 12, 13, 14, 15]. For the investigatitre QCD phase diagram
by heavy-ion collisions dynamical models of the phase transition are neleelealise the systems
created in heavy-ion collisions differ from thermal systems in the followinmpets: They are fi-
nite in space and time, inhomogeneous, highly dynamically and the evolution is fikelycur
out-of-equilibrium near the critical point and a first-order phase tramsitio

At the critical point this is due to the phenomenon of critical slowing down,esimat only
the correlation length diverges but so does the relaxation time. Any sys&revbives in a finite
time through the critical point will thus necessarily be driven out of equilibraven if it is equili-
brated at a temperature aboke From a phenomenological approach including dynamical critical
exponents it was found that the correlation grows up to 1.5— 2.5 fm [17]. These nonequilib-
rium effects will consequently weaken the expected increase of thé-byesvent fluctuations at a
critical point.

Nonequilibrium effects play, however, an important role at the firstiopti@se transition in
order to observe fluctuation signals in single event studies. When nucl¢iaties are small, one
expects spinodal decomposition [18, 19, 20, 21, 22, 23, 24] to dominatestlixation process
leading to an instability of slow modes. In these proceedings we focus ongteriiler transition
and address the question of how much spinodal instabilities at high baeyitids can facilitate
the formation of inhomogeneities and clustering.

2. Nonequilibrium chiral fluid dynamics

Our goal is to combine a description of phase transitions with a realistic moddlitige o
dynamics of the bulk matter in a heavy-ion collision. For this latter purpose fgndmic simu-
lations have proven a very successful tool especially after the digcofiehe almost perfect fluid
by RHIC. Since the early application of fluid dynamic calculations to high-gnleegvy-ion col-
lisions, there has been a lot of improvements. Modern fluid dynamical @ée3+ 1d, include
viscous corrections, different initial conditions can be included anddésttuding event-by-event
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initial fluctuations [25] and fluid dynamics are used as part of highly d@esldwybrid models to
describe hadronic final interactions [26].

The phase transition is implemented via the Polyakov-loop extended quark messtel.
The fermionic part in the presence of the temporal gauge fAglés integrated out and treated
fluid dynamically by assuming that time scales are much shorter than those vet@mahe the
critical fluctuations. The mesonic part, where the sigma field is the ordempéesg is propagated
explicitly taking into account the interaction with the fluid dynamic part. This setap derived
consistently within the two-particle irreducible (2P1) effective action apphan [27]. This results
in a Langevin-type propagation of the sigma field

040"+ 20 4 Pyt N9h0 = &, 2.1)
wherel is the classical mesonic potential including a small term of explicit chiral symrbetak-
ing due to the finite current quark massgss the coupling between the fermionic and mesonic
fields andps is the pseudoscalar density. We do not consider fluctuations in the piatdr.s€he
pion fields are thus assumed to be at their equilibrium expectation Vajeg= 0. Due to the
interaction between the sigma field and the (anti)quarks from the fluid the sigldasfidamped
by a temperature-dependent damping coefficignt

o= o)) oy (R e) e

g
With respect to the dissipation-fluctuation theorem the noise &gldeeds to be included on the
right hand side of the Langevin-equation (2.1). It is approximated as white. Its expectation
value vanishes

(éo(t))e =0, (2.3)

and the noise correlation is given by

(Eo(t,R)E (1 X)) = \%5@ —t’)6(2—2’)manocoth(%> . (2.4)

In all calculations the equilibrium sigma masg is used. Below the phase transition, where the
sigma mass decreases and the (anti)quarks acquire their constituent muaasd 300 MeV, the
leading process that contributes to the damping, the scatteringyq is kinematically not possible
anymore. Itis known, however, that there will be an additional damping & — 271. In this case,
we usen, = 2.2/fm, as was approximated in previous studies [28, 29].

Recently we extended the model to include the nonequilibrium dynamics forallgakev-
loop as well [32, 34]. An analogous derivation of the equation of motioefPolyakov loop is
not possible, we therefore propagate it by a phenomenological relaxagiction, treating as an

effective field [32]
oV,
NaLT2 + d;ﬁ =& (2.5)
Here, we assume a parametric valugjpt= 5/fm. The final, qualitative results are mostly inde-
pendent of this special choice. Again the stochastic noise is approximaaussian with a zero

expectation value and the imposed dissipation-fluctuation theorem to giveidaca

(E(LRE X)) T2 = L5t —)5(X~X)20,T 2.6)
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The effective potentiadVes is described as the sum of the sigma, effective Polyakov loop and
mean-field quark-antiquark contribution [32]

Veff:U(0)+%(57T)+Qq6(0a€a1—aﬂ) : (27)

The (anti)quark fluid expands and cools according to energy-momemtdmed-baryon num-
ber conservation, i. e. the ideal relativistic fluid dynamic equations. In wkthe Langevin
dynamics of the order parameter the fluid acts as a heat bath. In a heawgHision the system
is finite and we thus need to include explicitly the momentum exchange betweeigriiee field
and the fluid. This is done by including a source term to the fluid dynamic eqsaifenergy and
momentum conservation

A TH (t,%) = S (t,%) = — (9, T8 (t,%) + 0, T}V (t,%)) (2.8)
AuNH(t,%) =0. (2.9)

This leads to an overall conservation of energy of the coupled systen8f3. Since the evolu-
tion of the sigma field is manifestly stochastic the source term is stochastic as wreltjuicing
fluctuations in the fluid dynamical fields. This is an important feature as isdhe possibility of
studying fluctuations not only in the order parameter fields but also in theatfigmamical quan-
tities like the energy density and the net-baryon density. It is important to natednventional
fluid dynamics only propagates local thermal averages. Recently, the/tbetuid dynamical
fluctuations has been extended to applications in heavy-ion collisionsTBR]yields an interest-
ing further approach to investigate fluctuations at the QCD phase transition ¥luid dynamical
descriptions, but is not an ingredient of our model.

Finally, the system evoles under an equation of state, which dependsllasnvike local
values of the sigma field and the Polyakov loop assuming that the fluid is locallyuitibeium
corresponding to the actual value of the order parameter fields

p(o,l,T,u) = _Qqaa (2.10)
_t9p, 90
_9p

n(o,l,T,u) = o (2.12)

For details about the model and first numerical implementations, see [231 382].

3. Trajectories in the phase diagram

In the following we solve equations (2.1), (2.5), (2.8) and (2.9) numeridatlgifferent initial
conditions, probing the crossover, critical point and first-order @tigssition regime in theT¢
W)-plane. We extract trajectories by averaging the temperature and cheutieatial in each time
step in a small central volume of 1fmResults are shown in Fig. 1. We see that the curves follow
the behavior of the equilibrium isentropes to bend towards the directiongarlarwhen crossing
the transition line, cf. [35]. This is connected to the rapid growth of the ohyoaly generated
quark mass at the chiral phase boundary. However, with larger chiepatential, we see that
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Figure 1: Trajectories of the hydrodynamic simulation in the phasgdim for different initial conditions.
Nonequilibrium effects lead to an overshooting of the fasler phase transition. The dashed gray lines
denote the spinodal region.

this effect occurs only after the system has left the spinodal regioigaitiny the formation of

a supercooled phase. After the decay of that phase, the system edpuestk into the spinodal
region, the extended amount of time here should facilitate the process otlaporecomposition.
We have seen in [32] already for systems at vanishing chemical potendiaihit leads to domain
formation in the order parameter fields and inhomogeneities in the energiyydans first-order

phase transition.

4. Domain formation in net-baryon density

In order to visualize also the domain formation in net-baryon density, weatxha relative
net-baryon density/(n) in the transverse= 0 plane. Herén) is the volume averaged net-baryon
density over all fluid dynamical cells with> 0. The results are shown in Fig. 2 for an evolution
aftert =9 fm. We find a large inhomogeneities at the first-order phase transitiomgewhesters
of high density form. In contrast to that, for an evolution through the cripcaht, the spherical
structure from the initial conditions remains preserved, the system examiogeneously.

One can translate these images into azimuthal distributions of the net-banydorendensity
as shown in Fig. 3. Here, the distributions are taken &fte fm andt = 12 fm. They differ signif-
icantly for the different phase transition scenarios. For a cross@msition the curve is rather flat.
When we increase the baryochemical potential we find small fluctuatiorismigtaround trajecto-
ries close to the critical point. Due to the present nonequilibrium effectsndestrong fluctuations
in the azimuthal distribution of net-baryon density for an evolution througHiteeorder phase
transition. The bumps and deeps in the two plots are correlated, indicatindp¢helusters pre-
serve their identity during the expansion. In experiment, these non-stdtfiitaations within
single events should lead to an enhancement of higher flow harmonicghd=mwvestigation this
possibility a freeze-out scenario needs to be included, which gives theentam distributions of
e. g. net protons as a probe of net-baryon number. For further noargitative results the use of
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Figure 2: Relative net-baryon number densityzat 0 andt = 9 fm for (a) a first-order transition at and

(a) for a transition through the critical point. Dropletstafih density are formed at the first-order phase
transition, at the critical point the density evolves hommgously.

a more realistic model in terms of the low-energy phenomenology at hightiargiensities, like
e. g. in [36], would be needed.
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Figure 3: Azimuthal distribution of the net-baryon number densitieaf = 6 fm (a) andt = 12 fm (b) for
several transition scenarios. Strong inhomogeneitiesldp\at the first-order phase transition.
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